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Abstract

In reinforcement learning we often try to solve a composed task, for which the correspond-
ing sub-policies are easier to learn. However, it is not clear how they can be exploited
without losing optimality. Finding a way to reuse existing sub-policies can alleviate the
sample complexity problem, which limits the applicability of most reinforcement learning
algorithms for real world robot learning problems. By having a practical approach to use
existing sub-policies we can first decompose the task into sub-tasks, and then leveraging
the prior knowledge about the sub-tasks can facilitate the learning process. In this work,
we study how representing the learned sub-policies as advantage functions and using
them to shape the environment’s reward function can accelerate the learning without any
adjacency requirements on the policies. For learning sub-policies we use the maximum
entropy framework, which serves as a natural way to incorporate exploration into the
agent.
We first validate the theory using a simple grid-world example, then we show how it can
be applied in real world robotics applications, namely robot drumming. Our experimental
evaluation demonstrates that combining sub-policies can result in substantial improvement
in sample complexity and make the use of model free reinforcement learning algorithms
in complex robotics applications possible.
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1. Introduction

A cornerstone of human and animal intelligence is the ability to learn autonomously
through trial and error. To that end, reinforcement learning (RL) presents a natural
framework to develop learning algorithms for embodied agents.

Unfortunately, when learning is applied to real-world environments, or other environments
with inherently sparse rewards spaces, the learning algorithms are notoriously sample
inefficient. The high sample complexity is due to the large number of samples required to
find the reward signal for the first time. Although this problem is not considered infeasible
if the state space is small enough, it can quickly become intractable for complex continuous
space states. While some approaches tried to solve this problem by using an existing
potentially suboptimal policy [1, 2, 3] to guide the agents exploration of the state space,
they do not provide a solution to use existing policies learned to tackle each subtask that
together add up to the complete problem.

Another group of approaches try to solve the sample complexity problem by choosing the
most efficient reward signal. One of the early examples [4] attempted to use a potential
based function to reshape the reward and it showed by doing so the optimal policy remains
unchanged. This is an effective solution especially when dealing with sparse reward
functions, since the choice of the right potential based shaping function can decrease
and even eliminate the sparsity of the reward and make the policy convergence during
training orders of magnitude faster, but choosing the right function is often not trivial
in practice and requires lots of experimentation and manual handcrafting. Additionally
for most of the real world robot learning problems, handcrafting a near optimal shaping
function would be, due to the complexity of required steps to fulfill the objective, almost
impossible.

A more recent attempt [5, 6, 7] tries to incorporate exploration directly in the objective
function by adding an auxiliary objective to maximize the entropy of the policy. By also
maximizing the entropy of the policy, the agent assigns non-zero probability to all actions,
but still higher probability to the actions with higher expected return. As a consequence,
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Figure 1.1.: From left to right: 1. optimal policy to reach the goal (without any penalty for
collision). 2. optimal policy to just avoid the walls. 3. Naive combination of
the last two policies. 4. optimal (our) policy combination for the complete
task.

the resulting policy will be a combination of exploitation and exploration into the most
promising regions. Maximum entropy framework provides the agent with an informed
exploration strategy and leads to a substantial improvement in sample complexity and
the agent can even find different ways of achieving the same goal, if the task at hand
is sufficiently simple. Although maximum entropy provides a practical framework for
elementary robot learning applications in the real world, it still needs an adequate amount
of exploration for more complex tasks, and this can limit its range of applications in the
real world. The exploration problem for complex tasks can be mitigated by breaking the
task into simpler sub-tasks and using the learned policies from the sub-tasks to solve the
complete task.

Haarnoja et al. [8] showed the efficiency of using soft Q-learning for learning robotic
manipulation skills and tried to combine the maximum entropy policies by averaging the
learned policies.
But as illustrated in Fig. 1.1 a naive combination of policies does not lead to finding a
meaningful policy even when the combined policies are MaxEnt-optimal with respect to
their reward functions. The naive composition of sub-policies by averaging them mostly
leads to a sub-optimal resulting policy, because in most cases the objective of each sub-
policy is in contrast to the others and as shown in [8] the optimality of the resulting policy
is inversely correlated with the divergence of the constituent policies.

In this work we show a novel approach to combine policies from different agents by
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representing them as advantage functions and using the advantage functions as potential
based functions to reshape the reward, while the Maximum entropy framework with its
inherent exploration strategy gives us a practical way to learn sub-policies with enough
exploration. Then we demonstrate how our method can still yield near optimal result in
real world robotic applications, without access to maximum entropy policies.
First we use the taxi environment to demonstrate the effectiveness of our approach and
at the end, we show the practicability of it in robotics problems with robot drumming
application.
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2. Preliminaries

In the Reinforcement learning framework, the agent ought to take actions (a ∈ A) in an
environment in order to maximize the cumulative reward (R). RL is commonly studied
based on the Markov decision process (MDP) framework. An MDP is a tuple ⟨S,A, T ,R, γ⟩
where S is the set of states, A is the set of actions, T : S ×A× S is the set of transition
probabilities, R : S × A (R : S × A × S ′ for stochastic settings) is the reward function
and γ ∈ [0, 1] is the discounting factor. A policy π : S × A is defined as a probability
distribution that maps actions to states and

∑︁
a∈A π(s, a) = 1, ∀s ∈ S. The goal of RL is

to find an optimal policy π∗ that maximizes the expected return J(π) where:

J(π) = Eτ∼π(τ)[r(τ)] = Eτ∼π(τ)

[︃ ∞∑︂
t=0

γtrt

]︃

and τ is the state action pairs for each episode (s0, a0, s1, a1, ...). The distribution over
trajectories π(τ) is given by:

π(τ) = p(s0)
∞∏︂
t=0

π(at|st)p(st+1|st, at).

The advantage function denoted as A(s, a) measures the advantage of selecting each
action for each state and is defined as:

A(s, a) = Q(s, a)− V (s) = ln(pi∗) (2.1)

where the state-action values function Q(s, a) and the values function V (s) are defined
as:

V π(s) = Ea∼π,s′∼P [r(s, a) + V π(s′)], (2.2)

Qπ(s, a) = Es′∼P [r(s, a) + γEa′∼π[Q
π(s′, a′)]] (2.3)
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with s′, a′ as next state and actions and r(s, a) the immediate reward from taking action a
in state s.

In this section we describe the main methods that were used either as the basis for the
proposed method or to test it in different settings.

2.1. Maximum Entropy Reinforcement Learning

While the standard RL objective is to maximize Eq. 2, the goal of maximum entropy
reinforcement learning is to maximize both its entropy and the expected return at each
visited state. Therefore it changes the objective function to:

J(πMaxEnt) = argmax
π

T−1∑︂
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(.|st))] (2.4)

where H(π(.|st)) represents entropy and α is a parameter that can be used to determine
the relative importance of entropy and reward. The original RL objective term can be
recovered by using α = 0. Maximum entropy RL has a number of beneficial properties.
First, instead of learning the best way to perform the task, the resulting policies try to
learn all of the ways of performing the task. Apparently, if we can learn all of the ways
that a given task might be performed, the resulting policies have better properties to get
used as shaped reward as described in Chapter 4. Second, the policy is incentivized to
explore more widely, while giving up on clearly unpromising avenues.

2.2. Soft Q-Learning

For optimizing the objective in 2.4 we can use the soft Q-learning algorithm [5]. Soft
Q-learning optimizes a Q-funcion Q(s, a) to predict the expected future return, which
includes the future entropy value after taking an action a at state s and then following
π. The optimal policy can be expressed in terms of the optimal Q-function as an energy
based model(EBM):

π∗(a|s) ∝ exp(
1

α
Q∗(s, a)). (2.5)
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For updating the Q-function, we can use the soft Bellman backup, which resembels the
Bellman backup used in conventional Q-learning from Eq. 2.3:

Q(s, a)← r(s, a) + γEs′∼p(s′|s,a)[V (s′)] (2.6)

where the value function V (s) is defined as the soft maximum of the Q-function over
actions:

V (s) = softmaxaQ(s, a) = α log

∫︂
A
exp(

1

α
Q(s, a))da (2.7)

Then the optimal policy for the objective function 2.4 is given by:

π∗
MaxEnt(at|st) = exp(

1

α
(Q∗

soft(st, at)− V ∗
soft(st)))

and since the soft Bellman backup is a contraction and the optimal Q-function is the
fixed point of the iteration in 2.6, we can transform any bounded function to the optimal
Q-function by iteratively applying the soft Bellman backup until convergence. We will
make use of the soft Bellman backup and the value function (Eq. 2.6 ,2.7) in section 5.2
to get expressive policies whose logarithm can be used to get the advantage function.

2.3. Reward shaping

One of the first papers exploring the use of reward shaping for speeding up the learning
process by Andrew Y. Ng et al. [4] showed that shaping the reward function as the original
reward combined with a difference of potentials shaping function:

R′ = R+ F (s, a, s′) (2.8)

with:
F (s, a, s′) = γ ∗ Φ(s′)− Φ(s) (2.9)

is both a necessary and sufficient condition for the optimal policy to remain unchanged.
Using Eq. 2.8 and 2.9 we get as the new environments reward function:

R′ = R+ γ ∗ Φ(s′)− Φ(s) (2.10)

(Φ : S ⇒ R such that s ∈ S −
{︁
s0
}︁
, a ∈ A, s′ ∈ S ).

Shaping the environment’s reward function as shown in Eq. 2.10 can eliminate the
sparsity in the reward function, which leads to more efficient exploration and can result in
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substantial improvement in sample complexity. As an intuitive example we can consider
the problem of learning to drive a bicycle towards the goal. Using the shaping function in
Eq. 2.10 to shape the environment’s reward, results in a reward function that reinforces
the agent proportional to the improvement in its potential to reach the goal at each time
step and guides the agent exploration to the goal.
For the optimal value function under the shaped reward V ∗

M ′(s) the author has also proved:

V ∗
M ′(s) = V ∗

M (s)− Φ(s)

and shown that choosing Φ in Eq. 2.9 and 2.10 based on domain knowledge such that in
the ideal case Φ(s) = V ∗

M (s) (with Φ(s0) = 0 in the undiscounted case) leads to better
sample complexity in most of the standard RL gridworld environments. Recently, reward
shaping has also been successfully applied in more complex problems such as Doom [9, 10]
and Dota2 [11].
In Chapter 5 we show how reward shaping can be used to combine maximum entropy
sub-policies (we prove that reward shaping can be extended to MaxEnt-RL in Appendix A).
In Chapter 6 we demonstrate its effectiveness with an example in the real world setting,
where we don’t have access to optimal maximum entropy policies, by using reward shaping
to combine the sub-policies from probabilistic movement primitives framework.

2.4. Probabilistic Movement Primitives

Probabilistic Movement Primitives (ProMPs) [12] have recently shown promising results
in different robotics applications [13, 14]. It provides a practical framework for Movement
Primitives(MPs) co-activation while encoding a time varying variance of movements to be
able to capture multiple demonstrations with high variability.
In the ProMPs framework for one degree of freedom (DOF) the probability of observing a
trajectory τ given the underlying weight vector ω is given as a linear basis function model

yt =

⎡⎣qt
qṫ

⎤⎦ = ΦT
t ω + ϵy (2.11)

p(τ |ω) =
∏︂
t

N (yt|ΦT
t ω,Σy)

where ΦT
t = [ϕt, ϕt

̇ ] defines the n× 2 dimensional basis functions for the joint positions qt
and velocities qṫ, n defines the number of basis functions and ϵy ∼ N (0,Σy) is zero-mean
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i.i.d. Gaussian noise. By weighting the basis functions Ψt with the parameter vector ω, it
can represent the mean of a trajectory.

For capturing the variance of the trajectories, it uses a distribution p(ω; θ) over the weight
vector ω, i.e., p(τ ; θ) can be computed by marginalizing out the weight vector ω :

p(τ |θ) =
∫︂

p(τ |ω)p(ω; θ)dω.

to obtain the probability distribution over the trajectories τ . The model’s parameters are
given by the observation noise variance Σy and the parameters θ of the weight distribution
p(ω; θ).
By defining the phase as z0 = 0 at the beginning and zt = 1 at the end of the movement
we get the Gaussian basis functions bGi as:

bGi (z) = exp(−(zt − ci)
2

2h
),

where h defines the bandwidth and ci the center for the ith basis function. After normal-
izing the basis functions, we get:

ϕi(zt) =
bi(z)∑︁n
j=1 bj(z)

.

For generalizing the approach to multiple DOFs, in order to capture the covariance of
joint positions and velocities for each time step and encode a linear relationship between
them, for each dimension i, we maintain a parameter vector wi and by concatenating
them we get the combined weight vector w = [wT

1 , ..., w
T
n ]

T . The basis matrix Φt extends
to a block-diagonal matrix containing the basis functions and their derivatives for each
dimension. The observation vector yt consists of the angles and velocities of all joints. The
probability of observation y at time t is given by:

p(yt|w) = N

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
y1,t

.

.

yd,t

⎤⎥⎥⎥⎥⎥⎥⎦ |
⎡⎢⎢⎢⎢⎢⎢⎣
Φt . . 0

. . .

. . .

0 . . Φt

⎤⎥⎥⎥⎥⎥⎥⎦w,Σy

⎞⎟⎟⎟⎟⎟⎟⎠ = N (yt|Ψw,Σy)
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where yi,t = [qi,t, q̇i,t] denotes the joint angle and velocity for the ith joint,
Furthermore Eq. 2.11 becomes:

p(τ |w) =
∏︂
t

N (yt|Ψtw,Σy).

In order to learn the weights w we can use expert demonstrations. For learning from
demonstrations a Gaussian distribution for p(w; θ) = N (w|µw,Σw) over the parameters w
is assumed. Consequently, the distribution of the state p(yt|θ) for time step t is given by:

p(yt; θ) =

∫︂
N (yt|Ψtw,Σy)N (w|µw,Σw)dw = N (yt|Ψtµw,ΨtΣwΨ

T
t +Σy) (2.12)

and, thus the mean and the variance of resulting trajectory distribution for any time point
t can get evaluated. As there is a linear dependency between the parameters µw,Σw

and the resulting trajectory at timestep t, we can learn the parameters θ = µw,Σw from
demonstrations by maximum likelihood estimation algorithm. We can first estimate the
weights for each trajectory individually as:

wi = (ΨTΨ+ λI)−1ΨTYi, (2.13)

where λ denotes the ridge factor and is generaly set to a very small value (λ = 10−12 in
our case). Then the mean µw and covariance Σw are computed from the samples wi:

µw =
1

N

N∑︂
i=1

wi, Σ̂w =
1

N

N∑︂
i=1

(wi − µw)(wi − µw)
T (2.14)

where N is the number of demonstrations.

Using the Eq. 2.13 and 2.14 to learn weights for periodic movements, gives us the
possibility to learn a trajectory distribution from as few as 10 human demonstrations and
eases the data collection bottleneck in real world robotic applications.
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3. Related Works

Figure 3.1.: Red line represents
the Pareto frontier.
No other policy(gray
circles) can achieve
superior results in both
objectives compared
to Pareto efficient
policies(red circles).

Multiobjective Reinforcement Learning (MORL)
[15] can be viewed as the combination of multi-
objective optimization (MOO) and RL techniques to
solve the sequential decision making problems with
multiple conflicting objectives. In order to approxi-
mate a solution to problems with multiple objectives,
MORL algorithms try to find the policy/set of poli-
cies, which can give the best approximation of the
Pareto frontier. Pareto frontier represents the set of
all Pareto efficient solutions. A policy πA is Pareto
efficient when there is no other policy πN which can
achieve better results in all objectives than πA (Fig.
6.3 illustrates the Pareto frontier for the case of two
objectives).
In MORL for each objective i (N ⩾ i ⩾ 1) and a
stationary policy π, there is a vectored state-action
Q-function MQπ(s, a) such that:

MQπ(s, a) = [Qπ
1 (s, a), Q

π
2 (s, a), ...Q

π
N (s, a)]T

with the optimal vectorized state-action Q-function
defined as:

MQ∗(s, a) = max
π

MQπ(s, a) (3.1)

where the "max" operator for a vector is defined either in the sense of Pareto optimality
or in the sense of maximizing a weighted scalar of all the elements. From Eq. 3.1 the
optimal policy can be easily obtained by:

π∗(s) = argmax
a

MQ∗(s, a).
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The MORL approaches can be divided in two groups based on the number of policies to be
learned [16]: single policy and multiple policy approaches. single policy approaches try to
find the optimal policy, which simultaneously satisfies all the objective functions. As a naive
solution for the single policy case, we can design a synthetic Q-function (TQ(s, a)), which
can suitably represent the overall preferences. The goal of multiple policy approaches
is to solve MORL problem by obtaining a set of policies, which approximate the Pareto
frontier. A naive solution for the case of multiple policy approaches is to synthesize a set
of Q-functions, that their corresponding policies represent the Pareto frontier.
The main difference between single policy MORL and our approach is that instead of
directly using sub-policies to get a new policy, we leverage the sub-policies in our new
reward function and still run RL algorithms on the new reward to get the new, Pareto
efficient, policy.
In the rest of this Section, we describe two prior works which attempt to approximate a
Pareto efficient single policy solution for MORL problem.

One of the prior works [17] considers solving "or" combination of objectives (e.g., move to
the target OR hold the glass) under the linear MDP assumption. Linear MDP considers
the setting where cost is a function of state, with an action cost that is given by the KL
divergence between the desired transition probabilities and the passive dynamics.

In order to solve the "and" combination of objectives (move to the target AND hold the
glass) without any assumption for underlying MDP, recently Haarnoja et al [8] showed
different policies trained using soft Q-learning can get combined by averaging the Q-
function corresponding to each policy in the form:

Q∗
C(s, a) ≈ QΣ(s, a) =

1

|C|
∑︂
i∈C

Q∗
i (s, a),

where Q∗
C(s, a) represents the optimal Q-function of the composed task.

Additionally it shows as an example for the case that QΣ(s, a) ≜ 1
2(Q

∗
1 +Q∗

2), the optimal
soft Q-function of the combined reward rC ≜ 1

2(r1 + r2) satisfies:

QΣ(s, a) ≥ Q∗
C(s, a) ≥ QΣ(s, a)− C∗(s, a), ∀s ∈ S, ∀a ∈ A (3.2)

where C∗ is the fixed point of :

C(s, a)← γEs′∼p(s′,|s,a)[D 1
2
(π∗

1(.|s′)||π∗
2(.|s′)) + max

a′∈A
C(s′, a′)] (3.3)

with D 1
2
(.||.) being the Renyi divergence of order 1

2 .
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As we can see from Eq. 3.2 and 3.3, the difference of the composite Q-function QΣ(s, a)
compared to the optimal Q-function Q∗

C(s, a) depends heavily on the divergence of the
constituent policies. This property leads to highly suboptimal Q-function and as the result
bad policy, if the combined policies have goals that contradict each other.
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4. Proposed Method

In this Chapter we describe our approach to maximize a combination of reward functions
as:

rcombine = r1 + r2 + r3 + . . . (4.1)

such that the optimal policy satisfies:

π∗ = argmax
π

(E(st,at)∼ρπ [rcombine(st, at) + αH(π(.|st))]). (4.2)

In order to approximate the optimal policy from Eq. 4.2 we use the combination of
sub-policies, each trained separately on one of the constituent rewards from Eq. 4.1, to
shape the environments reward function. More specifically, we assume that for some of the
individual objectives ri we have the optimal policy π∗

i = argmaxπ(E(st,at)∼ρπ [ri(st, at) +
αH(πi(.|st))]). Since each policy has been obtained independently, they can contradict
each other, therefore the optimal method for composing the policies should work equally
well, independent of divergence of the constituent policies. The novel approach introduced
in this work, has no adjacency requirements on sub-policies. Therefore it can work equally
well, even if the goal of the constituent policies contradict each other. After computing
the shaped reward, we can train a new policy on this new reward function.
In the next Section we show, how we can use the reward shaping theory, introduced in
Chapter 2 to combine the n policies as a new shaped reward.

4.1. Theoretical Overview

Given Eq. 2.10 and by using Φ(s) = VM (s) and Φ(s′) = VM (s′) as potential based shaping
functions, we can derive:

rs(s, a, s
′) =

Q(s,a,s′)⏟ ⏞⏞ ⏟
r(s, a, s′) + γ ∗ v

(︁
s′
)︁
−v (s) (4.3)
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as shaped reward. We can now use the n policies and Eq. 4.3 and 2.1 to compute the
shaped reward as:

rs(s, a, s
′) = Q1(s, a, s

′) +Q2(s, a, s
′) + . . .+Qn(s, a, s

′)−
(v1 (s) + v2 (s) + . . .+ vn (s)) = ln(π1) + ln(π2) + . . .+ ln(πn) (4.4)

and for the case of having n value functions we use the Eq. 4.3 in the form:

rs(s, a, s
′) =

rcombine⏟ ⏞⏞ ⏟
(r1(s, a, s

′) + r2(s, a, s
′) + ...+ rn(s, a, s

′))+

γ ∗ (v1(s′) + v2(s
′) + ...vn(s

′))⏞ ⏟⏟ ⏞
ϕ(s′)

− (v1(s) + v2(s) + ...vn(s))⏞ ⏟⏟ ⏞
ϕ(s)

. (4.5)

to shape the reward.

Figure 4.1.: left: three policies(πn, for n ∈ {1, 2, 3}), each localy concentrated at one
region and uniformlly distributed in other regions, used to shape reward. right:
the resulting policy trained on the shaped reward (rs =

∑︁3
n=1 ln(πn)) using

the last three policies.

Using Eq. 4.5 and 4.4 to shape the environments reward, gives use two practical advan-
tages. First it gives us an effective way to use the existing sub-policies to eliminate the
sparsity in the reward function and guides the agent exploration, without the need for
handcrafting the potential based function (Φ for Eq. 2.10) based on domain knowledge.
We use this advantage in the next chapter to speed up the agents learning process in the
taxi environment.
Additionally, in some RL applications we can exploit the locality of the constituent policies
as illustrated in Fig. 4.1 and using the Eq. 4.4, we can extract the shaped reward that can
be used to optimize a policy which can fulfill the goals of all composed policies. Chapter
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6 represents such an real world robotics example with robot drumming. In this setting we
can use the temporal locality of ProMP policies to get the shaped reward. We show how,
using the temporal locality of hitting each drum table, we can optimize a policy which is
able to play the drumming notes with high temporal precision, surpassing best human
drummers.
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5. Gridworld Experiments

Figure 5.1.: Overview of a successful episode of the taxi environment: in this case the
agent picks up the passenger at location "G" and drops it off at "R" and the
environment restarts.

As our gridworld experiment, we chose for simplicity and clarity the Taxi environment.
In this environment, there are four designated locations in the gridworld. When the
episode starts, the taxi starts off at a random square and the passenger is at a random
location (from designated locations). The taxi (agent) should drive to the passenger’s
location, pick up the passenger, drive to the passenger’s destination (another one of the
four specified locations), and then drop off the passenger without colliding to the walls.
Once the passenger is dropped off, the episode ends. The reward for each step is -1, except
for the step where the passenger is dropped off, which is +20, and the reward of collision
which is -100.

In order to get the sub-policies we use two modified versions of the reward that sum up to
the original reward. In the first version, the reward is zero for visiting every state and -100
for collision. In the second version, the reward is -1 for every state and +20 for successful
passenger dropoff with no extra penalty for collision. The goal of the first reward function
is to teach the agent to explore the state space without any collision, while the goal of the
second reward function is to teach the agent to pick up the passenger and drop it off at
the goal location, while choosing the most efficient path.

For computing the value matrix, soft value iteration or Soft-Q-Learning [5] can be used.
Soft value iteration is used to demonstrate the effectiveness of the approach, when the
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environment is deterministic and its transition probabilities matrix (T (s, a, s′)) is known
and serves as a baseline for measuring the improvement through using the proposed
methode. While the improvement becomes more apparent as we use soft Q-learning with
stochastic environment and unknown transition probabilities.

5.1. Soft value iteration

Figure 5.2.: Expected reward (on 10000 episodes rollout) of soft value Iteration in the
deterministic setting from the agent trained on the shaped reward compared
to the agent trained on the original reward function.

In the soft value iteration setting we use the Bellman equation (Eq. 2.6) for the determin-
istic setting with known transition probabilities in the form:

Qk+1 =
∑︂
s′

P (s′|s, a)(R(s, a, s′) + γVk(s
′)), for k ⩾ 0

then we can get the soft value function as in Eq. 2.7 and the corresponding policy as
shown in Eq. 2.5.
Now we can use the Eq. 4.4 and sum the log of the two policies to get the shaped reward
as:

Rs = lg(π1) + lg(π2)

and after training an agent on this reward, we evaluate its performance by comparing it
to the agent trained on the original reward function.
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From Fig. 5.2 we can see that the policy trained on the shaped reward converges to the
optimal policy after just a few iterations, while for the case of the original environment’s
reward function, it takes 20 to 30 iterations to reach the optimal policy.

5.2. Soft Q-Learning

Figure 5.3.: Expected reward (on 10000 episodes rollout) of soft Q-Learning from the
agent trained on the shaped reward compared to the agent trained on the
original reward function. Top: deterministic setting. Down: stochastic setting
with 10 % stochasticity.

In soft Q-Learning, the assumption π = exp(Q− V ) may be violated in practice due to
sample-based optimization, and log(π) may not be a shaped reward. Hence, we directly
use the values functions obtained by Q-learning (Eq. 2.6 and 2.7) to shape the reward as
shown in Eq. 4.5 in the form:

Rs = r1[s, a] + r2[s, a] + gamma ∗ (V1[s
′] + V2[s

′])− (V1[s] + V2[s]).

After training an agent on this reward, we evaluate its performance by comparing it to
the agent trained on the original reward function.
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In soft Q-learning setting we can see even a bigger improvement in sample complexity
and as shown in Fig. 5.3, as we increase the stochasticity of the environment the gain gets
even larger. We can observe an approximate 2x improvement in sample complexity in
the deterministic setting, and as the environment becomes more stochastic, the unshaped
Q-learning algorithm get slower to converge, while the Q-learning algorithm with shaped
reward still reaches the optimal policy after the first few thousand iterations. This suggests
further big improvements in the real world robotics applications, as the complexity of the
state space increases.
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6. Real-World Manipulation

Figure 6.1.: To illustrate the effectiveness of reward-shaping on physical hardware, we
trained six ProMPs for two drums with just a few samples for each ProMP.
Their probability distributions in joint space is used to shape the reward. We
showed the policy fitted on the shaped reward is able to successfully play
drum.

Robot Drumming represents, due to the temporal coordination of movements, a challenging
real world robotic application. To illustrate how our approach can be used to combine
learned policies in the real world robotics setting, we used the wam robotic hand with 2
drum tables (as shown in Fig. 6.1 ) and learned 3 ProMPs per each drum table (6 in total).
Although in this work we have considered the setting with 2 drum tables, our methods are
generalizable to a complete drum set. In order to get the Gaussian distribution over joints
from the learned ProMP weights, we use Eq. 2.12 where we consider the case lim(Σy) = 0.
After getting the corresponding ProMP joint distributions, we use the probability density
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Figure 6.2.: The optimized trajectory (blue line) converges for each joint to the ProMP
mean that best fits the movement.

of the corresponding ProMPs for the drum table to shape the reward as:

rs =

1∑︂
j=0

log(
∑︂
i

exp(log pj(i))) (6.1)

where pj(i) represents the probability density of the trajectory section for drum table
j, under the ith ProMP. Additionally, we have defined a velocity, acceleration and jerk
penalty over the whole trajectory as:

rvaj = −(tṙ
2
+ tr̈

2
+

...
tr2)/α (6.2)

with α as a factor that controls the effect of this penalty and tr representing the trajectory
that we optimize.
Now we can simply add the reward terms from 6.2 and 6.1 to get the complete reward
for the trajectory:

rtrajectory = rvaj + rs. (6.3)
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By optimizing a trajectory on reward function from 6.3 as illustrated in Fig. 6.2, the opti-
mized trajectory converges at each note to the right ProMP in order to play the right drum.

Figure 6.3.: The average temporal er-
ror comparison between our
approach and professional
drummers in playing the
drum notes.

Additional to playing the right drum, one of the
major factors that indicates the drumming abil-
ities is the correct timing. In order to evaluate
the temporal error of our approach in playing
the musical notes, we used the signal from the
drumset, which gives us the absolute time of
hitting the drum thit. By comparing thit with
the absolute time of the start of movement and
averaging it over the different strikes, we could
show that we have achieved as shown in Fig.
6.3 more than 3x enhancement in temporal pre-
cision compared to professional drummers.

Our successful results with robot drumming ex-
periment suggest our method as an effective ap-
proach to use in real world robotic tasks, where
we have already access to different near optimal
sub-policies.
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7. Discussion

In this work, we discuss how reward shaping can be used to leverage existing policies
in MaxEnt settings. We assume that the reward is composed of individual rewards and
that we have access to maximum entropy optimal policies for each objective. In order
to optimize a single policy which maximizes the complete reward, we show that we can
still learn an optimal policy by replacing the sum of the individual reward functions with
the log probability density of the corresponding policy. First we start with a gridworld
example, where our experimental results suggest that using reward shaping to leverage
existing policies leads to an approximate 2x improvement in sample complexity compared
to using the original reward function with both soft value iteration and soft Q-learning
algorithms. The improved sample complexity in the taxi environment validate our method
as a practical approach to leverage existing MaxEnt policies in order to increase the
training efficiency, while preserving the optimality in the resulting policy.
In order to demonstrate the effectiveness of our method in complex real world robotic
problems, where due to the high cost for data collection we don’t have access to optimal
MaxEnt policies, we show how we can exploit temporal and/or spatial locality in policies
to shape the reward. We explore the usefulness of this property in the robot drumming
experiment. In this experiment, we train a few ProMPs for each drum table from human
demonstrations. Afterwards, we exploit that the probability density of the optimal policy
for a given note is approximately constant at timesteps far from the desired hitting time,
which enables us to ignore their contribution when computing the shaped reward at
distant timesteps. The method proves successful to play music notes with high temporal
precision, using only a limited number of demonstrations to train ProMPs for each drum
table. The success of our method to continuously optimize a trajectory, solely based on
the given notes, for the right drum table with super human temporal precision suggest it
as powerful approach for complex robotic tasks.
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8. Outlook

In our robot drumming experiment, we show how by leveraging the locality in sub-policies
to shape the reward function we can successfully play drumming notes with high temporal
precision. An interesting avenue for future work would be to study how we can combine
the optimization of the resulting trajectory with optimizing the sub-policies, such that
they both improve simultaneously. Additionally, answering such questions would give us
an insight into how we can optimize sub-policies, while using them as shaped reward to
continuously adapt to changing objectives.
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A. Reward Shaping proof (of sufficiency) for
maximum entropy setting

Let F be of the form given in Eq. 2.9 and if γ = 1 then replacingΦ(s)withΦ′(s) = Φ(s)−k
for any constant k would not change the shaping rewards F (which is the difference
of these potentials), we may, by replacing Φ(s) with Φ(s) − Φ(s0) if necessary assume
without loss of generality that Φ used to express F via 2.9 satisfies Φ(s0) = 0.

For the original MDP M , we know that its optimal Q-function Q∗
M satisfies the Bellman

equations for maximum entropy setting (2.6,2.7) where:

Q∗
M (s, a) = Es′∼Psa(.)[R(s, a, s′) + γsoftmaxa′∈AQ∗

M (s′, a′)]

with Q∗
M (s, a) as the optimal Q-funcion. Now some simple algebraic manipulation gives

us:

Q∗
M (s, a)− Φ(s) = Es′∼Psa(.)[R(s, a, s′) + γΦ(s′)− Φ(s)

+ γsoftmaxa′∈A(Q∗
M (s′, a′)− Φ(s′))]. (A.1)

Now by defining ˆ︁QM ′(s, a) ≜ Q∗
M (s, a) − Φ(s) and substituting that and F (s, a, s′) =

γΦ(s′)− Φ(s) back into the Eq. A.1, we get:

ˆ︁QM ′(s, a) = Es′∼Psa(.)[R(s, a, s′) + F (s, a, s′) + γsoftmaxa′∈A ˆ︁QM ′(s′, a′)]

= Es′∼Psa(.)[R
′(s, a, s′) + γsoftmaxa′∈A ˆ︁QM ′(s′, a′)] (A.2)

but this is exactly th Bellman equation forM ′. So, ˆ︁QM ′(s, a) satisfies the Bellman equations
for M ′, and must in fact be unique optimal Q-function. Thus, Q∗

M ′(s, a) = ˆ︁QM ′(s, a) =
Q∗

M (s, a)− Φ(s) , and the optimal policy for M ′ therefore satisfies from Eq. 2.5:

π∗
M ′(s) ∈ exp(

1

α
Q∗

M ′(s, a)) = exp(
1

α
(Q∗

M (s, a)− Φ(s))) = exp(
1

α
Q∗

M (s, a))
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and is therefore also optimal in M . To show every optimal policy in M is also optimal in
M ′, simply apply the same proof with the roles of M and M ′ interchanged (and using the
shaping funcion −F ).

29


	Introduction
	Preliminaries
	Maximum Entropy Reinforcement Learning
	Soft Q-Learning
	Reward shaping
	Probabilistic Movement Primitives

	Related Works
	Proposed Method
	Theoretical Overview

	Gridworld Experiments
	Soft value iteration
	Soft Q-Learning

	Real-World Manipulation
	Discussion
	Outlook
	Reward Shaping proof (of sufficiency) for maximum entropy setting

