
Parallel Tempering VIPS
Paralleles Tempering zur Variationsinferenz durch Policy Search
Bachelor thesis by Samuel Lokadjaja
Date of submission: November 29, 2022

1. Review: Dr. Ing. Oleg Arenz
2. Review: Prof. Jan Peters, Ph.D.
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §�� Abs. � und §�� Abs. � APB der TU Darmstadt

Hiermit versichere ich, Samuel Lokadjaja, die vorliegende Bachelorarbeit ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß § 23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, November 29, 2022
S. Lokadjaja

Abstract

The VIPS algorithm introduced by Arenz et al. [1] is an algorithm to approximate
intractable multimodal probability distributions using Gaussian mixture models, which
leverages methods from policy search. A drawback with this algorithm is that modes that
are not found at an early stage will also not be found later, as the samples used to construct
an approximation are only drawn from the current approximation. Therefore, in this paper,
we investigate how the existing VIPS algorithm could be extended to improve exploration
of the search space to use more than solely samples from the current distribution. We
use an approach inspired by parallel tempering, by using multiple Gaussian mixture
models with di�erent target distributions 1

�1
R(x), . . . , 1

�n
R(x) for each model that are

scaled by temperature coe�cients �1, . . . ,�n with �1 > · · · > �n = 1. This allows the
models with lower temperature to access samples from a larger subset of the search space,
thus making it less likely to get stuck in local optima. Furthermore, we also construct
a tree structure using the components of the models, where one component in a GMM
could have one or more "children" components on the next lower level. This structure is
enforced by applying soft constraints on the KL divergence of each pair of components.
We also experiment using the softplus function as a reward term, which will only penalize
a component if it is far away from its parent component, but will not contribute to the
optimization when a component is close to its parent component. We found that using
parallel tempering for VIPS generally helps exploration, but applying soft constraints on
the KL divergence between a component and its parent harms the capacity to approximate
the target distribution.

Acronyms

ELBO Evidence Lower Bound.

GMM Gaussian Mixture Model.

KL Kullback-Leibler.

MCMC Markov chain Monte Carlo.

MCTS Monte Carlo Tree Search.

MORE Model-Based Relative Entropy Stochastic Search.

VIPS Variational Inference by Policy Search.

Contents

�. Introduction �
1.1. Related Work . 4

�. Foundations �
2.1. Variational Inference . 5
2.2. Variational Inference by Policy Search . 6
2.3. Parallel Tempering . 9

�. Method ��
3.1. Parallel Tempering . 12
3.2. Tree Structure . 13

�. Experiments and Results �6
4.1. Experiments . 16
4.2. Results . 18

�. Discussion ��

6. Conclusion ��
6.1. Future Work . 31

A. MORE Derivation ��

�

�. Introduction

One problem in machine learning is working with complex probability distributions that
cannot be computed in closed form, for example when computing the posterior predictive
distribution of a new data point x̃ given a dataset D = {x1, . . . , xn} and model parameter
✓, which is given by:

p(x̃|D) = Ep(✓|D)[p(x̃|✓,D)] =

Z
p(x̃|✓,D)p(✓|D) d✓,

which requires the posterior distribution of the model parameters given the dataset

p(✓|D) =
p(D|✓)p(✓)

p(D)
=

p(D|✓)p(✓)R
p(D|✓)p(✓) d✓

.

This posterior distribution is often impossible to compute in closed form because of the
integral in the denominator. More generally, these complex distributions typically have
the form

p(x) =
p̃(x)R
p̃(x) dx

=
p̃(x)

Z
. (1.1)

To solve this problem, there are two approaches that are commonly used. Using Markov
chain Monte Carlo (MCMC) techniques, expectations with respect to the posterior p(✓|D)
could be estimated by drawing samples from it. Another approach is variational inference,
where the posterior is approximated by a parameterized distribution q(✓), e.g. a Gaussian,
which could be found by minimizing the Kullback-Leibler (KL) divergence between p(✓|D)
and q(✓).

MCMC methods tend to be more computationally intensive than variational inference,
but is more accurate, whereas variational inference only produces a distribution that is
close to the target distribution, but tends to be more computationally e�cient [2].

�

Arenz et al. [1] introduced VIPS, an iterative method for learning Gaussian mixture
model (GMM) approximations for intractable multimodal distributions using variational
inference, which will be explained in detail in section 2.2. This method has been shown to
be able to outperform existing methods for variational inference in terms of accuracy while
also being able to draw samples much more e�ciently than MCMC for target distributions
that could be adequately approximated by a small number of components.

However, with this method, modes that have not been discovered at the early stage will
also likely not be found at a later stage, as samples used for constructing an approximation
are only drawn from the current approximation. Evaluating additional samples from a
prior with high entropy for further exploration would also likely not help find additional
modes, particularly if we are working with a high-dimensional space, as it would just
provide samples randomly from the entire search space.

Therefore, this work aims to investigate how VIPS could be extended to improve explo-
ration of the search space. We use an approach inspired by parallel tempering, a global
optimization strategy which has been shown to be very e�cient [3, 4], by using multiple
Gaussian mixture models with di�erent target distributions 1

�1
R(x), . . . , 1

�n
R(x) for each

model that are scaled by temperature coe�cients �1, . . . ,�n with �1 > · · · > �n = 1. As
the di�erent models share a single sample database, each of the models have access to
a larger set of samples coming from every model that are trained using replicas of the
target distribution with higher entropy. These models resemble the target distribution
while being more uniform than the target, therefore the modes tend to overlap more and
they also cover a larger subset of the search space. The samples from the models with
higher temperature therefore guides the models with lower temperatures by supplying
samples from them and makes it less likely to get stuck in local optima.

Furthermore, we construct a tree structure using the components of the di�erent GMMs,
where one component in a GMM could have one or more "children" components on the next
lower level. We enforce this structure using a penalty term on the KL divergence of each
pair of components. This could allow for more e�cient exploration and optimization, as
the penalty term encourages the components on lower levels to stay close to their "parent"
components and prevents di�erent components from overlapping. We also experiment
using the softplus function as a reward term, which will only penalize a component if it is
far enough from its parent component, but will not contribute to the optimization when a
component is close to its parent component.

In the next section, we will discuss further about variational inference and VIPS, as well as
parallel tempering. Then, we will present our method in applying parallel tempering and

�

constructing the tree structure for VIPS, and finally present the experiments we conducted
and the results of these experiments.

�.�. Related Work

Similar to the tree structure proposed in this paper, Rainforth et al. [5] introduced inference
trees (ITs) based on MCTS, which are used for balancing exploration and exploitation in
Monte Carlo methods. In Monte Carlo methods, the choice of proposal distribution has a
large impact on their performance, but it is often di�cult to determine a good proposal
in advance. As a solution, many methods use past samples to continuously adapt the
proposal in future iterations. This could be problematic, as it assumes that these samples
already represent the true posterior well, which defeats the purpose of adaptation in the
first place. ITs solve this problem by hierarchically partitioning the parameter space into
disjoint sets in an online manner, which allows them to identify regions of high posterior
mass, as well as track regions where significant posterior mass could have been missed.
This algorithm is thus able to investigate whether the current proposal could be improved,
for example by searching for missing modes, rather than greedily exploiting the best
proposal learned so far.

Huang et al. [6] discuss alpha-annealing, an annealing technique for variational inference
which is used to encourage exploration of significant modes and is designed for learning a
good inference model. Here, the objective function to be optimized is

Eq[log q(x)� ↵ log p(x)],

where q(x) is the approximate distribution, p(x) is the target and ↵ = 1
T . The temperature

T is initially set to be high, and is gradually annealed to 1. Huang et al. argue that
alpha-annealing is suitable for one-time inference, for example for inferring the posterior
distribution of a Bayesian model, but not so much for latent variable models or hierarchical
Bayesian models where multiple inferences are needed. In these cases, this will introduce
too much noise into the gradient estimates of the model and will harm training. Our
approach di�ers from alpha-annealing as we use multiple models with di�erent tempera-
ture coe�cients instead of using one model and continuously decreasing the annealing
coe�cient.

�

�. Foundations

�.�. Variational Inference

The purpose of variational inference is to approximate a probability distribution p(x) using
another distribution q(x) from a tractable family of distributions, such as Gaussians. The
most suitable approximate distribution could be found by minimizing the KL divergence
between q(x) and p(x), which could be considered as a distance function between two
distributions. For parameterized distributions q(x|✓), this KL divergence is given by

KL(q(x|✓) || p(x)) =
Z

q(x|✓) log
✓
q(x|✓)
p(x)

◆
dx =

Z
q(x|✓) log

✓
q(x|✓)
p̃(x)

◆
dx

| {z }
�L(✓)

+ log Z,

(2.1)

where p̃(x) and Z are as defined in equation 1.1.

The term log Z does not depend on ✓ and can thus be ignored. Therefore, minimizing the
KL divergence is equivalent to maximizing L(✓), which is commonly called the evidence
lower bound (ELBO), as it is a lower bound on log Z due to the non-negativity of the KL
divergence, and Z being commonly used to denote the evidence in the case of Bayesian
inference. We can reformulate L(✓) to get

L(✓) = �
Z

q(x|✓) log
✓
q(x|✓)
p̃(x)

◆
dx

=

Z
q(x|✓)(log p̃(x)� log q(x|✓)) dx

=

Z
q(x|✓) log p̃(x) dx+H(q(x|✓))

= Eq(x|✓)[log p̃(x)] +H(q(x|✓)),

�

which turns our optimization problem into

✓
? = argmax✓

⇥
Eq(x|✓)[R(x)] +H(q(x|✓))

⇤
.

where we set R(x) = log p̃(x).

This way of expressing the ELBO allows us to interpret its maximization as policy search,
which is a problem in reinforcement learning that aims to find the optimal policy q(x|✓)
that maximizes the expected reward R(x), while also maximizing the entropy of the policy
in order to improve exploration and prevent premature convergence [7].

We will now discuss VIPS introduced by Arenz et al. [1], an iterative algorithm which
solves this optimization problem in a variational inference setting by using a GMM as the
approximate distribution.

�.�. Variational Inference by Policy Search

In VIPS, we want to approximate an intractable probability distribution p(x) using a GMM

q(x|✓) =
nX

i=1

⇡iN (µi,⌃i) =
X

o

q(o)q(x|o),

where ✓ = [⇡1, µ1,⌃1, . . . ,⇡n, µn,⌃n]. From now on we will omit ✓ for simplicity.

Recall from the previous section that minimizing the KL divergence between q(x) and
p(x) is equivalent to minimizing the ELBO, which is here given by

L(✓) =
X

o

q(o)

Z
q(x|o)(R(x)� log q(x)) dx

=
X

o

q(o)

✓Z
q(x|o)(R(x) + log q(o|x)) dx+H(q(x|o))

◆
+H(q(o)), (2.2)

where we used Bayes’ theorem in the second equality,

log q(x) = log q(o) + log q(x|o)� log q(o|x).

6

Next, we introduce a helper distribution q̃(o|x) to equation 2.2

L(✓) =
X

o

q(o)

Z
q(x|o)(R(x) + log q̃(o|x) + log q(o|x)� log q̃(o|x)) dx+H(q(x|o))

�

+H(q(o))

=
X

o

q(o)

Z
q(x|o)(R(x) + log q̃(o|x)) dx+H(q(x|o))

�
+H(q(o))

| {z }
L̃(✓)

+

Z
q(x) KL(q(o|x)||q̃(o|x)) dx. (2.3)

L̃(✓) is a lower bound to L(✓) because the KL divergence is by definition nonnegative,
which means that the final term in equation 2.3 is also nonnegative. This trick allows us
to maximize the ELBO by updating each component in the GMM independently of each
other, which was not possible before due to the occurrence of q(o|x).

We can now perform our optimization by iteratively alternating between tightening
the lower bound L̃(✓) and maximizing L̃(✓), similar to the expectation-maximization
algorithm [8]. We tighten the lower bound by setting q̃(o|x) = q(o|x). This causes
KL(q(o|x)||q̃(o|x)) = 0 in equation 2.3 and consequently L̃(✓) = L(✓). We then keep
q̃(o|x) fixed and maximize L̃(✓) in two steps, first with respect to the component means
µo and covariance matrices ⌃o of q(x|o), and after that with respect to the weights ⇡o.
This procedure will be explained in the following subsections in detail.

�.�.�. Component update

Maximizing L̃(✓) with respect to the means and covariance matrices could be done by
maximizing the term in square brackets in equation 2.3, as q(o) and H(q(o)) that appear
outside the square brackets do not depend on them. This allows us to optimize each
component independently. Our optimization problem for a given component o is given by

argmaxq(x|o)

Z
q(x|o)(R(x) + log q̃(o|x)) dx+H(q(x|o))

s.t. KL(q(x|o) || q(i)(x|o)) < ✏(o). (2.4)

We add a constraint on the new distribution that ensures that it stays close to the previous
distribution q

(i)(x|o). This type of constraint originates from the field of mathematical

�

optimization and is called a trust-region constraint. The upper bound ✏(o) of the KL
divergence controls the amount of exploration or exploitation desired and is adapted in
every iteration.

To solve this optimization problem, we use a stochastic search algorithm, Model-Based
Relative Entropy Stochastic Search (MORE) introduced by Abdolmaleki et al. [9], which
gives us the solution in closed form. We first fit a quadratic surrogate

R̃(x) = �1

2
xTRx+ xT r ⇡ R(x) + log q̃(o|x)

using weighted least squares, which makes use of importance sampling to enable reusing
samples from previous iterations instead of having to draw new samples in each iteration.
We then apply MORE to get the solution, which is a Gaussian distribution with natural
parameters

Q(⌘) =
⌘

1 + ⌘
Q(i) +

1

1 + ⌘
R(i) and q(⌘) =

⌘

1 + ⌘
q(i) +

1

1 + ⌘
r(i)

where Q(i)
,q(i) are the natural parameters of the Gaussian approximation from the

previous iteration, R(i)
, r(i) are the parameters of the quadratic surrogate R̃(x), and ⌘ is

the Lagrangian multiplier for the constraint on the KL divergence that could be found by
minimizing the dual problem. For the complete derivation, we refer to [1].

�.�.�. Weight update

After the component updates, we now optimize L̃(✓) with respect to the component
weights. We substitute

R(o) =

Z
q(x|o)(R(x) + log q̃(o|x)) dx+H(q(x|o))

from equation 2.4 that we previously optimized into L̃(✓) and get
X

o

q(o)R(o) +H(q(o)).

Our optimization problem is now given by

argmaxq(o)
X

o

q(o)R(o) +H(q(o)). (2.5)

8

R(o) contains integrals that could not be computed in closed form, therefore we approxi-
mate R(o) using importance sampling similarly to section 2.2.1, which allows us to reuse
samples from previous iterations. The optimal solution to this problem could be given in
closed form, which is

q(o) =
exp

n
R̃(o)

o

P
o exp

n
R̃(o)

o ,

where R̃(o) is the estimate of R(o) calculated using importance sampling.

�.�.�. Adapting the number of components

Throughout the whole optimization process, we will have to adapt the number of com-
ponents to maintain an accurate approximation. We delete components that do not
contribute much to the approximation due to having low weight or not showing enough
improvement with respect to the objective function, and add components by drawing
samples from the sample database and initializing a new component at the location of the
sample with highest initial reward, which is computed using the formula

R̃xs(on) = R(xs)� log

✓
(1� q(on))q(xs) + q(on) exp

⇢
1

2
D �Hinit

�◆

where xs denotes a drawn sample, on denotes the component to be intialized, D is the
number of dimensions, and Hinit is the initial entropy that is computed as a weighted
average of the entropy of all previous components. We add and delete components at
every predetermined nadd and ndel iterations.

�.�. Parallel Tempering

To encourage exploration of the search space, we leverage an approach used in global
optimization known as parallel tempering.

Parallel tempering was first introduced in the context of MCMC by Geyer [10]. Here,
parallel tempering MCMC runs multiple MCMCs at T di�erent temperatures, and each
MCMC samples from a modified posterior distribution. Periodically, the systems at di�erent
temperatures exchange configurations. The systems with lower temperatures are able to
explore the search space locally while the systems with high temperatures are generally

�

Figure �.�.: Flowchart of the complete VIPS algorithm [�]

��

able to sample larger volumes of the parameter space and allow the systems with lower
temperatures to escape from local minima. The simulation of T replicas requires on
the order of T times more computational e�ort, but it has been shown that a parallel
tempering simulation is more than 1/T times more e�cient than a standard, single-
temperature Monte Carlo simulation. This increased e�ciency derives from allowing the
lower temperature systems to sample regions of phase space that they would not have been
able to access had regular sampling been conducted for a single-temperature simulation
that was T times as long [4]. It is also possible to decrease computation time by running
multiple simulations in parallel using CPU clusters.

��

�. Method

�.�. Parallel Tempering

�.�.�. Basic algorithm

To apply parallel tempering, we need to first determine a sequence of temperatures
� = (�1, . . . ,�n) with �1 > · · · > �n = 1. This will be used to scale our target distribution
R(x), resulting in n target distributions 1

�1
R(x), . . . , 1

�n
R(x) that will be used throughout

VIPS. We then initialize n GMMs with the same initial parameters, and run VIPS in the
following way:

Input: Number of iterations Ni

Input: Initial GMM parameters ✓1, . . . , ✓n
Input: Temperatures � = (�1, . . . ,�n)

1 Initialize GMMs q(x|✓1), . . . , q(x|✓n)
2 for i = 1,. . . , Ni do
3 for j = 1,. . . , n do
4 Perform one VIPS iteration using modified reward function 1

�j
R(x)

5 end
6 end

Algorithm 1: Parallel tempering VIPS

For each iteration of the outer loop, we run one VIPS iteration for every temperature in
the order of decreasing temperature. Figure 2.1 illustrates how an iteration in VIPS is
executed. Each iteration runs independently of each other and therefore optimizes each
GMM independently, while sharing a single sample database.

By using new target distributions 1
�j
R(x), we create replicas of the original target R(x)

with higher entropy. As a consequence, as new samples keep being drawn from the

��

di�erent GMMs and stored in the database, each GMM will have access to a larger set of
samples. The GMMs with lower temperatures benefit from this, as they now have access to
samples from GMMs with higher temperatures which cover a larger volume of the search
space. We run the inner loop in the order of decreasing temperature so that the GMMs
with lower temperatures could reuse samples from the GMMs with higher temperatures
directly after they have just been updated. These samples could help prevent the GMMs
with lower temperatures from getting stuck in local optima. Furthermore, an increase in
temperature also causes the di�erent modes to to overlap, making them easier to find.

�.�.�. Adding components using samples from parent GMM

Previously, to add new samples, we draw a predetermined number of random samples
from the sample database, and initialize a new component at the location of the sample
that has the highest initial reward as described in section 2.2.3. We could now take
advantage of having multiple GMMs in the process of adding new components by only
using samples from the GMM with the next higher temperature as candidates for the
mean of the new component. This causes the new component to be initialized within the
region of a component in this GMM and makes the search more focused. This could be
done with every GMM except for the one with the highest temperature.

�.�. Tree Structure

�.�.�. KL divergence to parent component as penalty

In addition to using multiple temperatures, we also want to implement a tree structure
on the component of the di�erent GMMs, where one component in a GMM could have
one or more "children" components on the next lower level. To achieve this, we introduce
a penalty term to the component update objective function in equation 2.4, so that in
addition to the trust region constraint, we also penalize a component for having a large
KL divergence to its "parent". Our optimization problem becomes

argmax✓o

Z
q(x|o, ✓o)(R(x) + log q̃(o|x)) dx+H(q(x|o, ✓o))� ↵ KL(q(x|o, ✓o) || q"(x|o))

s.t. KL(q(x|o, ✓o) || q(x|o, ✓(i))) ✏(o)

��

which is equivalent to

argmax✓o

Z
q(x|o, ✓o)(R(x) + log q̃(o|x) + ↵ log q"(x|o)) dx+ (1 + ↵)H(q(x|o, ✓o))

s.t. KL(q(x|o, ✓o) || q(x|o, ✓(i))) ✏(o), (3.1)

where q
"(x|o) denotes the parent component of the current component, and ↵ controls

how strictly the penalty should be enforced. We can solve this optimization problem using
MORE by first fitting a quadratic surrogate R̃(x) ⇡ R(x) + log q̃(o|x) + ↵ log q"(x|o).

We also make a small modification to MORE by multiplying the entropy term by 1 + ↵.
The full derivation of the solution to this new version of MORE can be found in Appendix
A, which closely follows the derivation of the solution to 2.4 presented in [1].

To keep track of the parent of each component, we assign unique identifiers for each
component in a GMM and keep a mapping from the component ids in one GMM to the id
of its parent component in the GMM with the next higher temperature.

Here, every time a component is deleted, we also delete all its children. Therefore, we
need an additional condition that a component could be deleted if all its children have low
weight. This prevents the case that one temperature level has an empty GMM caused by its
last component being deleted because its parent was deleted. In addition, we occasionally
readjust the parent-children mapping by matching a child component with a component
in the GMM on the next higher level that has the smallest KL divergence to it at the current
iteration.

We also alter algorithm 1 so that instead of running one VIPS iteration for each temperature
level, we now run 1000 iterations for each temperature level.

This tree structure allows for more e�cient exploration and optimization, as the penalty
term encourages the components on lower levels to stay close to their "parent" compo-
nents and prevents di�erent components from overlapping. This way, the GMMs with
higher temperatures perform exploration, while the components in the GMMs with lower
temperatures perform exploitation within the region of their parent components.

Below is a visualization of this tree structure in two dimensions. The setup consists of three
GMMs with temperatures 150, 20 and 1 respectively, where the components are shown as
ellipses, and the parent-child relationships are shown using the black lines connecting
two components. The target distribution is a GMM that is shown in black, but is barely
visible here.

��

Figure �.�.: A visualization of the tree structure in two dimensions

�.�.�. Softplus reward

We define a function

f(x) =
q
(x� µ")T (⌃")�1(x� µ")� c

where the first term represents the Mahalanobis distance function, and apply the softplus
function g(x) = log(ex + 1) to f(x). The softplus function is a smooth approximation of
ReLU, which equals to zero if x is negative, and equals to x otherwise.

We now use g(f(x)) to replace log q"(x|o) in equation 3.1. Intuitively, we implement here
a penalty on our optimization objective that is linear when x is far from the parent mean.
But if x is close to the parent mean, or more precisely, the Mahalanobis distance is smaller
than c, f(x) will be negative, and g(f(x)) will be zero. This causes this penalty term to
vanish. Therefore, when x is su�ciently close to the parent mean, we solely optimize our
new component to approximate our target distribution.

��

�. Experiments and Results

�.�. Experiments

Our method is tested on hard exploration problems using two multimodal target distribu-
tions. We compare the exploration capacity of our work with the initial version of VIPS by
calculating the number of modes successfully found by our model. The experiments were
conducted on the on the high-performance computer Lichtenberg at the NHR Centers
NHR4CES at TU Darmstadt.

�.�.�. Gaussian mixture model

For this experiment, our aim is to approximate an unknown 20-dimensional GMM with
10 components. We initialize the mean by randomly sampling each component within
the interval [�500, 500] and initialize the covariance matrix by computing ⌃ = XTX+ I,
where each entry in X is sampled from N (0, 0.04). Additionally, we make the covariance
matrix more singular by multiplying its smallest eigenvalue by 0.0001. We say that a mode
µt of the target is found if there exists a component in our model, so that ||µt � µ|| < �

for the component mean µ and a threshold value �. We set the distance threshold
� = k6 · 120k2 = 26.83, where 120 is a 20-dimensional vector containing ones. This
experiment is suitable for testing exploration capacity due to the distant modes of the
GMM and high correlation in the covariance matrices of the components.

�.�.�. Planar robot

The planar robot experiment is an experiment involving robot arms based at [0, 0] with
10 links, each with length 1, and 9 joints. We have 4 goal positions in coordinates
[7, 0], [0, 7], [�7, 0] and [0,�7] which are visualized in Figure 4.1 as red X’s that we want

�6

Figure �.�.: Visualization of the planar robot setup

to reach using our robot ende�ector. For each goal position, we only consider two ways
to reach the goal position, namely from the left and right, or from the top and bottom.
In this experiment, we construct a probability distribution for the joint angles where we
use a Gaussian prior for smoothness with zero mean and variance 1 for the first joint and
0.04 for the remaining ones. We also penalize deviations from each goal position using
a Gaussian on the ende�ector space with the goal position as the mean and covariance
matrix 0.0001 · I. We consider a mode in this target distribution to be found if there is a
component in our model where the first component of its mean (corresponding to the first
joint angle) is in a plausible range of angles (±2⇡) to reach the goal position from one
of the two sides, and the ende�ector position, also calculated using the same mean, is
su�ciently close to the goal position. Therefore, there are in total 24 modes that could be
found.

��

�.�. Results

Each experiment was run 40 times. For each experiment except the baseline experiments,
we use the sequence of temperatures � = (150, 20, 1). We plot the number of modes
detected by our models and �L(✓) or �ELBO with respect to the number of iterations. In
each plot, the mean value is shown along with a standard error interval.

�.�.�. GMM experiment

Number of detected modes

0 2k 4k 6k 8k 10k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

2e+7

4e+7

6e+7

Figure �.�.: Baseline

�8

Number of detected modes (GMM 1)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

1e+5

2e+5

3e+5

4e+5

Number of detected modes (GMM 2)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 2)

0 20 40 60 80 100 120 140

iteration
0

1e+6

2e+6

3e+6

Number of detected modes (GMM 3)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 3)

0 20 40 60 80 100 120 140

iteration
0

2e+7

4e+7

6e+7

Figure �.�.: Parallel tempering: Basic algorithm

��

Number of detected modes (GMM 1)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

1e+5

2e+5

3e+5

4e+5

Number of detected modes (GMM 2)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 2)

0 20 40 60 80 100 120 140

iteration
0

5e+5

1e+6

1.5e+6

2e+6

2.5e+6

Number of detected modes (GMM 3)

0 200 400 600 800 1k 1.2k 1.4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 3)

0 20 40 60 80 100 120 140

iteration
0

1e+7

2e+7

3e+7

4e+7

5e+7

Figure �.�.: Parallel tempering: Sampling from parent GMM

��

Number of detected modes (GMM 1)

0 1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

1e+5

2e+5

3e+5

4e+5

5e+5

Number of detected modes (GMM 2)

0 1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 2)

980 1k 1.02k 1.04k 1.06k 1.08k 1.1k 1.12k

iteration
0

1e+6

2e+6

3e+6

4e+6

Number of detected modes (GMM 3)

0 1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 3)

1.98k 2k 2.02k 2.04k 2.06k 2.08k 2.1k 2.12k

iteration
0

2e+7

4e+7

6e+7

8e+7

1e+8

Figure �.�.: Tree structure: KL divergence to parent component as penalty

��

Number of detected modes (GMM 1)

1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

1e+5

2e+5

3e+5

4e+5

Number of detected modes (GMM 2)

1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 2)

980 1k 1.02k 1.04k 1.06k 1.08k 1.1k 1.12k

iteration
0

1e+6

2e+6

3e+6

Number of detected modes (GMM 3)

1k 2k 3k 4k

iteration
0

1

2

3

4

5

6

7
-ELBO (GMM 3)

1.98k 2k 2.02k 2.04k 2.06k 2.08k 2.1k 2.12k

iteration
0

2e+7

4e+7

6e+7

Figure �.6.: Tree structure: Softplus reward

��

�.�.�. Planar robot experiment

Number of detected modes

2k 4k 6k 8k 10k

iteration
0

5

10

15

-ELBO

0 20 40 60 80 100 120 140

iteration
0

20000

40000

60000

80000

Figure �.�.: Baseline

��

Number of detected modes (GMM 1)

0 200 400 600 800 1k

iteration
0

5

10

15

-ELBO (GMM 1)

0 20 40 60 80 100 120
0

100

200

300

400

500

Number of detected modes (GMM 2)

0 200 400 600 800 1k

iteration
0

5

10

15

-ELBO (GMM 2)

0 20 40 60 80 100 120
0

1000

2000

3000

4000

Number of detected modes (GMM 3)

0 200 400 600 800 1k

iteration
0

5

10

15

-ELBO (GMM 3)

0 20 40 60 80 100 120
0

20000

40000

60000

80000

Figure �.8.: Parallel tempering: Basic algorithm

��

Number of detected modes (GMM 1)

50 100 150 200 250

iteration
0

5

10

15

-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

100

200

300

400

500

Number of detected modes (GMM 2)

50 100 150 200 250

iteration
0

5

10

15

-ELBO (GMM 2)

0 20 40 60 80 100 120 140

iteration
0

200

400

600

800

1000

1200

Number of detected modes (GMM 3)

50 100 150 200 250

iteration
0

5

10

15

-ELBO (GMM 3)

0 20 40 60 80 100 120 140

iteration
0

5000

10000

15000

Figure �.�.: Parallel tempering: Sampling from parent GMM

��

Number of detected modes (GMM 1)

500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

100

200

300

400

500

Number of detected modes (GMM 2)

500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 2)

1k 1.05k 1.1k 1.15k 1.2k 1.25k 1.3k

iteration
0

1000

2000

3000

4000

Number of detected modes (GMM 3)

500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 3)

2k 2.05k 2.1k 2.15k 2.2k 2.25k 2.3k

iteration
0

20000

40000

60000

80000

Figure �.��.: Tree structure: KL divergence to parent component as penalty

�6

Number of detected modes (GMM 1)

0 500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 1)

0 20 40 60 80 100 120 140

iteration
0

100

200

300

400

500

Number of detected modes (GMM 2)

0 500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 2)

980 1k 1.02k 1.04k 1.06k 1.08k 1.1k 1.12k

iteration
0

1000

2000

3000

4000

Number of detected modes (GMM 3)

0 500 1k 1.5k 2k 2.5k 3k

iteration
0

5

10

15

-ELBO (GMM 3)

1.98k 2k 2.02k 2.04k 2.06k 2.08k 2.1k 2.12k

iteration
0

20000

40000

60000

80000

Figure �.��.: Tree structure: Softplus reward

��

We first tested VIPS in the original form on the GMM experiment and planar robot
experiment that we described in section 4.1, and the results are given by figures 4.2 and
4.7. We see here that VIPS is only able to find a small fraction of the total number of
modes.

Next, we tested using multiple GMMs with scaled reward functions and a shared sample
database, as described in section 3.1.1. We could see in the results in figures 4.3 and 4.8,
that VIPS is able to find much more modes than the baseline, which indicates that using
parallel tempering improves the exploration capacity of VIPS.

Subsequently, we test our changes to the heuristic for adding new components, where one
GMM only uses samples from the GMM on the next higher temperature level as candidates
for the mean of the new component. In figure 4.4 and 4.9, we observe that our models
could find slightly less modes than basic parallel tempering, but still more than in the
baseline experiments.

We then evaluated our tree structure using the KL divergence to the parent component as
penalty. Our models did not perform well in this experiment. In the GMM experiment
(figure 4.5), the GMMs with temperature 20 and 1 could not find any modes at all, while
in the planar robot experiment (figure 4.10), GMM 3 finds significantly less modes than
the baseline.

Finally, we evaluated our softplus reward function which is used to replace the log density
of the parent component in the previous scenario. It is clear from figures 4.6 and 4.11
that this version performs best and could find the most modes out of all our methods.

Below, we present our data at the end of training in tabular form, which includes the
ELBO values of GMM 3, which is the GMM with temperature 1, and the number of modes
detected by all the models. The data is shown along with the standard error. In the
leftmost column, 1 stands for the baseline version, 2 stands for parallel tempering (basic
algorithm), 3 stands for parallel tempering (adding components using samples from parent
GMM), 4 stands for tree structure (KL divergence to parent component as penalty), and 5
stands for tree structure (softplus reward).

�8

GMM Planar Robot

1 1.72± 0.1 12.48± 0.028

2 0.98± 0.062 12.67± 0.15

3 1.85± 0.21 12.81± 0.019

4 848.75± 126.67 1199.46± 318.01

5 1.12± 0.07 12.33± 0.02

Table �.�.: ELBO values for GMM � (GMM with temperature �)

GMM Planar Robot

1 3.4± 0.31 7.03± 0.21

2 5.95± 0.34 5.95± 0.34 5.95± 0.34 13.18± 0.25 14.7± 0.3 12.1± 0.19

3 4.05± 0.34 4.05± 0.34 4.05± 0.34 8.89± 0.25 10.57± 0.22 10.95± 0.26

4 6.5± 0.26 0 0 12.23± 0.33 8.7± 0.58 1.84± 0.19

5 6.78± 0.29 6.78± 0.29 6.78± 0.29 12.2± 0.24 17.33± 0.23 12.23± 0.16

Table �.�.: Number of detected modes for every model

��

�. Discussion

From our results, it could be seen that parallel tempering generally enables our model to
find more modes than the original VIPS algorithm. In every experiment except for using
the KL divergence to parent component as penalty, the number of detected modes are
higher than in the baseline experiment. This indicates that parallel tempering could be
utilized to improve exploration in VIPS.

One plausible reason for the bad results in the experiment using KL divergence penalty term
is that the optimization problem is biased due to the penalty term. The new component
has to compromise between accurately approximating the target distribution and being
similar to its parent component, which is detrimental to the performance in finding modes
of the target distribution. This is also reflected in the ELBO values in table 4.1. This
problem is however fixed by using softplus reward, where within a certain region of the
parent component, the penalty term does not contribute to the optimization anymore, as
discussed in 3.2.2.

Looking at table 4.2, we could see that using softplus reward brings the most benefit,
followed by basic parallel tempering using a shared sample database. It is then followed
by parallel tempering with adding components using samples from parent GMM. This
method likely did not perform as well as basic parallel tempering, as only relying on the
parent GMM for samples to add new components does not allow the GMMs with lower
temperature levels to find new modes that the parent GMM has not found yet.

The ELBO plots show that the optimization process is not hindered by parallel tempering.
We could see in table 4.1 that the ELBO of our models with temperature 1 converge to
roughly the same values as the baseline ELBO. This shows that using parallel tempering
still results in the KL divergence between our model and the target distribution, as given
in equation 2.1, being minimized.

��

6. Conclusion

In this work, we aimed to investigate how the VIPS algorithm could be extended to
improve exploration of the search space. We implemented four approaches, each building
on top of each other. First, we used multiple models, each with their own reward functions
scaled by the corresponding temperatures and a single shared sample database. Next,
we altered the heuristic for adding new components so that one GMM only uses samples
from the GMM on the next higher temperature level as candidates for the mean of the
new component. We then implemented a tree structure by connecting two components
on consecutive temperature levels and applying a penalty term on the component update
objective function to bound the KL divergence between a component and its parent
component. Finally, we used a softplus function as a reward term to replace the log
density of the parent component that previously appeared because of the KL divergence
penalty term.

We found that parallel tempering is generally beneficial in improving exploration for the
VIPS algorithm, where using the softplus reward allows VIPS to find the most modes.
However, we could not show a benefit in using the KL divergence from one component to its
parent as a penalty term. This is likely caused by the optimization having to compromise
between two di�erent objectives.

6.�. Future Work

One interesting point to research further is how bandit algorithms could be applied
to VIPS to further balance exploration and exploitation. This could be used to get a
more principled way to add new components, for example by balancing between adding
components in regions with high target density and adding components at regions that
are not yet explored by our model. It should also be possible to exploit our tree structure
to optimize the GMMs for non-overlapping modes independently.

��

Bibliography

[1] O. Arenz, M. Zhong, and G. Neumann, “Trust-Region Variational Inference with
Gaussian Mixture Models,” in Journal of Machine Learning Research (JMLR), 2020.

[2] D. M. Blei, A. Kucukelbir, and J. D. McAuli�e, “Variational Inference: A Review for
Statisticians,” Journal of the American Statistical Association, 2017.

[3] M. Sambridge, “A Parallel Tempering Algorithm for Probabilistic Sampling and
Multimodal Optimization,” Geophysical Journal International, 2013.

[4] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new
perspectives,” Phys. Chem. Chem. Phys., 2005.

[5] T. Rainforth, Y. Zhou, X. Lu, Y. W. Teh, F. Wood, H. Yang, and J.-W. van de Meent,
“Inference Trees: Adaptive Inference with Exploration,” 2018.

[6] C.-W. Huang, S. Tan, A. Lacoste, and A. Courville, “Improving Explorability in
Variational Inference with Annealed Variational Objectives,” 2018.

[7] R. Williams and J. Peng, “Function Optimization Using Connectionist Reinforcement
Learning Algorithms,” Connection Science, 1991.

[8] C. M. Bishop, “Pattern Recognition and Machine Learning (Information Science and
Statistics),” 2006.

[9] A. Abdolmaleki, R. Lioutikov, J. Peters, N. Lau, L. Reis, and G. Neumann, “Model-
Based Relative Entropy Stochastic Search,” in Advances in Neural Information Pro-
cessing Systems (NIPS / NeurIPS), MIT Press, 2015.

[10] C. J. Geyer, “Markov Chain Monte Carlo Maximum Likelihood,” Computing Science
and Statistics: Proceedings of the 23rd Symposium on the Interface, 1991.

[11] S. Boyd and L. Vandenberghe, “Convex Optimization,” 2004.

��

A. MORE Derivation

We want to solve the constrained optimization problem

maxq(x)

Z
q(x)R̃(x) dx+ (1 + ↵)H(q(x))

s.t. KL(q(x) || q(i)(x)) ✏,

Z

x
q(x)dx = 1,

where R̃(x) is a quadratic function, and q(x) a Gaussian. The Lagrangian is then given by

L(q, ⌘,�) =
Z

q(x)R̃(x) dx+ (1 + ↵)H(q(x))

+ ⌘

✓
✏�

Z
q(x)(log q(x)� log q(i)(x)) dx

◆
+ �

✓
1�

Z

x
q(x) dx

◆

=

Z
q(x)

⇣
R̃(x)� (1 + ↵+ ⌘) log q(x) + ⌘ log q(i)(x)� �

⌘
dx+ ⌘✏+ �.

We get the optimal distribution q
?(x, ⌘,�) by taking the derivative of the Lagrangian and

setting it to zero

@L(q, ⌘,�)
@q(x)

= R̃(x)� (1 + ↵+ ⌘) log q?(x) + ⌘ log q(i)(x)� �� (1 + ↵+ ⌘)

=) q
?(x, ⌘,�) = exp

R̃(x) + ⌘ log q(i)(x)� �� (1 + ↵+ ⌘)

1 + ↵+ ⌘

!
. (A.1)

The Lagrange dual function is then given by

G(⌘,�) = L(q?, ⌘,�) = (1 + ↵+ ⌘)

Z
q
?(x, ⌘,�) dx+ ⌘✏+ �. (A.2)

Due to Slater’s condition [11], strong duality holds, which means that we could find
q
?(x, ⌘,�) by minimizing A.2 with respect to ⌘ and �, and then using the optimal ⌘?

��

and �
? to compute the optimal solution q

?(x, ⌘,�) according to A.1. To do this, we first
compute the partial derivatives, which are given by

@G(⌘,�)
@⌘

= ✏�
Z

q
?(x, ⌘,�)(log q?(x, ⌘,�)� log q(i)(x)) dx

= ✏� KL(q?(x, ⌘,�) || q(i)(x))

and

@g(⌘,�)

@�
= �

Z
q
?(x, ⌘,�) dx+ 1,

where the optimal Lagrange multiplier �?(⌘) for a given ⌘ normalizes q?(x, ⌘,�?), because

@g(⌘,�)

@�
= 0 ,

Z
q
?(x, ⌘,�) dx = 1. (A.3)

We can now perform coordinate descent by alternatively updating ⌘ along its partial
derivative and computing the optimal �. This corresponds to optimizing the dual function

G(⌘) = (1 + ↵+ ⌘)

Z
q
?(x, ⌘,�?) dx+ ⌘✏+ �

?(⌘) = 1 + ↵+ ⌘ + ⌘✏+ �
?(⌘) (A.4)

based on
@G(⌘)
@⌘

= ✏� KL(q?(x, ⌘,�?) || q(i)(x)).

To calculate our optimal distribution, we first recall that R̃(x) has the form

R̃(x) = �1

2
xTR(i)x+ xT r(i)

and express the previous approximation q
(i)(x) in terms of its natural parameters Q(i)

and q(i). We use this in A.1 to get

q
?(x, ⌘) = exp

⌘ logZ(Q(i)

,q(i))� �
?(⌘)� 1� ↵� ⌘

1 + ↵+ ⌘

!
·

exp

�1

2
xT R

(i) + ⌘Q(i)

1 + ↵+ ⌘
x+ xT r

(i) + ⌘q(i)

1 + ↵+ ⌘

!
(A.5)

which is Gaussian with natural parameters

Q(⌘) =
⌘

1 + ↵+ ⌘
Q(i) +

1

1 + ↵+ ⌘
R(i) and q(⌘) =

⌘

1 + ↵+ ⌘
q(i) +

1

1 + ↵+ ⌘
r(i)

��

Next, we use A.5 and A.3 to get

�
?(⌘) = �(1 + ↵+ ⌘) log

Z
exp

�1

2
xT R

(i) + ⌘Q(i)

1 + ↵+ ⌘
x+ xT r

(i) + ⌘q(i)

1 + ↵+ ⌘

!
dx

� (1 + ↵+ ⌘) + ⌘ logZ(Q(i)
,q(i))

= ⌘ logZ(Q(i)
,q(i))� (1 + ↵+ ⌘) logZ(Q(⌘),q(⌘))� (1 + ↵+ ⌘). (A.6)

Finally, we can now express the dual function using A.6 and A.4:

G(⌘) = ⌘✏+ ⌘ logZ(Q(i)
,q(i))� (1 + ↵+ ⌘) logZ(Q(⌘),q(⌘))

��

	Introduction
	Related Work

	Foundations
	Variational Inference
	Variational Inference by Policy Search
	Parallel Tempering

	Method
	Parallel Tempering
	Tree Structure

	Experiments and Results
	Experiments
	Results

	Discussion
	Conclusion
	Future Work

	MORE Derivation

