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Abstract
We propose and investigate a novel type of parameterized policy based on a two-layered stochastic spiking neural network
consisting of multiple populations of stochastic spiking neurons. We show that the proposed policy type is a spatially
distributed generalization of a discrete basic policy with lookup table parameterization. Our policy reveals remarkable
capabilities but also crucial limitations. In particular, our policy is able to deal with high-dimensional state and action
spaces but loses expressive power such that it cannot represent certain functions like XOR.
Furthermore, we propose corresponding reinforcement learning methods to train the policy. These methods are based on
value function methods and generalize these to train our distributed policy type. We compare these methods to state-of-
the-art methods including black-box approaches and likelihood ratio approaches. It turns out that our proposed methods
outperform these methods significantly. In our experiments we demonstrate that our policy can be trained effectively
from rewards to guide a 10-link robot-arm in a toy task through a grid world to reach a specified target without hitting
obstacles.

Zusammenfassung
Wir schlagen eine neuartigen parametrisierten Policytyp vor, der auf einem 2-lagigem stochastischem gepulsten neu-
ronalem Netz bestehend aus mehreren Populationen von stochastischen gepulsten Neuronen basiert und untersuchen
diesen. Wir zeigen, dass der vorgeschlagene Policytyp eine räumlich verteilte Verallgemeinerung einer Basispolicy mit
Lookup-Tabellen-Parametrisierung darstellt. Unser Policytyp offenbart bemerkenswerte Fähigkeiten, aber auch bedeu-
tende Limitierungen. Unsere Policy kann insbesondere mit hochdimensionalen Zustands- und Aktionsräumen umgehen,
verliert aber auch Ausdrucksmächtigkeit und kann daher bestimmte Funktionen wie XOR nicht repräsentieren.
Desweiteren schlagen wir Methoden vor, um diesen Policytyp zu trainieren. Diese Methoden basieren auf Wertefunkti-
onsmethoden und verallgemeinern diese, um unseren verteilten Policytyp zu trainieren. Wir vergleichen diese Methoden
mit State-of-the-art-Methoden, die Black-box-Ansätze and Likelihood-ratio-Ansätze umfassen. Es stellt sich heraus, dass
unsere vorgeschlagenen Ansätze diese State-of-the-art-Methoden deutlich übertreffen. In unseren Experimenten demons-
trieren wir, dass unsere Policy effektiv mit Belohnungen trainiert werden kann, um einen 10-gelenkigen Roboterarm in
einem Toytask durch eine Gitterwelt zu bewegen, um ein vorgegebenes Ziel zu erreichen, wobei keine Hindernisse berührt
werden dürfen.
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1 Introduction
Intelligent autonomous agents are supposed to improve our lives by solving tasks for us that rely on a certain degree of
intelligence. For example, this can comprise applications with an entertaining, a medical, or an industrial background.
The most relevant aspect of an intelligent autonomous agent is its policy, i.e., the program that defines how the agent
acts in a certain situation. More formally, a policy π: S → A is mapping from the current state s ∈ S to an action a ∈ A
where the definitions of the state space S, the action space A or the policy π do not have significant restrictions. However,
the realization of these policies is also the most difficult aspect.
We can distinguish between at least two different ways to realize such a policy. One way is to hard-code these policies
where analytic expert knowledge is translated into a code representation. Unfortunately, for many tasks such an approach
can be extraordinary time consuming. Furthermore, many relevant aspects of systems with a high degree of complexity
cannot be captured completely by expert knowledge. Consequently, such an approach often turns out to be infeasible.
A promising alternative to hard-coding policies is to learn them. The ability to learn behavior from experiences and to
generalize it to unforeseen situations can be seen as a crucial property of intelligence as it is also employed by humans
as we know. Without the ability to learn humans could not produce a behavior that could be interpreted as intelligent.
In the context of machine learning a policy is learned by representing it in a parameterized way and by optimizing the
parameters according to some scalar performance measure that corresponds to a goal-based policy definition. Goal-based
policy definitions are more abstract and easier to produce than concrete hard-coded policies.
However, learning a policy still relies on a proper choice of its parameterized representation and the learning method.
There are several popular learning frameworks and corresponding learning methods to address the problem of learning
policies. The most general and powerful learning framework in which probably each learning problem can be for-
mulated is reinforcement learning. In reinforcement learning the performance of a policy is judged by scalar rewards
and the learning is done by exploratory interaction of the agent with its environment. However, a general approach
for representing parameterized policies and training them efficiently from rewards in a reinforcement learning setting
even for high-dimensional state and action spaces is still very difficult and most state-of-the-art methods are limited to
low-dimensional state and action spaces.

1.1 Related work

The foundation of the work presented in this thesis is provided by the work of [1, 2] where populations of stochas-
tic spiking neurons are used to solve planning problems for robots. In these planning problems the goal was to find
a proper trajectory distribution of a robot that starts in some initial location and ends in a desired target location
while fulfilling certain constraints such as avoiding to hit obstacles. In [1] different populations of stochastic spiking
neurons were used to represent a distribution of trajectories in a two-dimensional task space. The distribution was
initially trained from demonstration data gathered from kinesthetic teaching and refined with reinforcement learning
afterwards. For both training phases specific Hebbian learning rules were developed. For the training from demon-
strations a learning approach based on contrastive divergence [3] was used. For the refinement with reinforcement
learning a reward modulated Hebbian learning rule related to REINFORCE [4] was used. However, the approach in
[1] was not able to represent trajectory distributions for a high-dimensional joint space of a robot arm. To scale to
high-dimensional spaces the approach was in [2] extended by employing multiple neuron populations. Here, each joint
was assigned a single population that depended on a single task population of neurons. By doing so it enabled the
representation of trajectories in a high-dimensional joint space without relying on an inverse kinematics model. In
our experiments we make use of a stochastic spiking network with a network topology and a population encoding simi-
lar to the ones used in [2] to learn to move a robot arm with multiple joints through a grid-world without hitting obstacles.

Other inspiring work which is closely related to the approach presented in this thesis was found in [5, 6, 7, 8], where
semi-stochastic feed-forward networks with stochastic winner-take-all dynamics in the output-layer and corresponding
reinforcement learning rules to train these were proposed and investigated. The basis of this work is provided by the
framework in [5] with the name "attention-gated reinforcment learning". The used network is similar to a standard multi-
layer pereceptron with the difference that the dynamics in the output layer employ stochastic winner-take-all dynamics.
Furthermore, reinforcement learning rules were derived to train such a network from rewards. For classification tasks the
reinforcement learning rules were compared to a supervised learning approach based on backpropagation and it turned
out that the reinforcement learning approach was able to compete with the supervised learning approach. It is also
argued that supervised learning and particularly the backpropagation algorithm is not biologically plausible. However,
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the way to update the non-stochastic hidden units in this framework is still very similar to backpropagation. This is also
underlined in [8] where it was shown that the update rules in a certain sense are even equivalent to backpropagation.
The framework proposed in [5] uses only a single winner-take-all circuit in the output layer and was in [6] extended to
a framework that is closely related to the framework in this thesis. Here, a semi-stochastic multi-layer feed-forward net-
work with multiple winner-take-all circuits in the output layer was employed and a value function related reinforcement
learning method was used to train this network. The network topology is similar to the network topology we used in our
framework and the used reinforcement learning method corresponds to the distributed global value function method we
used to train our policy. As in [5] the network topology in [6] contains non-stochastic continuous hidden units that are
trained with a backpropagation-like approach, which differs from our approach as we only use populations of stochastic
spiking neurons as elementary processing units.

1.2 Overview

In the following we give an overview over the structure of this thesis. In chapter 2 we provide foundations of reinforce-
ment learning. In chapter 3 we provide foundations of artificial neural networks and distributed models of computation.
In chapter 4 we introduce our proposed distributed policy based on a stochastic spiking neural network and correspond-
ing learning methods to train this network. In chapter 5 we evaluate the proposed policy for different learning methods
on different toy tasks based on a 10-link robot arm. In particular, this includes a sequential task where the goal is to
navigate a robot arm through a grid-world such that it hits a target while avoiding obstacles. In chapter 6 we give our
conclusion and in chapter 7 we discuss possible future work.
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2 Foundations of reinforcement learning
Reinforcement learning is a general learning framework for the goal-based specification of desired behaviors of agents
acting in an environment. Probably, each machine learning problem can be formulated in terms of reinforcement learning.
In particular, this includes supervised learning problems, imitation learning problems and bandit problems. However, it
is still an unanswered question whether supervised learning problems and imitation learning problems can in general be
solved effectively in the context of reinforcement learning.
In reinforcement learning, the goal is to achieve a behavior of an agent such that sequences of actions executed by the
agent maximize a scalar performance measure, the return. The behavior of the agent is defined by a parameterized
policy, i.e., the program of the agent, that maps the received signals from the environment to an action. In realistic
scenarios these state signals are only partially observable. At each time step a reward is received that depends on the
state of the environment and the executed action at this time step. The agent has to execute a proper sequence actions
to maximize the return defined as the discounted sum of future rewards. For finding an optimal policy the agent has to
interact with its environment in an exploratory manner. Formally a reinforcement learning setting can be described by a
Markov decision process (MDP).

2.1 Formalizing reinforcement learning problems

A reinforcement learning problem can be formalized by a Markov decision process (MDP). A Markov decision process
MDP=(S, A, T, r,γ) consists of a state space S, an action space A, transition probabilities T (s, a, s′) = p(s′|s, a), a reward
function r(s, a) and a discount factor γ ∈ [0,1[ where s ∈ S is the current state, a ∈ A the action executed in the current
state and s′ ∈ S is the successor state. The transition T (s, a, s′) represents the dynamics of the environment, i.e., the
probability for changing from state s to state s′ after executing action a and satisfies the Markov property. The user
defined reward function r(s, a) maps the state s and the action a executed by the agent to a reward r received by the
agent. The discount factor γ specifies the weights of future rewards.
The policy of the agent maps the current state s to an action a, i.e., π(s) = a. Policies can also be realized in a stochastic
way where we have π(s, a) = p(a|s). The objective in reinforcement is to find an optimal policy such that the expected

return given by J(π) = E[R1|π] = E[
T
∑

t=1
γt rt |π] resulting from following policy π under the transitions and rewards

defined by the MDP is maximized. T corresponds to the number of time steps until the episode terminates. In infinite
horizon settings with T =∞, due to γ ∈ [0,1[ this return is guaranteed to converge if the rewards r are bounded.
Bandit problems can be modeled by one-step MDPs with T = 1.

2.2 Challenges in reinforcement learning

We can identify different challenges when learning a policy that maximizes the expected return in a reinforcement
learning setting. A part of these is the ability to deal with high-dimensional state and action spaces, delayed rewards in
tasks with sequential decision-making and partially observable states.
Complex action and state spaces make it hard to identify the relationship between states and corresponding actions that
are advantageous for these. Furthermore, the policy must be represented in a way such that the mapping from states and
actions with a high complexity can be realized in a computationally efficient way. Unfortunately, the complexity of state
and action spaces, i.e., their volume, increases rapidly with their dimensionality. This problem is also know as the curse
of dimensionality [9].
Another challenge are delayed rewards where γ > 0 holds, i.e., the problem that the return for an action is not instantly
available after its execution. This is a problem, since the correct knowledge of the true returns is essential to realize
sequential decision-making properly.
Another challenge is the problem of partially observable states which means that the agent cannot observe the complete
state of the environment. In this case the agent may not be able to infer the best action from its current observation and
relies also on observations made in the past to realize proper decision-making. In such a case the agent has to maintain
an internal state that relies on several past observations. A reinforcement learning problem with partially observable
states can be formalized by a partially observable MDP (POMDP).
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Figure 2.1: Interaction between an agent and the environment in a reinforcement learning setting.

2.3 Reinforcement learning methods

In the following we will show different methods[10, 11, 12, 13] to find a policy that achieves a return expectation as
high as possible for a given MDP. This is done by optimizing the parameters θ of a parameterized policy π(s, a;θ ).

2.3.1 Model-free vs model-based methods

Reinforcement learning methods can be categorized in model-based and model-free methods. Model-based approaches
make use of a transition model to realize a simulator of the MDP that can be used to optimize the policy without the
necessity of evaluating the policy on a real system. In a robotics context, this reduces the amount of time that has to
be invested in experiments on a real system as well as wear and tear caused to the robot. Model-free methods do not
employ transition models or rely on them but can be extended straightforward to a model-based approach by applying
them to a simulated MDP. A big challenge of model-based methods is to find a model with high accuracy as model errors
lead to degraded policies. This is a reason why model-free approaches are often preferred.
A remarkable example for a model-based methods is PILCO[14]. PILCO realizes the transition model with Gaussian
processes and optimizes the policy with gradient descent based on analytic gradients. PILCO was able to learn policies
for cart-pole, double cart-pole and unicycle successfully from scratch with only a small number of interactions with the
real system that were used to learn the transition model.

2.3.2 Black-box vs white-box methods

Reinforcement learning methods can be categorized in black-box and white-box methods. Black-box methods perturb
the parameters at the start of an episode and use only the sampled returns from the episodes to learn the policy. That is,
they treat the MDP as a black-box and do not make any use of the inner structure of the RL problem. In particular, the
state-action pairs that occurred during an episode are not taken into account. The advantage of black-box methods is that
they can be applied to each type of parameterized policy, including non-differentiable or non-stochastic policies. This
makes black-box methods flexible and convenient to apply. The perturbation of the policy parameters is often realized
by stochastic Gaussian noise, i.e., ∆θ ∼ N (0,ε). Examples for black-box methods are finite different gradient methods
belonging to policy gradient methods[11] and evolutionary algorithms like CMA-ES[15]. CMA-ES is currently considered
as state-of-the-art in black-box optimization.
In contrast to black-box methods, white-box DPS methods make use of the internal structure of the RL problem, i.e.,
state-action pairs occurring during an episode are taken into account. From a theoretical point of view, this makes them
more powerful than black-box methods. White-box methods are often only applicable to specific types of policies. Despite
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the better performance of white-box methods in theory, black-box methods are often preferred over white-box methods.
Examples for white-box methods are likelihood-ratio methods[11, 4] and value function methods[10].

2.3.3 Likelihood ratio methods

Likelihood ration methods[11, 4] are model-free white-box methods that rely on stochastic differentiable poli-
cies. They belong to the class of policy gradient methods. Therefore, they optimize a policy π(s, a;θ ) by gradi-
ent descent based on an estimate of the gradient of the corresponding parameterized return ∇θ J(θ ), i.e., ∆θ =
α∇θ J(θ ). This is done by by making use of the likelihood ratio or REINFORCE trick given by ∇θ p(τ|θ ) =
p(τ|θ )∇θ log p(τ|θ ) with τ = (s1, a1, ..., sT , aT ) as path. Using this trick, we can write the policy gradient as
∇θ J(θ ) =
∫

τ
∇θ p(τ|θ )Rτ =

∫

τ
p(τ|θ )∇θ log p(τ|θ )Rτ = E{∇θ log p(τ|θ )Rτ} = E{

∑T
t=1∇θ logπ(st , at ;θ )Rτ} where

we made use of log∇θ log p(τ|θ ) =
∑T

t=1∇θ logπ(st , at ;θ ) with Rτ as the return received for path τ. Since the resulting
gradient estimate does not depend on the transitions likelihood ration methods can be applied in a model-free fashion.

2.3.4 Value function methods

Value function (VF) methods [10] are traditional reinforcement learning methods for learning optimal policies. As like-
lihood ratio methods they are white-box methods. For simple multi-armed bandit problems, i.e., one-step MDPs with
only a single state, where the action spaces are low-dimensional value function related approaches are still the most
effective methods[16, 17, 18]. However, due to their bad scaling to high-dimensional state and action spaces they lost in
popularity and became more and more replaced by other types of methods such as black-box methods or likelihood ratio
methods.
In VF methods value functions are estimated and employed that map a state or a state-action pair to the expected return
if starting and following from this state or state-action pair under some policy. Thus, value functions make a prediction
and have a model property. Despite this fact, value functions are usually are not considered as models.
We can discriminate between two types of value functions. These are state value functions and action value func-
tions. A state-value function Vπ : S → R is a mapping from a state s to the expected return received if starting in state
s and following policy π, i.e., Vπ(s) = E[Rt |st = s;π] = E[

∑∞
k=1 rt+k|st = s;π]. Similarly an action-value function

Qπ : S × A→ R is a mapping from a state-action pair (s, a) to the corresponding expected return under policy π, i.e.,
Qπ(s, a) = E[Rt |st = s, at = a;π] = E[

∑∞
k=1 rt+k|st = s, at = a;π]. The estimates of these a priori unknown value func-

tions are denoted by V (s) and Q(s, a) in the following.

The general working principle of VF based reinforcement learning can be expressed by generalized policy iteration
(GPI). GPI consists of two key parts that are repeated alternately such that both the estimated value function and policy
converge to optimality. One key part is to estimate the value function for a given policy and the other key part is to
improve this policy by selecting actions that lead to promising outcomes according to the estimated value function. The
actions are selected in a greedy manner, i.e. the best action is chosen. Estimating value functions for a given policy is
called policy evaluation and improving policies according to learned value functions is called policy improvement. The
principle of GPI is visualized in figure 2.2.

There are different VF methods which differ mainly in how the policy evaluation is done, i.e. the estimation of the
value function and can be divided into the classes dynamic programming (DP) methods, Monte Carlo (MC) methods and
temporal difference (TD) methods. DP methods are model-based methods whereas MC and TD methods can be used
model-free if an action-value function is employed. The second key element of GPI is the policy improvement step, which
improves a policy by selecting proper actions for a given state according to the estimated value function. In the sim-
plest case this can be realized by just selecting actions in a greedy manner. For an estimated state-value or action-value
function this gives

π(s) = arg max
a

∑

s′
T (s, a, s′)(r(s, a) + γV (s′)) = arg max

a
Q(s, a). (2.1)

The state-value function based action selection without direct knowledge of the action-value function relies on a transition
model and the consideration of the whole distribution of successor states. This can be avoided if the action-value function
is known and used instead. The crucial problem of value function based methods is the reliance on a search over the
whole action space for the action selection, which can be assumed to be very expensive especially for high-dimensional
action spaces. This is one of the main reasons why VF methods are difficult for applications where high-dimensional
action spaces are involved.
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Figure 2.2: Generalized policy iteration: The policy evaluation step and the policy improvement step are repeated until
convergence of both the value function and the policy.

Dynamic programming

Dynamic programing (DP)[9] methods are a class of model-based VF methods. They rely on a perfect model of the MDP
and involve high computational effort, which limits their practical utility. A notable property of DP methods is that they
perform bootstrapping, i.e., value functions estimates are updated on the basis of value function estimates.
Two classical DP methods are policy iteration and value iteration. Policy iteration performs alternately policy evaluation
up to convergence of the value function for the current policy and a greedy policy improvement afterwards. The update
rule for the value function in value iteration works similar as in policy iteration but truncates the policy evaluation to a
single update step. In value iteration both the policy evaluation step and policy improvement step can be summarized
to a single update of the value function that is equivalent to the Bellman optimality equation. After the (near-)optimal
value function has been determined in value iteration the (near-)optimal policy can be inferred from it by a single greedy
action selection for all states.

Input: arbitrary initialized value function V and policy π
Output: (near-)optimal value function V and policy π
repeat

// Policy Evaluation
repeat

forall s ∈ S do
a = π(s)
// Bellman equation
V (s) :=
∑

s′
T (s, a, s′)(r(s, a) + γV (s′))

until V converged
// Policy Improvement
forall s ∈ S do
π(s) := arg max

a

∑

s′
T (s, a, s′)(r(s, a) + γV (s′))

until π is stable

Algorithm 1: Policy iteration
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Input: arbitrary initialized value function V (s) and policy π
Output: (near-)optimal value function V (s) and policy π
repeat

forall s ∈ S do
// Bellman optimality equation
V (s) :=max

a

∑

s′
T (s, a, s′)(r(s, a) + γV (s′))

until V converged
π(s) := arg max

a

∑

s′
T (s, a, s′)(r(s, a) + γV (s′))

Algorithm 2: Value iteration

Monte-Carlo methods

Monte Carlo (MC) methods estimate value functions purely by returns produced by direct interaction with a (simulated)
environment. Unlike DP methods, for a single value function update only one transition sample is generated instead of
the whole transition distribution. In comparison to DP methods this makes MC methods computationally much more
efficient and allows for a natural combination of interacting with the environment and learning. MC methods can be
treated as model-free RL methods if action-value functions are used for the policy improvement. MC methods estimate
value functions by averaging the returns of the corresponding long-term samples. An incremental Monte update rule
with non-stationarity assumption for updating a state-value function is given by V (s) := (1 − α)V (s) + αR, where R is
the latest return sample received for state s. For a constant and sufficiently small learning rate, this update rule implies
convergence to the true value function for some fixed policy. MC methods do not bootstrap as DP methods, since the
updates of value function estimates are exclusively based on return samples and not on value function estimates. A
problem is the fact that the return is not known before the episode ends. In case of infinite horizons the exact returns are
never known. Thus, usual MC approaches are based on episodes with a finite horizon and perform the value function
update at the end of an episode. As stated MC methods do not consider the whole transition distribution for a single
value function update but only a single transition sample, which implies the problem that certain states or states-action
pairs may never be visited if greedy action is used exclusively. This makes it necessary to select actions in a non-greedy
manner, e.g., by using ε-greedy or softmax for action selection.

Input: arbitrary initialized action-value function Q and exploratory action selection strategy (e.g., ε-greedy)
Output: (near-)optimal action-value function Q
repeat

1. generate an episode using π specified by Q and the action selection strategy
2. let Z be the set of all state-action pairs (s,a) appearing in the episode
forall (s, a) ∈ Z do

R := return following the first occurrence of (s, a)
Q(s, a) := (1−α)Q(s, a) +αR

until Q converged

Algorithm 3: An episodic Monte-Carlo control algorithm for learning a (near-)optimal action-value function Q based
on a lookup table.

Temporal difference learning

Temporal difference (TD) learning methods combine ideas from both DP and MC methods. As MC methods, value
functions are learned by experience gathered from direct interaction with the (simulated) environment where for each
value update of a state (or state-action pair) only a single transition sample is considered instead of the whole distribution
of successor states for a certain state as in DP methods. Thus, as MC methods, TD methods rely on non-greedy action
selection to produce reliable value function estimates. TD learning can be applied model-free without knowledge of the
dynamics of the environment if the action-value function is known and employed. The main difference between MC and
TD methods lies in how the value function is updated for given transition samples. TD methods update a value function
estimate on the basis of an existing value function estimate, i.e., in contrast to MC they bootstrap like DP. The simplest
TD method, TD(0), updates the state-value function according to
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V (s) := (1−α)V (s) +α(r(s, a) + γV (s′))

= V (s) +α(r(s, a) + γV (s′)− V (s)) = V (s) +αδ (2.2)

The increment r(s, a)+γV (s′)− V (s) = δ is called temporal difference. The value of δ can be computed in the next time
step. Thus and in contrast to MC methods, TD(0) can update value functions easily in an online fashion. For the discrete
lookup table case, i.e., where have discrete state and action spaces and where we store values for the states or state-action
pairs in a lookup table, it can be mathematically shown that TD methods in the mean are sound for a sufficiently small
learning rate α and converge to the true value function of a corresponding fixed policy. TD methods are usually assumed
to converge faster than MC methods due to bootstrapping. However, bootstrapping may also cause instability problems
in the learning process if function approximation instead of lookup tables is used for representing the value function.
As in MC methods, TD methods can be used model-free if an action-value function is used. The two most popular TD
methods for learning action-value functions are SARSA[19] and Q-learning[20]. SARSA learns the action-value functions
according to

Q(s, a) :=Q(s, a) +α(r(s, a) + γQ(s′, a′)−Q(s, a))

=Q(s, a) +αδ (2.3)

and for Q-learning the update is given by

Q(s, a) :=Q(s, a) +α(r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a))

=Q(s, a) +αδ. (2.4)

with a′ ∈ A as the action in the next step and δ as the temporal difference error. SARSA learns the value function on-
policy, i.e., it uses only return estimates for the actions that were selected by the policy. In contrast, Q-learning learns
off-policy and performs updates on the base of return estimates of actions resulting from greedy action selection. In
practice the advantages of off-policy learning are limited. Off-policy algorithms are often much more complicated and do
not give significant performance gains in comparison to on-policy learning. Usually off-policy methods get outperformed
by on-policy methods. However, off-policy methods like Q-learning are still interesting from a theoretical perspective as
they enable convergence proofs.

A problem with the described TD methods is that the value for only one state or state-action pair is affected by an
update which implies a slow convergence. In order to improve convergence and to affect more states and state-action
pairs by updates TD methods can be generalized by using eligibility traces. Eligibility traces mark recently visited states
and decay exponentially over time with a certain rate. The greater the eligibility trace of a state the more this state
is assigned credit for an TD error. Eligibility traces are a basic mechanism to solve the temporal credit assignment
problem emerging from the backward view. Moreover, they can be easily implemented for the lookup table case. This
leads to the TD(λ) algorithm method which generalizes TD(0) for state-value functions. A popular application of this
algorithm was the learning of a strong backgammon player based on an artificial neural network that was trained with
TD(λ) without having any sort of prior knowledge about the game[21, 22]. For the action-value function based TD
methods given by SARSA(0) and Q-learning(0) the corresponding generalizations are SARSA(λ) and Q-learning(λ). In
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the lookup table case these methods maintain an additional eligibility trace variable for each state or state-action pair.

Input: arbitrary initialized action-value function Q, exploratory action selection strategy (e.g., ε-greedy), discount
factorγ, decay factor λ

Output: (near-)optimal action-value function Q
repeat

1. initialize e-traces: e(s, a) := 0
2. start an episode in some initial state s := s0 and action a := a0
3.repeat

1. execute action a and observe the received reward r and the next state s’
2. select an action a′ in the current state according to the current action-value function and the action
selection strategy

3. compute the temporal difference: δ := r(s, a) + γQ(s′, a′)−Q(s, a)
4. e(s, a) := e(s, a) + 1
5. forall (s, a) ∈ S × A do

1.Q(s, a) :=Q(s, a) +αδe(s, a)
2. e(s, a) := γλ(s, a)

6. s := s′

7. a := a′
until episode terminated

until Q converged

Algorithm 4: Online SARSA(λ) control algorithm for learning a (near-)optimal action-value function Q based on a
lookup table.

Action selection strategies for MC and TD methods

MC and TD consider consider only single transition samples for policy evaluation instead of the whole distribution of
successor states as DP methods do. This implies that the efficiency of policy evaluation, i.e., the production of reliable
value function estimates, is affected by the action selection. In fact greedy action selection as in equation 2.1 can prevent
the encountering of states and state-action pairs and therefore destroy the policy evaluation process.
A solution to this problem is the usage of action selection strategies which employ stochastic exploration rather than
pure exploitation as a greedy action selection does. By using such exploratory strategies even actions that are suboptimal
according to the current value function estimates may be selected with a certain probability such that the value function
estimates can become more reliable since more states and state-action pairs are encountered and more knowledge is
generated. In general it is not clear how a trade-off between exploration and greedy exploitation can be realized in
an optimal way. Two popular and simple strategies, namely ε-greedy and softmax are an answer to the exploration-
exploitation dilemma and are explained in the following. These strategies are also heavily used for basic multi-armed
bandit problems[16, 17, 18].

ε-greedy: ε-greedy selects with probability ε a random action according to the uniform distribution which corresponds
to exploration and otherwise the action with the highest Q-value in the current state is taken, i.e.,

π(a, s) =

¨

select random action a ∈ A according to uniform distribution, if ξ < ε

arg max
a

Q(s, a) otherwise

where 0 ≤ ξ ≤ 1 is a uniform random number. A property which can be seen as disadvantage is the fact that all actions
are selected with the same probability in case of exploratory selection, regardless of their Q-values. Thus, even very bad
actions can be selected in exploration phases. For ε= 1 all actions are always selected according ro uniform distribution
whereas for ε= 0 action selection is equivalent to greedy action selection.

Softmax: If using softmax actions are selected according to ,i.e.,

π(s, a) =
ex p(βQ(s, a))
∑

a′∈A
ex p(βQ(s, a′))

with β > 0 as the inverse temperature. Similarly to ε-greedy for β → 0 all actions have the same probability whereas
for β →∞ softmax is equivalent to greedy action selection. In contrast to ε-greedy an action with a higher Q-value is
always more likely to be selected than an action with a smaller Q-value.
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2.3.5 Actor-critic methods

Actor-critic methods employ an actor and a critic. The actor represents the actual policy that corresponds to the skill of
the agent. The critic represents a value function, typically a state-value function, that corresponds to the knowledge of
the agent. The critic uses its gathered knowledge to judge the actions executed by the actor on the base of TD errors δ.
The actor tries to optimize its policy based on these TD errors. A picture of this principle is shown in figure 2.3.
An advantage of actor-critic methods is that the selection of an action can be done efficiently by the actor. Thus, no
computationally expensive consideration of the whole action space is needed to select an action as in pure VF methods,
also called critic-only methods. On the other side, the critic contains knowledge to train the actor efficiently with TD-
errors. TD errors have in general a much lower variance than the rewards or returns provided directly by the MDP and
are at least as meaningful as these to train the actor properly. High variances of rewards and returns that are used to train
the actor make the training of the actor extremely difficult and lead to a very poor convergence in general. In particular,
this turns out to be a huge problem of methods that do not employ a value function, also called actor-only methods, such
as likelihood ratio methods. Thus, actor-critic methods can be seen as reinforcement learning methods that combine the
advantages of both actor-only methods and critic-only methods.

Figure 2.3: Actor-critic methods use a separate actor and critic. The critic computes TD errors and uses these to update
the value function. The actor uses the TD errors to train the policy.
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3 Foundations of artificial neural networks
In this chapter artifical neural networks(ANNs)[23, 24, 25, 26, 27, 28] are introduced. ANNs are a biological inspired
models of computation and an abstraction of the working principles of the nervous system of animals, i.e., how infor-
mation processing is done. ANNs provide a very powerful framework for function approximation that is heavily used
in machine learning. An ANN is a composition of many interacting simple processing units, called neurons. The global
information processing in neural networks is the result of the local information processing of all neurons which is done
simultaneously and independently. Therefore neural networks are systems working in a parallel and distributed manner.

3.1 Distributed models of computation

A model of computation is defined by a set of rules that specify how a single computation step takes place, i.e., how an
output or successor state is produced for a given input or current state. Examples for models of computation are ANNs,
Turing machines (TMs) and cellular automata (CAs)[29, 30, 31].
ANNs and cellular automata are both models of computation provided by nature. ANNs are inspired from the nervous
system of animals. According to [29] all processes occurring in the universe are the result of the computation of a single
discrete cellular automaton. This implies that each program that runs on a computer also runs on a discrete cellular
automaton, i.e., our universe. In contrast to TMs, natural models of computation given by ANNs an CAs have in common
that they work highly efficiently. The powerful capabilities of animal brains, in particular the human brain, ANNs were
inspired from are well-known. If a CA would not work efficiently no program would, since each executed program always
runs indirectly on a cellular automaton given by our universe.
A way to explain why ANNs and CAs work efficiently is their spatially distributed and parallel working principle, i.e.,
they are a composition of multiple parallel working processing units interacting with each other. At each time step each
processing units receives an input from the environment or other processing units and produces an output which is done
independently for each processing unit. In case of ANNs these processing units are neurons and in case of CAs these
processing units are cells. A difference between both computation models is how the processing units interact with each
other. In ANNs the input of a neuron receives at some certain point can depend on the output of all neurons, but has
a compressed content of information in the sense that the output of these neurons cannot be inferred from the input.
In CAs the input of a cell does only depend on the output of the neighbored cells but is not compressed as in ANNs. In
result, the input and output spaces of single processing units in ANNs and CAs are simple and atomic as these processing
units itself.

3.2 Formalizing ANNs

An artificial neural network can be formalized by a set of neurons N , the number of synapses ci j ∈ {0,1} from neuron
i ∈ N to neuron j ∈ N and corresponding weights wi j ∈ R of these synapses. Each neuron i ∈ N has an activation state
ṡi . If a neuron is an input neuron its activation state is induced by the environment. A neuron j that is no input neuron
receives input signals from other presynaptic neurons i ∈ N j with I j = {i ∈ N : ci j = 1} and produces an output signal ṡ j
depending on these and some activation function f . In most neural network models this function primitive is defined by
ṡ j = f (u j) = f (

∑

i∈I j

wi j ṡi), with u j =
∑

i∈I j

wi j ṡi as membrane potential. f is some nonlinear activation function used by all

neurons in the network and ṡ j is the resulting activation state of neuron j which is equivalent to the signal sent from this
neuron. The activation state ṡ j of a neuron can be continuous or binary. Continuous activation states ṡ j ∈ R are used in
classical MLPs and model the spiking frequency of a neuron. Binary activation states ṡ j ∈ {0,1} of neurons are used in
spiking neural networks[32, 33] and model whether the neuron produced a spike or not. Different types of ANNs differ
mainly in the choice of the activation function and the network topology.

3.3 Activation functions

In this section important and popular types of activation functions for ANNs are presented.
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3.3.1 Heaviside step function

The Heaviside step function is given by ṡ j = f (u j) =







0, u j < 0
1
2 , u j = 0

1, u j > 0

. It is a binary threshold function and is for instance

used in single-layer perceptrons.

3.3.2 Sigmoid functions

Sigmoid functions refers to a class of "S"-shaped functions. Two popular sigmoid functions used in the field of ANNs are
the logistic function given by ṡ j = f (u j) =

1
1+ex p(−βu j )

and the hyperbolic tangent given by ṡ j = f (u j) = tanh(βu j) =
ex p(βu j )−ex p(−βu j )
ex p(βu j )+ex p(−βu j )

, where β > 0 is the inverse temperature. The Heaviside step function is a special case of the logistic
function for β =∞.

3.3.3 Population based activation functions

Population based activation functions are generalizations of standard activation functions. They are applied to popula-
tions of neurons and compute the activation state of each neuron of a population in a dependent way, that is the state of
each neuron in the population depends on the membrane potentials of all neurons in the population, i.e.,ṡp = f (up) with
ṡp as the activity of the neurons in population p and up as their corresponding potentials. Thus, the neuron populations
form atomic computation primitives.

Softmax

Softmax is a population based activation function and a generalization of the logistic function. It is given by ṡp, j =

f j(up) =
ex p(βup, j )

Np
∑

l=1
ex p(βup,l )

where Np denotes the number of neurons in population p, up are the neuron potentials of the neurons

in population p, ṡp, j denotes the activation state and up, j denotes the membrane potential of neuron j, 1 ≤ j ≤ Np, in
population p and β > 0 is the inverse temperature. The activation states of all neurons in p depend on all membran
potentials up of the neurons in that population.
Softmax activation functions are often used for the output layer in classification tasks, where the resulting neuron states
can be interpreted as class probabilities. A stochastic version of this function is often used in stochastic winner-take-all
circuits. The softmax function is also used in reinforcement learning for exploratory action selection. Thus, the softmax
function can be seen as a natural link between the theories of neural networks and reinforcement learning.

Winner-take-all dynamics

Winner-take-all(WTA) circuits[34, 35] are neuron populations that use an activation function such that exactly one
neuron j in population p, 1 ≤ j ≤ Np, has the activation state ṡp, j = 1 whereas all other neurons l of that population,
j 6= l ∧ 1 ≤ j ≤ Np, have the activation state ṡp,l = 0. Thus, the neurons compete for activity and the winning neuron
inhibits all other neurons. The activation function of WTA circuits can be deterministic or stochastic. A common activation
function for stochastic WTA circuits is the stochastic softmax function with p(ṡp, j = 1|up) = f j(up) =

ex p(βup, j )
Np
∑

l=1
ex p(βup,l )

. If

β =∞ holds, the stochastic softmax functions becomes deterministic and chooses the neuron with the highest membrane
potential as winner.

3.4 Network topologies

Topologies of ANNs define how the neurons are connected and how the flow of information processing takes place.
We can distinguish between feed-forward and recurrent networks. Feed-forward networks consist of multiple layers of
neurons which includes a layer of input units, a layer of output units and possibly additional layers of hidden units
between them. All neurons of a layer can only have outgoing synapses to neurons of the next layer. In a single processing
cycle input signals are given to the input layer and are processed from there layer wise to the output layer. Examples
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for feed-forward networks are single-layer perceptrons and multi-layer perceptrons. Recurrent ANNs allow backward
connections such that the state of a neuron can serve as input for previous layers in the next processing cycle. Popular
examples for recurrent networks are Boltzmann machines[36] and long short-term memories[37].

Figure 3.1: A multi-layer feed-forward network with three layers. The neurons are depicted as circles and the synaptic
connections are depicted as directed arrows. The processing flow corresponds to the direction of the arrows.

3.5 Expressive power of ANNs

Given an ANN with fixed topology and fixed activation functions, the expressive power of the ANN is defined by the set of
all functions it can compute for a proper choice of synaptic weights. A very famous example that shows up the limitations
of the expressive power of ANNs is the incapability of perceptrons with two inputs and one output neuron to compute
the XOR function. A perceptron is a linear classifier and the simplest feed-forward network and consist only of an input
layer and an output layer and uses the Heaviside step function as activation function.
A solution to the XOR problem can be achieved by adding one or more layers of hidden units to the perceptron. This
leads to multi-layer perceptrons (MLP). An MLP is a feed-forward network and a generalisation of the perceptron with
additional hidden layers and arbitrary activation function. In particularly, MLPs with at least one additional hidden layer
are able to compute the XOR function. According to the universal approximation theorem a feed-forward network with a
single hidden layer containing a sufficient number of hidden neurons can approximate each function with finitely many
discontinuities with arbitrary accuracy if the hidden neurons use a non-linear activation function[38].

3.6 Training of ANNs

The objective of an ANN is the production of desired outputs for given inputs. There are different factors that influence
this behavior, i.e., the function realized by the ANN. These factors include the network topology, the used activation
function and the synaptic weights. All of these can be set a priori by making use of expert knowledge. However, setting
the weights properly in manual manner by the making use of expert knowledge can be seen as intractable in general.
Instead, a learning method needs to be employed to adjust the synaptic weights. Trivially, an ANN can only learn functions
it can compute, i.e., that are covered by its expressive power.
The training of ANNs can be done in the context of supervised learning and reinforcement learning. In supervised learning
the neural network is provided a desired output (teaching signal) for a given input. The goal is to adjust the weights
such that the distance (e.g., squared euclidean distances) between the produced and desired outputs of the network for
given inputs is minimized. In reinforcement learning the neural network is given a scalar feedback, i.e., a reward, after it
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produced an output for a corresponding input. This feedback expresses how advantageous the behavior of the ANN was
in this certain situation. In reinforcement learning the weights need to be adjusted such that the expected return, i.e., the
long-term reward, is maximized. In contrast to supervised learning no teaching signal is given which gives information
about how a desirable output looks like, i.e., an output with a high return expectation.

3.6.1 Hebbian learning

Hebbian learning methods refer to an important class of white-box methods to train the synaptic weights of an ANN.
This class is based on the original Hebbian learning rule [39] given by ∆wi j = αṡi ṡ j . This learning rule qualitatively
means the corresponding synaptic weight wi j increases if the pre- and postsynaptic neurons are active at the same time.
Furthermore, if ṡi = 0 or ṡ j = 0 holds the synaptic weight cannot change, i.e., ∆wi j = 0. A more general framework
of Hebbian learning rules is given by ∆wi j = αṡi g(ṡ j ,Θ), where Θ denotes additional specific parameters which may
include all synaptic weights of the ANN, a provided reward in a reinforcement learning setting or a teaching signal that
corresponds to the desired output in a supervised learning setting. In these cases the weight wi j cannot change if ṡi = 0
holds for the presynaptic state, which is plausible since this weight has no impact on the postsynaptic membrane potential
or neuron state if ṡi = 0 holds. This property of almost all Hebbian learning rules can explain why in general Hebbian
learning methods like backpropagation outperform black-box optimization methods like evolutionary algorithms that
would optimize the weights without taking care of the neuron states.

3.6.2 Backpropagation

Backpropagation is a very popular algorithm for training MLPs which uses a deterministic activation function for all
neurons and is mainly used in a supervised learning setting. Backpropagation is based on gradient descent with analytic
gradients and results in a Hebbian learning rule. It is a generalization of the delta rule for single-layer networks and can
train multi-layer feed-forward networks with additional hidden layers.
In the following the update rule for backpropagation is derived where we assume a network state resulting from a given
input. We make use of an error measure E expressing how well the output state of the network matches the provided
teaching signal. The goal is to minimize this error. According to gradient descent backpropagation updates the weights
by following the negative gradient of the error E with respect to the weights, i.e.,

∆wi j = −α
∂ E
∂ wi j

= −α
∂ E
∂ ṡ j

∂ ṡ j

∂ u j

∂ u j

∂ wi j
(3.1)

For
∂ u j
∂ wi j

in equation 3.1 we have

∂ u j

∂ wi j
=

∂
∑

i∈I j

wi j ṡi

∂ wi j
= ṡi . (3.2)

In order to apply backpropagation the activation function needs to be differentiable such that ∂ ṡ j/∂ u j in equation 3.1
can be calculated(e.g., by using the logistic function or softmax). If j is an output neuron the evaluation of ∂ E/∂ ṡ j in
equation 3.1 can be done immediately depending on the used error function applied to the produced outputs and the
teaching signals. Assuming that neuron i is not an output neuron, i.e., an inner neuron which has outgoing synapses and
denoting the postsynaptic neurons of these synapses with Oi = { j ∈ N : ci j = 1} we can write ∂ E/∂ ṡ j as

∂ E
∂ ṡ j
=
∑

k∈Oj

∂ E
∂ uk

∂ uk

∂ ṡ j
=
∑

k∈Oj

∂ E
∂ uk

∂
∑

i∈Ik
wik ṡi

∂ ṡ j
=
∑

k∈Oj

∂ E
∂ uk

w jk.

Thus, we have

∂ E
∂ ṡ j
=







∂ E
∂ ṡ j

, if neuron j is an output neuron
∑

k∈Oj

∂ E
∂ uk

w jk, if neuron j is an inner neuron. (3.3)
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By making use of the abbreviation δ j =
∂ E
∂ u j
=

∂ ṡ j
∂ u j

∂ E
∂ ṡ j

and equation 3.4 we have

δ j =







∂ ṡ j
∂ u j

∂ E
∂ ṡ j

, if neuron j is an output neuron
∂ ṡ j
∂ u j

∑

k∈Oj

δkw jk, if neuron j is an inner neuron. (3.4)

Plugging equations 3.2 and 3.4 into equation 3.1 with case distinction leads to

∆wi j = −α
∂ E
∂ wi j

=







−αṡi
∂ ṡ j
∂ u j

∂ E
∂ ṡ j

, if neuron j is an output neuron

−αṡi
∂ ṡ j
∂ u j

∑

k∈Oj

δkw jk, if neuron j is an inner neuron (3.5)

. In order to compute ∂ E/∂ wi j for all weights of the neural network we have to determine δ j for all neurons j of the
network. Since for inner neurons δ j depends on δk of neurons in a lower layer, the δ j values must be determined
recursively and backwards beginning from the output layer. A common choice for the the error function is given by
E = 1

2

∑

j∈O
(t j − ṡ j)2, where O denotes the output neurons of the neural network and t j is the teaching signal for output

neuron j. This error function leads to ∂ E/∂ ṡ j = −(t j − ṡ j).
For hidden neurons, if they are used, sigmoid functions are often used as activation functions. For these activation
functions it usually holds that ∂ ṡ j/∂ u j = ∂ f (u j)/∂ u j ∈ [0,1] which means that the absolute value of δ j and thus of
∆wi j decreases exponentially with a layer’s height such that there is no effective weight change in higher layers. This
problem is also known as vanishing gradient problem [40] and explains why training deep ANNs with backpropagation
has crucial limitations.
Furthermore, as a gradient descent based method, backpropagation is prone to get stuck in local optima if the error
function is non-convex which is usually the case for multi-layer perceptrons with at least one hidden layer.
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4 A distributed policy based on spiking neural
networks

In the following we will motivate and explain a distributed type of policy π: S → A based on stochastic spiking neural
networks (SNN) that can be trained in a reinforcement learning setting. Here we will always assume discrete state and
action spaces. This is not necessarily a disadvantage, since we can always discretize continuous state and action spaces
with arbitrary accuracy. Furthermore, the most advanced processors are working binary without exception. This includes
artificial processors as well as the human brain, where neurons are communicating via binary spikes and not continuous
signals.
Furthermore, we assume that states are completely observable, that is at each time step the current observation contains
all information of the current global state. Thus, we will not discriminate between states and observations.

To motivate our SNN based policy we will start with a discrete basic type of parameterized stochastic policy inspired
by VF methods, where we have a discrete state-action space and exactly one real-valued parameter θ (s, a) for each state-
action (s, a) pair and vice versa, which corresponds to a lookup table parameterization. Assuming that we would apply
value function based learning methods to train these parameters they would form a Q-table with Q(s, a;θ ) = θ (s, a).
Such a parameterization is sufficient to encode an arbitrary action selection distribution for each state. However, this
type of policy suffers strongly from the curse of dimensionality, since high-dimensional state and action spaces will lead
to an explosion of the number of states and actions and consequently to an explosion of the number of parameters given
by |S||A|. Maintaining the number of parameters as well as realizing the dynamics, i.e., the choosing of an action, rapidly
becomes intractable for any computation scheme with an increasing number of dimensions of the state and action spaces.
Furthermore, since the frequency of encountering the same state-action pair decreases we can also expect a poor learning
speed in higher dimensions if using the described type of policy.

A way out of this dilemma caused by the curse of dimensionality can be derived by taking inspirations from natural
computation models, i.e., neural networks and cellular automata. A crucial basic property of these computation models
is their spatially distributed working principle, i.e., they can be decomposed into multiple parallel working processing
units interacting with each other, where each processing units computes its output for a given input independently from
all other processing units. A key intuition is to make the policy consistent with this distributed working principle of
natural computation models that can be assumed to work efficiently.
For doing so we decompose the action space A into NA partial action spaces A1, ..., ANA

with A= A1 × ...× ANA
and define

the policy π to select an action a = (a1, ..., aNA
) ∈ A= A1× ...×ANA

by selecting partial actions ap ∈ Ap independently from

each other according to partial policies πp : S → Ap, 1 ≤ p ≤ NA such that π(s, a = (a1, ..., aNA
;θ )) =

NA
∏

p=1
πp(s, ap;θp)).

In the following we write π(s, ap;θ ) for πp(s, ap;θp) as short-hand notation. The size |Ap| of the partial action spaces is

significantly smaller than the size the whole action space given by |A| =
NA
∏

p=1
|Ap|. The selection of the partial actions can

be done in parallel, which means that it can be realized highly efficiently assuming that in general the computational
effort to sample from a space according to some underlying distribution scales linearly with its size. Since the selection
of the partial actions is not correlated, parameters that would encode such a correlation can be dropped. The param-
eterization is generalized such that we have one parameter for each pair of a state s ∈ S and a partial action ap ∈ Ap,

1 ≤ p ≤ NA. The number of parameters becomes Nθ = |S|
NA
∑

p=1
|Ap|, which is a significant reduction in comparison to the

case of non-distributed action selection where the number of parameters is given by Nθ = |S||A| = |S|
NA
∏

p=1
|Ap|. Such a

parameter reduction correlates with an improved learning behavior due to faster generalizing.

Another result of such distributed action selection is that the rewards received for selecting a certain partial action
for a fixed state according to a partial policy becomes more noisy due to the missing correlation with the selection of the
remaining partial actions and furthermore parameter changes due to learning dynamics also cause non-stationarity of
the rewards in this case. There are no guarantees to converge to a global optimum even if the rewards are constant for
all state-action pairs. Furthermore, in the context of VF methods it is not possible to encode exact Q-values Q(s, a) for a
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global joint action a = (a1, ..., aNA
) in a certain state s, if partial policies with distributed parameterizations and dynamics

are used.
With certain advantages and disadvantages the distributed approach described so far is able to deal with high-dimensional

actions. However, high-dimensional states are still a problem, as number the of parameters given by Nθ = |S|
NA
∏

p=1
|Ap|

reveals. In order to deal with high-dimensional state spaces we will again take inspirations from natural distributed com-
putation models. For all of these the space of inputs provided to each atomic processing unit has a limited complexity
that is significantly smaller than the complexity of the whole system. In case of cellular automata, the input space of
a cell is only specified by the joint complexity of state spaces of the cells neighbored to this cell and in case of neural
networks the input space of a neuron is a real-valued scalar resulting from the linear combinations of signals sent from
other neurons.

4.1 Realizing a distributed policy with an SNN

For our approach we will focus on neural networks as they appear to be a quite practical computation model as it has
been shown in numerous practical applications and furthermore they are a parameterized. In particularly we generalize
our approach by decomposing the state space in partial state spaces, i.e., S = S1 × ...× SNS

and parameterize the policy
such that we have now exactly one parameter for each pair of a partial state and a partial action (so, ap) with so ∈ So,
1 ≤ o ≤ NS , ap ∈ Ap, 1 ≤ p ≤ NA. For a given global state s = (s1, ..., sNS

) each partial action ap ∈ Ap, 1 ≤ p ≤ NA, is
now assigned several parameters given by θ (s, ap) = {θ (so, ap) : 1 ≤ o ≤ NS}. According to inspirations provided by
neural networks the selection distribution over all partial actions ap ∈ Ap in some partial action space Ap, 1 ≤ p ≤ NA,
according to the partial policy πp for a given state s is now specified by potentials given by u(s, ap) =

∑

θ∈θ (s,ap)
θ , which is

an admissible distributed generalization for distributed states, since u(s, ap) = θ (s, ap) if s is non-distributed, i.e., NS = 1.
Following the formalism of neural networks, the described distributed policy can be expressed equivalently by popula-
tions of spiking neurons[1, 2] contained in two different layers, a state and an action layer, that are fully connected as
shown in figure 4.1, i.e., there is exactly one synapse with the weight θ between two neurons i and j, if i is a state neuron
and j is an action neuron, otherwise there is no synapse between these neurons. Each partial state space So, 1≤ o ≤ NS ,
is represented by a neuron population in the state layer and each partial action space Ap, 1≤ p ≤ NA, is represented by a
neuron population in the action layer.
Furthermore, each partial state so,k ∈ So, 1 ≤ k ≤ |So|, in some partial state space So, 1 ≤ o ≤ NS , is represented by a

neuron i, 1 ≤ i ≤ N̄S =
NS
∑

o=1
|So|, in the state layer with activation state ṡi and each partial action ap,l ∈ Ap,1 ≤ l ≤ |Ap|,

in some partial action space Ap, 1 ≤ p ≤ NA, is represented by a neuron j, 1 ≤ j ≤ N̄A =
NA
∑

p=1
|Ap|, in the action layer with

activation state ȧ j . To encode a certain partial state or partial action its corresponding neuron has an activity of 1 and
the activity of all other neurons in the population is set to 0, i.e., ṡi , ȧ j ∈ {0,1}, since partial states or partial actions in
the same partial state space or partial action space are mutually exclusive.
In the following ṡ denotes the the activities of all state neurons encoding the global state s, ṡo denotes the activities of all
neurons in the state population o, 1≤ o ≤ NS , encoding the partial state so, ȧ denotes the activities of all action neurons
encoding the global action a and ȧp denotes the activities of all neurons in the action population p, 1≤ p ≤ NA, encoding
the partial action ap. Since exactly one neuron spikes in each action population they form winner-take-all(WTA) circuits
where the activation function realizes the stochastic dynamics of the corresponding partial policy, that is the choosing
of an partial action by activating the corresponding neuron and inhibiting the remaining ones of the population. The
activation function fl(up = (up,1, ...,up,|Ap |)) = π(ṡ, ȧp,l = 1;θ ) = π(s, ap = ap,l ;θ ) = ρp,l activates neuron ȧp,l in the
action population p with probability ρp,l that depends on the potentials of the neurons in this population defining a WTA

circuit where the neuron potential of some neuron j is given by u j =
N̄S
∑

i=1
ṡiθi j with θi j as the synaptic weight between

state neuron i and action neuron j.

The number of parameters is now given by Nθ =
NS
∑

o=1
|So|

NA
∑

p=1
|Ap| in comparison to the non-distributed case of parame-

terization given by Nθ = |S||A| =
NS
∏

o=1
|So|

NA
∏

p=1
|Ap|. Thus, similar to distributed actions, distributed state parameterizations

enable to deal with high-dimensional states and improve the generalization due to a further reduction of the number
of parameters. However, since parameters are removed that express how the partial policies react to states, it may also
result in a significant loss of expressive power similar to the incapability of single-layer perceptrons to learn the XOR
function.
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4.2 Training the SNN in an one-step MDP setting

In the following we will show different learning methods to train our SNN in a one-step MDP setting where the episode
ends after one step. Thus, only a single state-action pair (s, a) is encountered and only one reward r is received during
the episode which equals the return, i.e., R = r. The resulting learning rules can also be applied straight-forward in a
multi-step MDP setting with γ= 0.

4.2.1 Black-box methods

Due to the flexibility of black-box methods they can be applied directly to the parameters θ of the SNN without making
any further assumptions about aspects like the used activation function or the activity of the neurons that occurred during
the episode.

4.2.2 Likelihood ratio methods

The SNN can be trained with likelihood ratio approaches, if the used activation function is differentiable. For likelihood
ratio methods we assume that softmax is always used as activation function. REINFORCE leads to a simple update rule
for a one-step MDP given by:

∆θi j = α
∂ lnπ(s, a;θ )

∂ θi j
R (4.1)

In the following we write the potential of the active neuron that won the WTA competition in action population p as
|Ap |
∑

l=1
ȧp,lup,l and the population containing neuron j is denoted by p( j). By making use of softmax as activation function

∂ lnπ(s,a;θ )
∂ θi j

results in

∂ lnπ(s, a;θ )
∂ θi j

=
∂ lnπ(ṡ, ȧ;θ )

∂ θi j
=

∂ ln
NA
∏

p=1
π(ṡ, ȧp;θ )

∂ θi j
=

∂

∂ θi j
ln

NA
∏

p=1

ex p(β
|Ap |
∑

l=1
ȧp,lup,l)

|Ap |
∑

l=1
ex p(βup,l)

=
∂

∂ θi j
ln

ex p(β
NA
∑

p=1

|Ap |
∑

l=1
ȧp,lup,l)

NA
∏

p=1

|Ap |
∑

l=1
ex p(βup,l)

=
∂

∂ θi j
ln

ex p(β
N̄A
∑

l=1
ȧlul)

NA
∏

p=1

|Ap |
∑

l=1
ex p(βup,l)

=
∂

∂ θi j
(β

N̄A
∑

p=1

ȧlul −
NA
∑

p=1

ln
|Ap |
∑

l=1

ex p(βup,l))

=
∂

∂ θi j
β

N̄A
∑

p=1

ȧlul −
NA
∑

p=1

∂

∂ θi j
ln
|Ap |
∑

l=1

ex p(βup,l) =
∂

∂ θi j
β

N̄A
∑

p=1

ȧl

N̄S
∑

k=1

ṡkθkl −
NA
∑

p=1

∂

∂ θi j
ln
|Ap |
∑

l=1

ex p(βup,l)

= β ṡi ȧ j −
NA
∑

p=1

∂

∂ θi j
ln
|Ap |
∑

l=1

ex p(βup,l) = β ṡi ȧ j −
NA
∑

p=1

1
|Ap |
∑

l=1
ex p(βup,l)

∂

∂ θi j

|Ap |
∑

l=1

ex p(βup,l)

= β ṡi ȧ j −
NA
∑

p=1

1
|Ap |
∑

l=1
ex p(up,l)

|Ap |
∑

l=1

ex p(βup,l)
∂

∂ θi j
βup,l = β ṡi ȧ j −

NA
∑

p=1

1
|Ap |
∑

l=1
ex p(βup,l)

|Ap |
∑

l=1

ex p(βup,l)
∂

∂ θi j

N̄S
∑

k=1

β ṡkθk(p,l)

= β ṡi ȧ j −
1

|Ap( j)|
∑

l=1
ex p(βup( j),l)

ex p(βu j)β ṡi = β ṡi ȧ j −
ex p(βu j)

|Ap( j)|
∑

l=1
ex p(βup( j),l)

β ṡi = β ṡi ȧ j −ρ jβ ṡi = β ṡi(ȧ j −ρ j) (4.2)

Using equations 4.1 and 4.2 with α := αβ results in

∆θi j = αṡi(ȧ j −ρ j)R (4.3)

for the REINFORCE update rule.
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4.2.3 Distributed value function methods

If states and actions are non-distributed, i.e., if the state and action layers contain only one population each, the SNN is
equivalent to a discrete policy with lookup table parameterization. Such a policy is natural to be applied to a VF based
approach where each parameter is used to store a Q-value. However, we cannot apply VF methods if there are multiple
populations in the state or action layer. In order to make the SNN applicable to VF based ideas in case of distributed
states or actions, we will generalize VF methods. In the following we propose two different generalizations.

Distributed local value function method

In the first generalization each partial action ap is assigned a local Q-value Q(s, ap;θ ). These are used by the partial
policies to choose a partial action from the partial action spaces according to some action selection strategy. In terms
of our SNN we interpret the WTA based activation function used by the action populations as action selection strategy
and the neuron potential of the active neuron in action population p as an approximation of the local Q-value of the

corresponding partial action ap, i.e., Q(s, ap;θ ) = Q(ṡ, ȧp;θ ) =
|Ap |
∑

l=1
ȧp,lup,l , where

|Ap |
∑

l=1
ȧp,lup,l corresponds to the neuron

potential of the active neuron in action population p.
After receiving the return R = r, we try to update the local Q-value of the selected partial action ap in population p
according to Q(s, ap;θ ) := Q(s, ap;θ ) +∆Q(s, ap;θ ) with ∆Q(s, ap;θ ) = α(R −Q(s, ap;θ )). To realize this update for

all selected partial actions we minimize an error function given by E = 1
2

NA
∑

p=1
∆Q(s, ap;θ )2 by performing one step of

gradient descent w.r.t. θ , i.e.,

∆θi j = −ᾱ
∂ E
∂ θi j

= −ᾱ
∂ 1

2

NA
∑

p=1
∆Q(s, ap;θ )2

∂ θi j
= −ᾱ

∂ 1
2

NA
∑

p=1
(α(R−Q(s, ap;θ )))2

∂ θi j
= −ᾱ

∂ 1
2

NA
∑

p=1
(α(R−

|Ap |
∑

l=1
ȧp,lup,l))2

∂ θi j

= −ᾱ
∂ 1

2

N̄A
∑

l=1
ȧl(α(R− ul))2

∂ θi j
= −ᾱ

N̄A
∑

l=1

ȧlα(R− ul)
∂ α(R− ul)
∂ θi j

= −ᾱ
N̄A
∑

l=1

αȧl(R− ul)
∂ α(R−

N̄S
∑

k=1
ṡkθkl))

∂ θi j

= −ᾱαȧ j(R− u j)(−αṡi) = ᾱα
2ṡi ȧ j(R− u j). (4.4)

With α := ᾱα2 equation 4.4 results in

∆θi j = αṡi ȧ j(R− u j) (4.5)

as update rule for our distributed local value function method.

Distributed global value function method

Another value function approach can be motivated by assuming that we make use of softmax as activation function, that
is as action selection strategy. In this case the probability of a global action a in some state s is given by

π(s, a;θ ) = π(ṡ, ȧ;θ ) =
NA
∏

p=1

π(ṡ, ȧp;θ ) =
NA
∏

p=1

ex p(β
|Ap |
∑

l=1
ȧp,lup,l)

|Ap |
∑

l=1
ex p(βup,l)

=
NA
∏

p=1

ex p(β
|Ap |
∑

l=1
ȧp,lup,l)

Zp
=

ex p(β
NA
∑

p=1

|Ap |
∑

l=1
ȧp,lup,l)

Z
. (4.6)

The shape of the probability a global action in equation 4.6 gives rise to the idea to use global Q-values for global actions

with Q(s, a;θ ) =
NA
∑

p=1

|Ap |
∑

l=1
ȧp,lup,l , i.e.,

π(s, a;θ ) =
ex p(βQ(s, a;θ ))

Z
=

ex p(β
NA
∑

p=1

|Ap |
∑

l=1
ȧp,lup,l)

Z
.
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After receiving return R = r, we try to update the global Q-value of the selected global action according to Q(s, a;θ ) :=
Q(s, a;θ ) +∆Q(s, a;θ ) with ∆Q(s, a;θ ) = α(R−Q(s, a;θ )). To realize this update we minimize an error function given
by E = 1

2∆Q(s, a;θ )2 by performing one step of gradient descent w.r.t. θ , i.e.,

∆θi j = −ᾱ
∂ E
∂ θi j

= −ᾱ
∂ 1

2∆Q(s, a;θ )2

∂ θi j
= −ᾱ

∂ 1
2 (α(R−Q(s, a;θ )))2

∂ θi j
= −ᾱ

∂ 1
2 (α(R−

NA
∑

p=1

|Ap |
∑

l=1
ȧp,lup,l))2

∂ θi j

= −ᾱ
∂ 1

2 (α(R−
N̄A
∑

l=1
ȧlul))2

∂ θi j
= −ᾱα(R−

N̄A
∑

l=1

ȧlul)
∂ α(R−

N̄A
∑

l=1
ȧlul)

∂ θi j
= −ᾱα(R−

N̄A
∑

l=1

ȧlul)
∂ α(R−

N̄A
∑

l=1
ȧl

N̄S
∑

k=1
ṡkθkl)

∂ θi j

= −ᾱα(R−
N̄A
∑

l=1

ȧlul)(−αȧ j ṡi) = ᾱα
2ṡi ȧ j(R−

N̄A
∑

l=1

ȧlul). (4.7)

With α := ᾱα2 equation 4.7 this results in

∆θi j = αṡi ȧ j(R−
N̄A
∑

l=1

ȧlul) (4.8)

as update rule for our distributed global value function method.

4.2.4 Theoretical comparison of the methods for training the SNN

The update rules of REINFORCE in equation 4.3 and the update rules of the proposed distributed VF methods in equations
4.3 and 4.8 are learning rules of Hebbian type.
For the REINFORCE update rule the synaptic weight θi j can only change if ṡi = 1. However, in general the inactivity
of action neuron j does not prevent REINFORCE from modifying weight θi j[6]. Thus, REINFORCE cannot modify
parameters if they do not belong to the occurred state but it can modify parameters if they belong to the occurred state
but not to the occurred action.
According to the equations 4.3 and 4.8 the proposed distributed VF methods can only modify parameters if they belong
to the occurred state-action pair, i.e., if ṡi = 1 and ȧ j = 1 holds.
In contrast to these Hebbian learning rules, black-box methods do not take the neuron activities into account. Thus, they
may modify each synaptic weight at each update step regardless of the neural states.
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Figure 4.1: The proposed distributed policy based on a network of populations of stochastic spiking neurons (SNN). The
SNN consists of two layers, a state layer and an action layer. Both layers contain populations of neurons
representing partial states and partial actions each. For each pair of a state neuron i, 1 ≤ i ≤ N̄S , and an
action neuron j, 1 ≤ j ≤ N̄A, we have exactly one synaptic connection with weight θi j . There are no synaptic
connections between neurons in the same layer. In the above example each population contains exactly two
neurons. In each population exactly one neuron is active at one moment. This holds for all populations in
the state and layer action. To ensure this for the populations in the action layer winner-take-all dynamics are
employed. If the state and layer contain exactly one population each, the SNN is equivalent to a discrete basic
policy with lookup table parameterization. Thus, the proposed SNN is a spatially distributed generalization of
such a basic policy type.
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5 Experiments
In this section we evaluate the proposed spiking network on different learning methods and reinforcement learning tasks.
As tasks we chose two robot-arm tasks where the goal is reach a target with the end effector of the robot arm. The first
task is a one-step MDP, where no sequential decision-making is required and the second task is a multi-step MDP, where
the task can only be solved by executing a proper sequence of actions. The tasks are toy tasks and are supposed to give
us a first proper insight into the quality of our SNN and the corresponding learning methods.

5.1 Non-sequential 10-link robot arm task

In our first toy task we have a robot arm with 10 links connected by 10 rotational joints and the goal is to adjust the joints
such that the end effector hits a specified target. This task is modeled as one-step MDP where the episode ends after one
action was executed. In this task an action defines the absolute values q of the joints. After executing the action a reward
is received. The base of the robot arm is located at (0, 0) and the target to be reached is located at (10,0). Each joint can
take four different values qi ∈ θ ∈ {

π
2 ,π, 3π

2 , 2π}, 1 ≤ i ≤ 10. As topology of the network we have an action layer with
20 binary populations. Each joint value is encoded by the neural states of two binary populations.
The difficulty of this task lies in adjusting the joints to reach the target. In later tasks the difficulty of the tasks will
be increased as we change the complexity of the state space and the structure of the state layer for these tasks. The
reward is defined as the negative euclidean distance between the end effector and the target. This task is a basic task to
get first insights into the power of the SNN and the corresponding different learning methods but is still a well-defined
reinforcement learning problem. A visualization of the task is shown in figure 5.1.

5.1.1 Constant state

We start with a one-step MDP that has only one state which corresponds to a multi-armed bandit problem. Consequently,
we use a state layer that contains only one population with one neuron that is always active. As learning methods we
evaluate the CMA-ES black-box optimizer, REINFORCE and the two proposed distributed value function approaches. As
activation function we used softmax. For all experiments the synaptic weights are set to zero at the start of each run. As
hyperparameters we use the default setting for the CMA-ES method. The hyperparameters of the remaining methods are
given in table 5.1. These hyperparameter settings appeared to work best among the tested ones. For each method we
performed 10 runs with 25000 episodes each.
The results are shown in figure 5.2 in the top picture. The results show that the distributed global VF method outper-
formed all other methods significantly and was even able to find the global optimum, i.e., hitting the target, constantly.
The local VF method performed worse than the global VF method, but did also outperform the CMA-ES and the REIN-
FORCE method significantly. REINFORCE got stuck in a local optimum which can be accounted to the fact that it is based
on gradient descent. The CMA-ES method and REINFORCE performed equally. We also tried CMA-ES for a setting where
the incoming synapses of one neuron in each action population was removed and the corresponding potential of neuron
set to zero which allows for a reduction of the number of parameters by half without changing the expressive power of
the SNN. However, despite a small speed up of the optimization process the results were qualitatively the same.

α β

CMA-ES - 1.0

REINFORCE 0.005 1.0

VF, local 0.02 1.5

VF, global 0.02 2.5

Table 5.1: Hyperparameters of the different learning methods for the non-sequential robot-arm task with a constant
state.
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Figure 5.1: Visualization of the non-sequential 10-link robot arm task where the episode terminates after one step. The
goal is to adjust the joints such that the end effector reaches the target. In the top picture the joints are
adjusted poorly, since there is a huge distance between the end effector and the target. In the bottom
picture the end effector hits the target.
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Figure 5.2: Comparison of different learning methods for the non-sequential robot arm task with complex actions. In the
first case (top picture) we have a constant state and in the second case (bottom picture) we have a binary
state. In order to make the comparison easier we doubled the number of episodes for the task with a binary
state, since we have to learn a proper action for 2 different states in this case. Shown is the average of 10 runs
for each method. As we can see only the performance of the CMA-ES method decreases whereas the Hebbian
learning methods do not lose in performance.
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In another experiment for the same problem we also compared the activation functions softmax and ε-greedy for the
value function based approaches. The value function based approaches were chosen due to their dominant performance
in the previous experiment. The hyperparameter settings are given in table 5.2. As hyperparameter settings we used the
best ones we were able to find for the corresponding methods and activation functions. For each method we performed
10 runes with 25000 episodes each.

α β ε

VF, local, softmax 0.02 1.5 -

VF, global, softmax 0.02 2.5 -

VF, local, ε-greedy 0.001 - 0.03

VF, global, ε-greedy 0.001 - 0.03

Table 5.2: Hyperparameters of the distributed VF methods for the activation functions softmax and ε-greedy for the
non-sequential robot-arm task with a constant state.

Figure 5.3: Comparison of different activation functions for the two different distributed VF methods in the one-step MDP
setting. The softmax activation function outperforms ε-greedy significantly.

The results are shown in figure 5.3. We can observe that ε-greedy gets significantly outperformed by softmax as it gets
stuck at a bad solution and is not able to escape from there for both distributed VF methods. Even a low learning rate
used for ε-greedy was not able to circumvent this issue.

5.1.2 Binary state

In a more difficult setting we use an MDP with two states. The states are uniformly distributed. Depending on the state
the goal to be hit is either at position (−10,0) or at (10,0), that is the learned policy from the last experiment will not
work here, since hitting the location at (10,0) will lead to a very bad reward in half of all cases. To deal with such
conditions the state layer of our SNN is extended to a single population with two neurons, where the activity of the two
neurons depends on the MDP state. The used hyperparameters are the same as used in table 5.1. Since have to learn a
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joint configuration for twice the number of states we performed for each method 10 runs with 50000 episodes each.
The results are shown in figure 5.1 together with the results for the constant state and reveal that the performance in
comparison to the case with a constant state is basically the same for all methods except CMA-ES. This can be accounted
to the fact that, in contrast to all other methods based on Hebbian learning, CMA-ES modifies parameters even for states
that did not occur. This reveals a crucial problem of black-box optimization. We can assume that the performance gap
between CMA-ES and the Hebbian learning methods would increase even further with an increasing number of states. We
also tested CMA-ES for a setting with a reduced number of parameters, but as in the last experiment it had no significant
impact on the results.

5.1.3 Complex states

In this experiment we will investigate how well we can deal with states of high complexity which differs significantly
from the experiments done so far. For doing so we will only focus on the distributed global VF method with softmax as
activation function as it appears to work best for our SNN according to the results of the last experiments. This time we
have 220 states with a uniform distribution. To encode these states we make use of a distributed state representation
with 20 binary populations. Obviously, a single state population for encoding these states is not possible due to the high
number of states.
We will evaluate for four different cases where target to be hit is determined by specific state patterns. In the first case
the target location is constant and in the other three cases one out of two target locations is determined by a binary value
that depends on the current state. We will investigate how well we can deal these cases and show up crucial limitations
for our SNN. As hyperparameters we used α = 0.002 and β = 2.5. In order to avoid an unstable learning process with
multiple state populations we had to reduce the learning rate for these experiments. For each experiment we performed
10 runs with 50000 episodes each.

Constant target

In the first experiment for complex states the target is independent of the state and has a fixed location at (10, 0). We
want to investigate how fast we can learn a proper joint configuration that hits the target if complex random state patterns
are fed into our SNN that have no relation to the reward received for executing an action.
The resulting weight matrix of a single run is shown in figure 5.4. We can see that the second action neuron of each
population receives a higher weight than the first one for each (partial) state. For our used joint encoding this corresponds
to a qualitatively correct solution for this problem.

Binary target

In this experiment we have a binary target location either at (10,0) or at (−10, 0). The target location is determined by a
single bit specified by the first binary state population. The difficulty of this task is two-folded. On the one hand we have
to identify the bit, i.e., the state population that defines the target location and separate it from the remaining random
bits and on the other hand we still have to adjust the joints such that the endeffector reaches the target specified by this
bit. The resulting matrix of one run is shown in figure 5.5 and corresponds to a correct solution.
The resulting matrix is almost the same the matrix as in the last last experiment with the difference that the synaptic
weights between the two neurons of the first action population whose activity contributes to the adjustment of the base
joint and the neurons of the first state population that determines the target have very specific and dominant weights.
In fact the joint configuration for reaching the two different targets differs only in the adjustment of the first joint at the
base. The learning method is able to identify and to exploit this fact.

Binary target specified by OR function

This experiment is similar to the last one with the difference that the binary target location is specified by the result of
the boolean OR function applied to the bits given by the first two state populations.
The resulting matrix is shown in figure 5.6 and corresponds to a correct solution. Similar to the last experiment the
weights between the neurons of the first action population and the first two state populations have very specific and
dominant weights expressing that the first two state populations have a high impact on the base joint.
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Figure 5.4: Resulting weight matrix for complex states with a constant target location. The weights between the neurons
of each second action population and the neurons all state populations are higher then the remaining ones,
which corresponds to a correct solution according to our used encoding.

Figure 5.5: Resulting weight matrix for complex states with a binary target location specified by a single state population.
The weights between the neurons of the first action population contributing to the angle of the base joint
and the neurons of the the first state population specifying the target location have significant and dominant
weights.
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Figure 5.6: Resulting weight matrix for complex states with a binary target location specified by the boolean OR function
applied to the bits specified by the first two state populations. The weights between the neurons of the first
action population contributing to the angle of the base joint and the neurons of the first and second state
population specifying the target location have significant and dominant weights.

Figure 5.7: Resulting weight matrix for complex states with a binary target location specified by the boolean XOR function
applied to the bits specified by the first two state populations. The weights between the neurons of the
first four action populations contributing to the angle of the first two joints and the neurons of first two
state populations specifying the target location have significant and dominant weights. In contrast to the OR
specification of the target, in this case the state populations also have an impact on the second joint action
population due to the fact that the SNN cannot solve the XOR task properly.
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Binary target specified by XOR function

In this experiment the target is specified by the boolean XOR function applied to the bits given by the first two state
populations. The resulting matrix is shown in figure 5.7. In contrast to the last experiments this task cannot be learned
correctly, since the recognition of XOR patterns goes beyond the expressive power of our perceptron like SNN. As the
weight matrix in figure 5.7 shows there are not only significant weights for the neurons of the first action population but
also for the second and fourth population contributing to the first and second joint angles respectively. In fact the best
policy we can learn with our SNN for an XOR pattern can only hit one of the two target locations correctly. The other
target can only be reached closely but not exactly as shown in figure 5.9.

Comparison of the learning speed for the tasks with complex states

The results of the described tasks with complex states are shown in figure 5.8. As we can see the number of episodes
until convergence increases with the difficulty of the task. For all tasks except for the XOR task the learning process is
converging fast to a correct solution. For the XOR task the convergence gets significantly worse in comparison to the
other tasks and no correct solution can be found, since the SNN cannot identify XOR patterns correctly.

Figure 5.8: Comparison of the convergence for the tasks with complex states. The convergence for the XOR task is signifi-
cantly worse than for the other ones and no solution that hits the target in each case can be found due to the
limited expressive power of our SNN.

5.2 Sequential 10-link robot arm task

In this experiment we want to make use of the knowledge gained so far from the experiments with a one-step MDP
setting and use it for a more interesting sequential 10-link robot-arm task formulated as a multi-step MDP. In this task we
have a robot arm starting in some initial configuration and the goal is to produce a proper sequence of actions such that
the end effector moves through a two-dimensional grid world to hit a target without hitting any obstacle. A visualization
of this problem is shown in figure 5.10.
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Figure 5.9: Non-sequential robot arm task where the target to hit is specified by an XOR-pattern in the state string. It is
not possible to solve this task perfectly such that the robot arm hits the correct target depending on whether
the two bits determining the target are different or not. However, the learning method is still able to find
an almost optimal solution for the used policy, which is in fact the best solution that can be found with our
perceptron-like SNN. In this solution one target is hit correctly and the other one is almost hit as shown in the
picture above.

As before the robot arm has 10 links. In this toy task the actions are values ∆qi,t added to the current joint angles qi,t .
For each joint we have three possible values ∆qi,t ∈ {−

π
50 , 0, π50}, 1 ≤ i ≤ 10 that can be added to qi,t , which encoded

by two bits each. Thus, we can encode ∆qt with 20 binary action populations where each joint is assigned two binary
action populations as in the non-sequential robot arm task. Furthermore, for all joints except the basis joint we restrict
the corresponding joint angles to be in the interval given by qi,t ∈ [0,π], 2 ≤ i ≤ 10. The initial angle of each joint is
qi,t = 0. As states we use the grid cells as locations of the end effector and encode these by a single neuron population
in the state layer where each single neuron corresponds to a single grid cell. This is possible, since the number of grid
cells is not too high and furthermore we do not lose expressive power by using non-distributed state representations as
this can lead to serious problems as demonstrated in the XOR task.
For the rewards rt we use a distance measure dt to express how close the end effector is to the target and define the
rewards as the difference between the distance in the next step and the current distance, i.e., rt = dt−1 − dt . As distance
we use the minimum number of steps required to reach the target in the grid world assuming that we can only move up,
down, left or right. To compute the distance map we used a dynamic programming related approach and applied it until
convergence of the distances. A visualization of the resulting distance map is shown in figure 5.11. If the end effector
hits an obstacle a reward of rt = −10 is provided and the episode ends. Furthermore we do not use delayed rewards
with γ > 0, i.e., we use γ = 0. This reduces the variance of the returns, since Rt = rt holds and it makes our learning
methods that are based on the assumption of a one-step MDP easily applicable to a multi-step MDP. In fact our learning
methods cannot deal with delayed rewards at the current moment. An important property of the reward definition based
on relative distances is the resulting advantageous return distribution. Assuming that the end effector does not hit an
obstacle the return has approximately a mean of zero and a low variance, which is ideal to train our SNN that serves as
an actor. We still assume that the used reward function is powerful enough to guide the robot arm through the task.
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We performed 10 runs with 1000 episodes each and restarted the episode if the end effector hit an obstacle or the target
or if the number of episode steps reached 1000. Based on the results of the experiments for the one-step MDP we used
the distributed global VF method as learning method and softmax as activation function. For the hyperparameters we
chose a learning rate of α = 0.001 and an inverse temperature of β = 50 which appeared to work best. As before the
synaptic weights were initially set to 0.0. Assuming that no obstacle was hit this weight initialization now corresponds to
the average return received and not to the optimal return as before in the one-step MDP experiments.
The results are shown in figure 5.12 where the final negative distance to the target at the end of the episode is shown
depending on the number of episodes. As we can see there, the SNN is able to produce trajectories over time with
increasing reliability and the end effector gets in average very close to the target location without hitting obstacles and
in some episodes the end effector even hits the target for all runs. These results reveal a high performance for this
non-trivial task.

Figure 5.10: Visualization of the sequential 10-link robot arm task where the goal is to produce a proper sequence of
actions such that the end effector reaches the target(red cross) without hitting an obstacle(grey cells). The
initial joint configuration is shown in the top left picture.
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Figure 5.11: Visualization of the distance map for the sequential 10-link robot arm task. For each grid cell the distance to
the target is visualized. The distance is defined as the the minimum number of steps an agent has to move
up, down, left or right to reach the target without hitting an obstacle. Such a distance map can be computed
efficiently with dynamic programming related techniques.

Figure 5.12: Results of the sequential 10-link robot arm task where the negative distance to the target at the end of the
episode is shown depending on the number episodes. We performed 10 runs for this task and shown is the
average of all runs.
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Figure 5.13: Visualization of the weight matrix for a sample run of the sequential 10-link robot arm task. The actions
correspond to∆qt added to the current joint angles qt and the states corresponds to the grid cell containing
the end effector. The resulting matrices are shown for episodes 1, 10, 100 and 1000 beginning from top.
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6 Conclusion
In this thesis we proposed, motivated and evaluated a distributed type of policy based on a two-layered stochastic spiking
neural network (SNN). The motivation and derivation was done by generalizing a discrete basic policy with lookup table
parameterization to make its representation and dynamics consistent with the distributed and efficient working principle
of natural computation models given by neural networks and cellular automata. We showed that by doing so we are able
to overcome the curse of dimensionality such that we can deal with high-dimensional state and action spaces. Further-
more, we proposed two distributed value function based Hebbian learning methods to train the SNN from rewards in a
reinforcement learning setting.

We evaluated the SNN and the proposed learning methods together with state-of-the-art methods on a simple non-
sequential robot arm task with a non-complex state space and a complex action space. The used state-of-the-art methods
were CMA-ES as black-box optimizer and REINFORCE. We used a single state population and multiple action populations.
It turned out that the distributed global VF method in combination with the softmax activation function outperformed all
other approaches significantly and achieved a high performance. Plausible explanations why the state-of-the-art methods
were outperformed is the fact that CMA-ES as black-box method does not take the activity of neurons into account as
Hebbian learning methods do and modifies all parameters and REINFORCE is based on gradient descent and thus prone
to get stuck in local optima. Furthermore the most effective algorithms for simple bandit problems are value function
based[16, 17, 18] which translated to our generalizations of VF methods used to train our distributed policy based on a
SNN for more complicated MDPs.
Based on these observations we evaluated the SNN in combination with the distributed global VF method and the softmax
activation function on other non-sequential tasks. One of these was a task with complex states defining one out of two
possible target locations. Here the SNN had to use multiple state populations to deal with this problem. We investigated
how well we can deal with this task for different certain input patterns defining the target location. It turned out that
we were able to solve almost all of these tasks with a satisfying performance except for the XOR task where the SNN
had to react properly to XOR patterns. In the XOR-task we had a significantly worse convergence and we were not able
to solve this task correctly. Unfortunately, this reveals an important limitation of our SNN, i.e., the incapability of the
SNN to realize XOR mappings if multiple state populations are used due to the loss of expressive power. Since the usage
of multiple state populations is absolutely necessary for dealing with high-dimensional state spaces, our perceptron-like
two-layered SNN is in general not able to solve tasks like the XOR task. Consequently, the proposed SNN cannot deal
with high-dimensional state spaces in a reliable and satisfying way.
Based on the observations gathered from the one-step MDP experiments we also evaluated the SNN with the same
method and activation function on a sequential task where the goal was to navigate the end effector of a 10-link robot
arm through a two-dimensional grid world. We used a single state population that encoded the grid cell containing the
end effector, multiple binary action populations for the values ∆qt added to the joints qt and a simple reward function
based on the distance between the end effector and the target where we assumed instantaneous returns without delayed
rewards, i.e., γ = 0 and Rt = rt . It turned out that this was sufficient to solve this task with a high performance. In
summary we showed that our SNN and our learning methods can deal with complex actions, non-complex states and
non-delayed rewards. This was sufficient to solve a non-trivial sequential robot arm task with multiple degrees of free-
dom. However, at the current moment our learning methods cannot deal with delayed rewards which corresponds to
γ > 0 and our SNN can in general not deal with complex state spaces containing certain patterns in reliable way, as we
have shown for the XOR task.
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7 Future work
For future work we plan to extend the capabilities of our SNN and our learning methods to make it applicable to more
challenging tasks. This includes sequential tasks where it is not straightforward to define a simple but still admissible
reward function for the case of delayed rewards, i.e., γ > 0. Simple examples are the mountain-car problem, underac-
tuated pendulum swing-up and cart-pole. In these tasks we rely most certainly on delayed rewards where the discount
factor has to be greater than zero such that the reward definition can be kept easy, but still corresponds to a valid solution
of the task. Thus, we cannot solve these tasks at the current moment. To deal with delayed rewards we plan to extend
our learning dynamics with eligibility traces[41] as done in [1] where they were used to deal with delayed rewards in an
actor-only fashion. Additionally to this approach, we are also investigating actor-critic approaches. By making use of a
reliable critic, temporal difference errors can be used as simple and admissible rewards for the actor SNN without relying
on γ > 0 on the actor side.

Another class of problems we cannot solve at the current moment are tasks with complex state spaces. An example
for such a task is cart-pole where the state space comprises four continuous variables. Such a state space is already too
complex to be represented by a single state population. Thus, we rely on multiple state populations. However, this may
lead to a loss of expressive power in the sense that it would make us unable to solve the task, as the results for the XOR
task in the experiments demonstrated.
Two possible solutions to deal with the problem of losing expressive power for multiple state populations are currently
under investigation. The first one is the usage of alternative action encodings. The other possible solution closely related
to this idea is the extension of our SNN topology to a multi-layered topology similar to multi-layer perceptrons. Here we
would have additional layers of hidden units. These hidden units are binary populations of stochastic spiking neurons
that serve as action in one computation step and as state in the next computation step according to the processing flow
of a feed-forward network. A picture is shown in figure 7.1. In contrast to classic multi-layer perceptrons we would
use populations of stochastic spiking neurons for the hidden units instead of deterministic continuous neurons and train
them with our proposed generalized distributed VF methods resulting in reward-modulated Hebbian learning rules. This
would differ from typical approaches to train multi-layer perceptrons. Such approaches include black-box optimizers
and backpropagation. With our experiments we already found evidence that our learning rules outperform black-box
methods and REINFORCE, since black-box optimizers do not exploit the neuron activities as Hebbian learning rules do
and REINFORCE as a gradient descent method is prone to get stuck in local optima. The problem of getting stuck in local
optima is also an issue for backpropagation which is also based on gradient descent but uses analytic gradients instead
which makes it even more unlikely to escape from local optima, since no stochastic dynamics are involved. This is a main
reason why backpropagation relies on huge amounts of data to train networks effectively. Furthermore, backpropagation
suffers from the vanishing gradient problem in deep multi-layer networks. An extended multi-layered SNN trained with
the proposed distributed VF methods resulting in Hebbian learning rules would not suffer from these problems described
for the other methods. In particular, the problem of local optima can be tackled easily by adjusting the hyperparameters
to give more weight to an exploratory behavior rather than an exploitory. In result such a multi-layered SNN could
serve as a universal function approximator that could be trained with powerful reinforcement learning methods and
would be an alternative to MLPs trained with backpropagation. Additionally, it would also be an alternative approach
to the related framework in [5, 6, 7, 8] where semi-stochastic multi-layer networks are used that employ non-stochastic
continuous hidden units trained with backpropagation-like approaches. Thus, we could not only learn mappings from
perceptions to motor commands effectively with reinforcement learning but also other mappings like transitions, reward
functions or value functions.

In future we also plan to apply our methods to real robot systems. The sequential robot-arm task can also be done
with a real robot arm where the actions are real motor commands. In [2] it was already shown that a network consisting
of populations of stochastic spiking neurons can be trained from demonstration data to produce desired robot arm tra-
jectories while fulfilling certain constraints without relying on inverse kinematics. However, the approach still relied on
inverse dynamics. With our approach we would neither rely on inverse kinematics nor inverse dynamics. However, the
main problem would still be to find a proper reward function. This could be done by producing a three-dimensional grid
representation of the environment with an RGB-D camera and compute the distance to the target for each grid cell to use
these distances for a proper reward definition similar to the approach we used in our experiments. Another possibility
would be to make use of an actor-critic approach where the critic could be trained from demonstration data. For the
rewards we would use the temporal differences provided by the critic and train the actual actor with them. It is not
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necessary that the actor and the critic share the same state spaces. The state space for the actor or the critic can be based
on grid cells as we used it in our experiments for our actor SNN or it can be based on visual information. The actor and
the critic can both be realized with the proposed SNN and be trained from proper rewards. For a critic negative squared
temporal differences could be used as rewards, for instance. If the state space for the actor or the critic is based on visual
information it might also be possible to incorporate ideas of shared weights as used in convolutional neural networks to
speed up learning.

Figure 7.1: For future work we plan to extend the capabilities of our SNN such that it can learn complicated mappings like
the XOR function. The picture above shows a possible solution for this problem. The shown network is a multi-
layered feed-forward network with a single hidden layer consisting of binary populations of stochastic spiking
neurons. According to the processing flow, two computation steps are needed to compute the resulting
action for a given state. In the first computation step the hidden layer serves as action layer for the actual
state layer and in the second computation step the hidden layer serves as state layer for the actual action
layer. This network could be trained with our distributed VF methods in a general reinforcement learning
setting based on the activities of all neurons in the network. In particular, we would not rely on black-box
methods or backpropagation to train this network.
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