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Abstract

Autonomous navigation in a complex environment is essential for deployment in the real

world. Traditional navigation approaches assume the environment as static objects, resulting

in a non-reasonable behavior. Mobile robots should be able to cope with dynamic objects

as well as dynamic crowds. In this work, we present a continuous control for a skid-steer

drive wheeled mobile robot to navigate in a dynamic environment using the soft-actor critic

algorithm clubbed with a global planner. Here the mobile robot takes pose and a range vector

of 18-dimension from a 360-degree LIDAR sensor as input and gives continuous control

commands in the form of RPS as output. We divide our controller into the upper and lower

level controller. The lower-level controller uses the soft-actor critic algorithm, and the upper-

level controller uses the A-star global planner algorithm. The A-star algorithm takes OGM

(Occupancy Grid Mapping) data from SLAM in real-time and proposes a path consist of

via-point to the final goal point. The SAC based lower-level controller trained in a dynamic

environment, navigate towards the immediate via-point. Every time the robot reaches the

immediate via-point, A-star computes a new path based on OGM data. The use of a global

planner eliminates the need to use LSTM or RNN policies for the SAC based controller, thus

making training easy. The experiments have shown that the proposed controller can navigate

to the desired targets without colliding with any dynamic obstacles.
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Chapter 1

Introduction

This chapter provides a general introduction to the topic. Section 1.1 present motivation for

solving the navigation problem using reinforcement learning. Section 1.2 gives the back-

ground for this work. Then section 1.3 provides the objective of this thesis, followed by

section 1.4, which gives the contribution of this work.

1.1 Motivation

Today the world is moving towards automation. Moreover, in the case of automation, robots

are playing a huge role. Specifically, there are two types of robots- stationary and mobile. In

the latter case, navigation is the key component to solve the automation problem. We mainly

use AGVs (automated guided vehicle) on the industrial shop floor or warehouse. AGVs fol-

lows the laid physical guided path on the floor (wires, paint, tape) or a free-range path where

there is no physical guidance placed on the floor [1]. If we take the example of roads, there

are a set of traffic rules if followed accurately; the chances of an accident are scant. However,

until today, the traffic rules are followed by a human, which introduce a little uncertainty in

the environment. In all these edge cases, we use in-depth learning-based perception meth-

ods [2]. Nevertheless, we use these autonomous navigation systems in freeway where the
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Chapter 1. Introduction

chances of humans or animals as an obstacle are meager. Finally, if we take a scenario of an

indoor environment such as home, restaurant, or hospital, there is no set of rules for naviga-

tion for the robots and humans. Thus the factor of uncertainty increases [3]. The method like

SLAM based navigation is prevalent for the indoor environment only for the static world. The

SLAM based methods need a prior map of the environment for effective navigation. Also, this

method consumes time to build or update the map and act accordingly [4].

1.2 Background

Autonomous cars, unmanned rovers, drones, and so on are great examples of mobile robots.

According to their locomotion system, mobile robots are classified into various categories

such as stationary(arm/manipulator), land-based (wheeled, walking, slip/skid, hybrid), air-

based, water-based and other [5]. Amongst these, wheeled robots are easier for navigation

than using treads or legs on flat and non-rugged terrain. They are easier to design, build,

program, and there are no balancing issue [5]. Skid-steer drive locomotion is widely used

on tracked vehicles such as bulldozers and tanks. It is also used on many wheeled vehicles

such as four and six wheels [6]. The relative velocities of the left and right side wheels are

used to steer in a skid-steer drive vehicle. Thus, the slipping of wheels with respect to the

ground is required for turning [7]. This drive is energy inefficient due to the slipping with

respect to the ground, and controlling is difficult when compared with the differential drive

robot. Moreover, the tires wear out faster. However, with all the above shortcomings of the

skid-steer drive vehicles, it has higher maneuverability like a differential steering [8].

Mobile robot navigation is the most extensively studied problem in the field of robotics. It is

classified into three categories: global navigation, local navigation, and personal navigation.

For global navigation, prior information on the environment, obstacles, and goal are required.

It includes algorithms such as A*, Dijkstra, Artificial potential field method, and cell de-

composition [9] [10]. Local navigation is a reactive approach as it deals with the dynamic

2



Chapter 1. Introduction

objects in the environment and the position of the robot with respect to the other elements.

It includes algorithms such as Neural networks, Fuzzy logic, Neuro-Fuzzy, and the Genetic

algorithm [9] [10].

Neural network methods for local navigation includes Deep Learning (DL) and Deep Rein-

forcement Learning (DRL). Deep learning takes the labeled data and extracts the pattern for

navigation in that scenario. However, the robustness of the model depends on the quality and

quantity of the labeled data used for training. Moreover, it is painstaking to collect the labeled

data for all the scenarios in any environment, which makes DL unsuitable for solving the

navigation problem in many cases [11]. Nevertheless, DRL does not require labeled data for

learning. DRL learns from the experiences gathered by the interaction with the environment.

Thus, the agent collects all the edge cases and learns from those experiences [11].

Reinforcement learning is old and can be dated back to the early 1980s when it is famously

known as animal learning as the animal learns by doing trial and error. During that time,

there was another approach called optimal control, which was solved using value functions

and dynamic programming. The concept of dynamic programming given by Richard Bell-

man is famously known as the Bellman equation, which leads to the modern reinforcement

learning called temporal-difference learning [12]. Finally, in 1989 Chris Watkins developed a

Q-learning algorithm [13], which was able to solve the control problem consisting of discrete

action-space and tiny observation-space because of the limitation of the Q-table. Nonetheless,

it was a great achievement on its own as the agent was able to solve the task merely based

on the reward function without any information about the world. Reinforcement learning

again gained popularity in 2016, due to the breakthrough achievement in the neural network

and GPUs. DeepMind group was able to integrate Q-learning with the neural network for

estimating the Q-values called Deep Q-Network (DQN); thus, there is no need of Q-table.

The above achievements open a wide array of opportunities in terms of observation-space. In

2016, DeepMind showed an RL agent achieving human-level performance in playing Atari

2600 video games [14]. AlphaGo [15] was the second success of reinforcement learning in

3



Chapter 1. Introduction

2016. They developed an algorithm which combines the Deep reinforcement learning (DRL)

and tree search method to solve the game of Go, which was challenging to solve artificially

due to vast observation-space. The agent beats the world champion by 4-1, which is impres-

sive because the agent was initially trained on recorded amateur videos and later on learned

by playing against itself.

In reinforcement learning, we have either discrete or continuous action. In the case of discrete

action space, an agent can choose from a distinct set of actions, such as control modes, gear

switching, and so on. There is no need of a function approximator to find the optimal discrete

action. The major disadvantage of discrete action space is its inability to represent the agent’s

action-space accurately. In the case of continuous action space, the chosen action is a real-

valued vector, such as velocity setpoints, control gains, or analog outputs. It gives more

control to the agent to operate the system [16].

DQN is a value-based model-free algorithm. After the DQN achievements, the researcher

introduced a policy-based method which opens the domains for continuous action-space. The

policy is a function that takes states as input and output the desired action. The RL algo-

rithms can be classified into actor-only, critic-only, and actor-critic methods. The critic is the

value function and uses temporal difference learning to find the action leading to an optimal

value. The actor is the policy function that works with the parameterize policies on which

optimization procedure is applied directly [17]. The policy-based methods use a policy gradi-

ent approach that uses continuous action but with poor optimization. This leads to actor-critic

methods, which is the combination of actor and critic based approach, thus bringing the ad-

vantage of both the methods. Here the actor brings the advantage of computing continuous

action without the need for optimization because the critic evaluates the action by computing

the value function [17]. Several policy-based algorithms, such as Trust Region Optimisation

(TRPO) [18], Proximal Policy Optimization (PPO) [19], Asynchronous Advantage Actor-

Critic (A3C) [20] which are on-policy methods, require a new sample for every episode, that

makes these algorithms suffer from sample complexities.
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The issue of sample complexities is solved by using off-policy-based algorithms that uses

experience stored in the replay buffer, thus providing a wide range of uncorrelated data. A

commonly used off-policy gradient-based approach is Deep Deterministic Policy Gradient

(DDPG) algorithms. It removes the sample complexity issue, but it is challenging to imple-

ment due to its brittleness and hyperparameter setting [21]. Soft actor-critic (SAC) solves

the brittleness problem of these algorithms and also makes the entropy coefficient automatic.

It combines the standard maximum reward function with the entropy maximization term. It

uses a function approximator, a neural network trained to output the mean and variance of the

action. Thus, it allows the agents to be stochastic during training. It can take any action based

on the network’s output variance and be deterministic during policy evaluation by taking the

mean of the output action [22] [23].

Now coming back to the topic of navigation, an agent has to deal with two kinds of envi-

ronment. These are static and dynamic environments. An environment is static only if the

action of the agent modifies the environment; if the environment is changing without the

constant engagement of the agent, then it is a dynamic environment [24]. The static environ-

ment is easy as an agent’s constant interaction is not required; the agent can take its action

without looking to the environment and worrying about the passage of time. However, in a

dynamic environment agent’s constant interaction with the environment is required, the agent

has to worry about the passage of time, and no decision is interpreted as doing nothing. Thus

navigation in a dynamic environment is challenging because of the added uncertainty. Fur-

thermore, navigating for long-distance using local RL-policy is another challenging problem.

A task is long-range when a robot navigates to a considerable distance. The long-range nav-

igation task consists of two-part: finding a long-range collision-free path with via-points and

a local robot control capable of avoiding dynamic obstacles [25]. A local robot controller

uses sparse reward during training, which leads agents to the local minima, making the agent

either challenging to train or successful for short-range distances.

The deep reinforcement learning (DRL) algorithm requires constant interaction with the en-
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vironment to gather experiences for learning. Therefore, implementing this on real hardware

is very expensive and time-consuming. The solution to this problem is doing simulation first

and then transferring the model to the real world. V-REP by CoppeliaSim is a versatile and

scalable platform for doing robotics simulation. It is an integrated development environment

having support for ROS and can be controlled by C/C++, Python, Java, Lua, MATLAB, or

Octave. PyRep [26] 2019, which is a python library explicitly developed for reinforcement

learning. PyRep makes the environment 10,000x times faster than conventional Python APIs.

1.3 Thesis Objective

In light of the motivation and the background as discussed above, we summarize the thesis’s

objective: -

1. To train a policy for continuous control of a mobile robot for navigation in a dynamic

environment using a soft actor-critic RL algorithm.

2. To build a skid-steer drive four-wheel robot capable of doing online learning.

1.4 Contribution

In the background of the earlier work, the contribution of the thesis is summarized as follows:-

• We have proposed an approach for navigating in a dynamic environment for long-range

goals.

• We have found an approach based on lowering the action frequency makes the SAC

based agents learn faster.

• We have build a skid-steer drive four-wheel robot for doing online learning in the real

world.

6



Chapter 2

Literature Review

Path planning aims to find a sequence of actions that transform from a given initial state to

the desired goal state. The states are the agent’s location or position, and the actions are the

transition allowed between the states. The path found by the algorithm is optimal when the

sum of the transition cost is minimal across all the possible paths. A planning algorithm is

complete when it finds the optimal path in finite time and will let us know if it does not exists.

Thus planning a path can be categorized as search problem on graphs. The most famous

algorithms for calculating the least-cost paths are Dijkstra’s algorithm (Dijkstra 1959) and

A* (Hart, Nilsson, and Rafael 1968; Nilson 1980). Both algorithm return an optimal path

and are a particular form of dynamic programming (Bellman 1957) [27]. A*, on the other

hand, considers the most promising states, thus saving considerable computation time. In the

case of a dynamic world, the path generated by agent based on the initial information can

be invalid or suboptimal. Thus the agent needs to compute a new path based on the updated

information. However, it is computationally expensive to replan every time a new path from

scratch. [27].
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2.1 SLAM Based Navigation

Simultaneous Localization and Mapping (SLAM) problem arises when the robot has no in-

formation of its poses or the map of the environment. Thus in SLAM, a robot builds a map

of the environment while simultaneously localizing itself relative to this map. SLAM with

visual localization experiences a problem of illumination variance because places have differ-

ent appearances at different times of the day, months, and mostly along the seasons [28]. A

technique developed by Maddern et al. [29] and McManus et al. [30], transforms the images

to an illuminant invariant color space. Thus, intending to improve the performance for place

recognization in challenging illumination conditions. Jared Le Cras et al. investigates the

applicability of the color model. The idea is to separate the brightness from chromaticity to

eliminate the features and matches that may have occurred due to dynamic illumination [31].

The above problem occurs when static obstacles cast dynamic illumination, making localiza-

tion complicated. It becomes even worse when a dynamic object is casting dynamic illumina-

tion [31]. Another problem with SLAM is the Kidnapped robot problem. It is similar to the

global localization problem but more difficult to solve. Because in this robot believes that it

knows where it is, but in reality, it does not [32]. Another problem with SLAM is navigation

in dynamic environments because computational complexity increases in a dynamic environ-

ment [33]. Moreover, moving obstacles causes data association error, failure in landmark

detection, and failure in loop closure [34].

2.2 Deep-Learning Based Navigation

Due to the availability of computational power, researchers are shifting towards deep learning

to solve the navigation problem. Yann LeCun et al. used supervised learning to map the

outdoor data collected by the human driver on a vehicle using a two forward-pointing camera

8
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to a set of possible steering angle [35]. Another work from Lei Tai et al. and Chenyi Chen et

al. trained a CNN model to map the indoor data gathered from the stereo camera mounted on

the turtle bot to 5 discrete actions [36] [37]. But the control action in all these approaches are

discrete or high level like left and right

Chao Yu et al. purposed the DS-SLAM approach, which combines semantic segmentation

network with moving consistency check to separate the dynamic section of the scene such

as moving objects to improve the localization accuracy in SLAM. The algorithm runs five

threads in parallel to do semantic segmentation, tracking, loop closing, local mapping, and

dense semantic map [38]. Another approach called ML-RANSAC introduced RANdom-

SAmple Consensus (RANSAC), which used MTT (multi-target tracking) to detect features

and to differentiate dynamic from static objects. It was clubbed with the Extended Kalman

filter (EKF) to fuse the LIDAR and vision sensor to detect object and depth information [39].

But still, deep learning approaches are limited to the quality and quantity of data and suffers

from the generalization [40].

2.3 Deep Reinforcement Learning Approach

Deep reinforcement learning has a significant application in control tasks in robotics [41].

Christopher J.et al. [13] showed Q-learning converges to the optimum action-value when all

the action-values are discrete. Lv Qiang et al. built an end to end solution for navigation

in a static environment. He used a turtle bot equipped with a lidar sensor as input to the

model, and the output actions were divided into 5 different actions. They have shown that

their approach outperforms the traditional navigation method Dijkstra’s algorithm clubbed

with the local planner dynamic window approach [42]. Yang Liu et al. used q-learning

with OS-ELM (online sequential extreme learning machine), which improves the efficiency

and speed of Q function approximation [43]. Lei Tai et al. used the DQN framework with

a raw image from the RGB-D camera as an input to the CNN policy, which gives discrete
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action to the robot. They tested their approach in an indoor environment. The test result

demonstrated that their method outperforms the controller from supervised learning. Also,

their model trained on simulation image performs directly in the real world [44]. Jingwei

Zhang et al. proposed a successor-feature-based DRL algorithm to transfer learning from

the learned model to a fresh one. They used an improved version of DQN called SF-RL

(Success Feature Reinforcement Learner) with discrete action-space [45]. Another work from

Shumin Feng et al. used different DRL methods such as DQN, DDQN, and DDQN-PER with

discrete action-space in a static environment shows that DDQN-PER performs better in a new

environment than DQN and DDQN [46]. Xiaogang Ruan et al. showed effective navigation

using Dueling DQN, Double DQN, and D3QN (Deep Double DQN). The input is a single

RGB-D image, and the action-space is discrete, D3QN perform better than Dueling DQN and

Double DQN [47]. Gregory Kahn et al. proposed an R.L. algorithm based on generalized

computation graphs. The generalized computation graph encompassed model-free methods

and model-based methods and was trained as a supervised learning problem. The algorithm

is capable of learning from the raw depth image as input and is sample efficient. They have

shown that their algorithm outperforms the N-step double Q-learning approach [48].

A3C is an asynchronous variant of A2C reinforcement learning algorithms. It has shown the

stabilizing effect by making the actor parallel during training. It runs the parallel instances

of the same environment, thus making learning fast [20]. Research from DeepMind showed

navigation in a static environment with a single depth image as input. They used the A3C

algorithm with the LSTM policy. The action space is discrete. They have shown that their

approach reaches human-level performance even under conditions where the goal location

changes frequently [49]. Yuke Zhu et al. used a similar approach as done by DeepMind, but

their policy takes goal and current state as input, which leads to generalization. The action

space here is also discrete. They trained their network on their AI2-THOR, which gives high-

resolution 3D scenes making learning easily transferable to real hardware. They have shown

that their approach converges faster than the state of the art DRL methods [50]. Similar work

10
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from Matej Dobrevski et al. [51] for mobile surface robot and Yushan Sun et al. [52] for

the underwater vehicle used an actor-critic framework for navigation in a static environment

with discrete action-space. Michael Everett et al. used A3C with collision avoidance based

on social norms [53] called the GA3C-CADRL algorithm. They used the LSTM policy with

a discrete action-space. The LSTM policy made the algorithm to take observation of other

agents, instead of fixed observation size. The proposed algorithm outperforms the vanilla

A3C algorithm in dynamic environment [54].

Research work from Aleksandra Faust et al. from Google Brain showed an approach of

combining the Probabilistic Roadmaps algorithm with reinforcement learning (PRM-RL) for

long-range navigation tasks. They used the DDPG (Deep Deterministic Policy Gradient) al-

gorithm with continuous control action for the static environment. They used a 220° LIDAR

sensor combined with a relative robot position with the goal as input states. They have shown

that their PRM-RL approach completes up to 215m long trajectory in the indoor environ-

ment. Taiping Zeng used Proximal Policy Optimization (PPO) with continuous state and

action space. A static environment without any obstacle is used for testing the algorithm [55].

Another research work from Lei Tai et al. used the DDPG RL algorithm with a 10 dimension

LIDAR sensor as input state and continuous action-space. The robot successfully navigates

in a static environment without colliding with the obstacles [56].

2.4 Research Gaps

We found that most of the work in mobile robot navigation using reinforcement learning

solves the navigation problem in discrete action-space in a static environment. There are some

research work implementing continuous action-space but in a static environment. Following

are the research gaps we found in this domain: -

• We didn’t find any work using continuous action for mobile robot navigation in the

11
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dynamic environment.

• We found improvement in the RL algorithm by implementing LSTM policies. Consid-

ering the advantage of LSTM policies, it will be interesting to see the improvements it

will bring on the recent off-policy based soft actor-critic algorithm.
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Chapter 3

Problem Statement and Approach Overview

3.1 Problem Statement

Given

1. The relative position (x,y) of the mobile robot with respect to the goal see figure 3.1.

2. The orientation α of the mobile robot with respect to the goal along the LOS see figure

3.1.

3. A range vector from a 360° 2D lidar sensor.

4. The previous actions of the mobile robot are used as encoder values.

5. The continuous action of the mobile robot as angular velocity ω of each wheel.

The thesis’s objective is to train a policy π(at |st) using a soft actor-critic algorithm for con-

tinuous control of skid steer wheeled mobile robot for navigation in a dynamic environment.

13
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Figure 3.1: Orientation of Robot with respect to the Goal

3.2 Approach Overview

To solve the objective enlisted section 3.1. We employed the following steps: -

1. We first train the agent in the simulation environment with no obstacles to find the best

performing observation-space and action-space.

2. After this, we formulate the collision penalty function and reward function for the agent,

to train it in the static environment.

3. Then we increase the environment’s complexity by introducing pedestrians and pro-

viding the stack of four observations to deal with the moving objects as they imply

time-dependent decisions.
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4. Since for indoor navigation task, we deal with the sparse rewards, especially over the

long-range navigation over the challenging environment. Sparse reward makes the

agent either challenging to train or prone to local minima [25]. To solve this, we inte-

grate a global planner A* with the local SAC based RL policy.

The steps mentioned above are explained in detail in chapter 4.
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Chapter 4

Environment and Setup

This chapter discusses the environment and setup used for the experimentation. Section 4.1

discusses the PyRep library for V-Rep specifically developed for Reinforcement Learning.

Section 4.2 shows the static and dynamic environment. Section 4.3 discusses the MDP for-

mulations. Section 4.4 shows the implementation results of the various MDPs. Section 4.5

discusses the first Approach and its limitations. Section 4.6 discusses the Final Proposed

Approach for this work.

4.1 PyRep

V-REP (Virtual Robotics Experimentation Platform) is a versatile platform for the rapid pro-

totyping of robots. It has the built-in physics engine Bullet, ODE, Newton, and Vortex and

a set of customizable robot building interface [57]. However, although it is controllable by

using several API, including python API, the data collection is very slow in vrep. Thus, it

restricts the vrep to be used for large scale data collection applications [26].

Modification: -

The 6 remote API usually suffer from 2 communication delays. One of these delays is the
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socket communication delay between the remote API and the simulated environment. The

second delay and the most notable one is the inter-thread communication delay, which is

significant when the python script needs to modify the state in a vrep simulated environment

during learning. To alter this latency, the author changes the base code of the vrep and offers

direct control of the vrep simulation loop to python API, thus making the simulation 10,000x

faster [26]. We built our learning environment in V-REP with OpenAI GYM as the backend.

A dynamic environment is shown in Figure 5.1

Figure 4.1: A skid steering wheeled robot consisting of a 360-degree LIDAR sensor. It is

one of the dynamic environment designed on V-Rep, which is simulating a restaurant scenario.

Here humans are the moving obstacles.
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4.2 Environment

(a) (b)

Figure 4.2: Figure (a) shows Env-1, consisting of static obstacles with two rooms with a

narrow door connecting both rooms. Figure (b) shows Env-2, which simulates a restaurant

scenario with static obstacles such as tables, chairs, poles, and plants. This environment also

includes 5 pedestrians.

We built two environments on vrep controlled by pyrep for the agent to train its policy. Our

first environment is one with static obstacles. For the static obstacle, we used all the pure

shapes available to us in vrep. Apart from that, we also used standard furniture as static

obstacles. The scene consists of 2 rooms connected by a door. The idea of introducing a door

in the scene is to enable the agent to navigate in the narrow passages. This idea also leads us

to formulate the collision penalty function explained in the later section.

Our second environment is one with moving obstacles. For that, we introduced pedestrians to
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our environment. These pedestrians are not following any social norms for interacting with

the world; they are just walking randomly. Our scene mimics the restaurant scenario as it

consists of chairs, tables, pole, and plants as static obstacles.

4.3 MDP Formulation

An MDP is typically defind by a 4-tuple (S,A,R,T)

where,

S is the state/observation space of an environment.

A is the action space for the agent.

R(s,a) is the reward function which compute the reward for the action a in state s.

T(s’|s,a) is the transition probability from state s to s’ by taking an action a.

Here, our goal is to find a policy π that maximize the expected future (discounted) reward.

4.3.1 State/Observation Space

Here in V-Rep currently we have 3 state-space combinations for experimentation.

• Relative distance of the robot with respect to the goal with the encoder values

The state-space is :-

state space = (x,y,α,e1,e2,e3,e4) (4.1)

where,

x is the relative distance of robot in x-axis with respect to the goal
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y is the relative distance of robot in y-axis with respect to the goal

α is the orientation of robot with respect to the goal shown in Fig 3.1.

e1,e2,e3,e4 are the encoder reading(angular velocity) of the wheels.

• Relative distance of the robot with respect to the goal and orientation as sine and

cosine with the encoder values

The state-space is :-

state space = (x,y,sinα,cosα,e1,e2,e3,e4) (4.2)

• Relative distance of the robot with respect to the goal with the previous action as

encoder value

Here the previous action taken by the robot is the present state of each wheel. Thus

using this data as the state space for each wheel will help eliminate the need for the

encoder in our robot. The state-space is:-

state space = (x,y,sinα,cosα,e1,e2,e3,e4) (4.3)

4.3.2 Action Space

In reinforcement learning, we have either discrete or continuous action. In the case of discrete

action space, an agent can choose from a distinct set of actions. There is no need for a function

approximator to find the optimal discrete action. The major disadvantage of discrete action

space is its inability to represent the agent’s action-space accurately. In the case of continuous

action space, the chosen action is a real-valued vector and gives more control to the agent

to operate the system [16]. Therefore in this work, we have investigated the application of
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continuous action space for navigation in a dynamic environment.

We selected two types of action space; for characterization, we named it coupled and decou-

pled action space. In decoupled action-space, the action of each wheel is independent of each

other. This action-space is used in all the previous work. The second action-space we con-

sidered is coupled action-space, where the actions are shared with each wheel. Following are

the action-space: -

• Action Space-1 (Decoupled action space): - This is the simplest one where each ac-

tion is the angular velocity of each wheel. Wheels at each side have given the same

velocities. Thus we have only 2 continuous actions with a range from -5, 5. The action

space is:-

action space = (action1,action2) (4.4)

• Action Space-2 (Coupled action space): - In this, the combination of A1 and A2 have

given to each wheel.

Figure 4.3: Combination of continuous actions provided to the robot

Thus for forward or backward motion, only A1 action is needed, and for rotation about
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CG, only A2 action is required.The action space is:-

action space = (A1, A2) (4.5)

where,

A1 +A2 and A1−A2 are the continuous action for the left and right side wheels respec-

tively ranging from -5, 5

4.3.3 Reward Functions

There are various reward functions used for the training the policy.

1. The negative L2 norm between robot and goal

Reward f unction =−
√

x2 + y2 + rterminal (4.6)

where,

x and y are the relative distance between goal and robot

rterminal = 10000, when goal is reached

rterminal = 0, otherwise

2. The negative L2 norm between robot and goal with action penalty and smoothness

function.

Reward f unction =−
√

x2 + y2−∑(A)− (A− prevA)
2 + rterminal (4.7)
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where,

x and y are the relative distance between goal and robot

∑(A) is the action penalty to stop agents to take high action every time.

(A− prevA)
2 is the smoothness reward which gives penalty for every sudden action.

4.4 Implementation

1.

Setup

State Space (x,y,α,e1,e2,e3,e4)

Action Space (action1,action2) || Decoupled Action-Space

Reward Function −
√

x2 + y2−∑(A)− (A− prevA)
2 + rterminal

Figure 4.4: It is showing the overall Reward function trajectory computed for 2000 episodes.

Here, the agent started learning after 500 episodes, but the policy is not stable due to discon-

tinuity in orientation data at (0 and 2π), making the policy unstable.

The above problem of discontinuity at (0 and 2π) is solved by using sine and cosine

function as the sinusoids are continuous and periodic in the domain (0 to 2π). Thus
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they represent a unique Euler angle and removes the discontinuity.

π

2
π 3π

2

−1

−0.5

0.5

1
sin
cos

Figure 4.5: Plot of sinusoids, which represent the euler angle in continuous form.

2.

Setup

State Space (x,y,sinα,cosα,e1,e2,e3,e4)

Action Space (action1,action2)||DecoupledAction−Space

Reward Function −
√

x2 + y2−∑(A)− (A− prevA)
2 + rterminal

Figure 4.6: It is showing the overall Reward function trajectory computed for 2000 episodes.

Here, the agent started learning after the 170th episode, but the policy is not stable due to the

decoupled action space.

24



Chapter 4. Environment and Setup

3.

Setup

State Space (x,y,sinθ ,cosθ ,e1,e2,e3,e4)

Action Space (A1,A2)

Reward Function −
√

x2 + y2 + rterminal

Figure 4.7: It is showing the overall Reward function trajectory computed for 2000 episodes.

Here, the agent started learning after the 120th episode, and the policy got stable after 1550

episodes.

Following are the observation made from the above experiments: -

1. We found a discontinuity at 0 and 2π of the robot’s orientation angle with respect to

the goal. This discontinuity was solved by using sine and cosine of that angle in the

observation-space.

2. We found that the policy using decoupled action is inferior to one using coupled action.

25



Chapter 4. Environment and Setup

4.5 Approach-1

Considering the above observation, we came up with our first approach. We used the policy

learned in the previous experiments and trained them in a static and dynamic environment.

4.5.1 Observation Space Definition

Now the complexity of the environment has been increased by introducing pedestrians. Mov-

ing objects imply time-dependent decisions; thus, we gave a stack of four observations at

different time steps to the agent. The stacking of observation simulates an optical flow. We

used the Deque stack and kept the last three observations in a stack. It removes the oldest

observation when a new one is added.

Observation Space:- [(x,y,sin(α),cos(α),E,X)t ,

(x,y,sin(α),cos(α),E,X)t−1,

(x,y,sin(α),cos(α),E,X)t−2,

(x,y,sin(α),cos(α),E,X)t−3]

where,

x, y is the relative distance of robot w.r.t goal.

E is the vector of previous action of the robot.

X is the 18-dimension vector of LIDAR ranges.

α is the orientation of robot w.r.t goal shown in Fig 3.1.

The robot does not have any encoders; thus, we use the robot’s previous actions as the input

to the observation space. The LIDAR is a 360°sensor that provides 360 data points. We used
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only 18 data points from LIDAR to reduce the dimensionality of the observation space. These

points are minimum range values between 20°interval throughout the 360°, shown in Fig 4.8.

Figure 4.8: Showing selection of 18 points from 360 available data points

4.5.2 Action Space Definition

It is continuous action space which is the RPS values i.e. [A1,A2] ranging from [-5, 5] which

then provided to the robot as a combination of RPS of each wheel i.e. a1 = [A1 +A2],a2 =

[A1−A2] shown in Fig 5.3. We found that the combination of action makes the learning faster,

which is intuitive as only action A1 is required to move forward or backward and to move left

or right combination of A1 and A2 is required.

4.5.3 Reward Function Definition

There are two conditions for the reward function i.e., the reward for reaching and not reaching

the goal.
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r(st ,at) =

−α1(dt)+α2rc + rterminal i f dt ≤ thd

−α1(dt)+α2rc i f dt > thd

(4.8)

where,

dt =
√

x2 + y2 (4.9)

rc←− rc−
a

1+ eb.X[i]
(4.10)

The eq 4.9 is the L2 norm or distance penalty between the robot and the goal. The eq 4.10

is the collision penalty, which is similar to the sigmoid function. We found that it is tough to

train the robot to navigate through the narrow passage when considering the equal collision

penalty of all the sides. In reality, only the front and the back collisions are dangerous when

compared to side collisions. Thus in order to regulate the collisions penalty constant a and b

are changed. If a ↑ and b ↓, then collision value increases and vice-versa. We used a > b for

front and back values of lidar ,and a < b for left and right side lidar values. If the dt , i.e., the

distance between the goal and robot is less then the threshold, then a terminal reward rterminal

is added.

4.5.4 Limitation

• Problems: -

1. The agent learns, but soon the policy shifts from the expert to the worst, shown in
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Figure 4.9. The obtained policy is very stochastic.

2. The obtain policy is unstable in a dynamic environment and takes a long time to

navigate.

3. Especially in a Dynamic Environment, the agent struggles to navigate for long-

distance. The maximum it traveled is 3-4 meters.

Figure 4.9: Limitation of the proposed approach

• Solution: -

1. There is a trade-off between the total reward and entropy. SAC tries to maximize

both entropy and reward, but it leans towards the quantity with a higher value.

This was solved by making a reward quantity higher in amount than entropy.

2. Still, there is a brittleness in SAC in a very uncertain environment. This was solved

by making the action frequency lower.

3. We integrate a global planner which acts as an upper-level controller; it finds an
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optimal path based on the available information. The optimal path is divided into

via-points at an interval of 4 meters. Then the local planner takes the immediate

via-point as its goal and navigates. This helps the agent to travel for long-distance.

4.6 Final Proposed Approach

By applying all the solutions to the approach-1 and integrating global planner, we got our final

approach. For the policy, we used a dense neural network of three layers of size 512, 256,

128. We used Stable-Baselines implementation, which uses RELU as an activation function.

The policy takes observation space consisting of relative distance with sine and cosine of the

robot’s orientation with respect to the goal, and a vector of range data from lidar as input and

gives deterministic continuous action as output. The entropy coefficient is equivalent to the

inverse of the reward scale in the original SAC paper and is set at auto to learn it automatically.

Doing this avoids having too high errors when updating the Q functions.

We divided our controller into the upper and lower level controller. The upper-level controller

is based on a global planner; for this, we used the A* algorithm. The A* algorithm works

online, which means it does not need a complete saved SLAM map. Based on the initial OGM

(Occupancy Grid Mapping) data from the Hector-SLAM algorithm, the A* finds a global path

to the goal point. The unknown grids in OGM data were considered a free grid or obstacle-

free. It gives a path consisting of via-points placed 4-meters apart. The lower level controller

takes the first via-point as a virtual goal point. The lower level controller, which is the trained

policy using the SAC algorithm, navigate the robot towards the given virtual goal point. When

the distance between the virtual goal point and the robot is less than the set threshold, the A*

takes the new OGM data and finds the new global path and then gives the first via-point as a

virtual goal to the lower level controller until the final goal point is reached. The flow chart

of the proposed approach is shown in Fig 4.10.
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Figure 4.10: It is the flow chart of the proposed approach. It shows an Upper-level con-

troller based on A-star and a Lower-level controller based on the trained policy on the SAC

algorithm. The red dots are the via-points generated by the A* algorithm.

4.7 Experiment

The training of the policy is done in the simulation environment created in the V-REP. We

trained our policy on two environments, as shown in Fig 4.2a. Env-1 is a static environment

that consists of a wide variety of shapes as static obstacles. The robot’s goal is the cylinder,

which cannot be rendered by the laser sensor mounted on the robot. The static obstacles

change their position in every episode randomly to get a generalized policy. It is taken care

that the goal point and the location of the obstacles did not overlap with each other. Env-1

consist of two rooms connected by a narrow door. The environment also includes tables with

thin legs, which makes it challenging for a low-cost LIDAR sensor. Env-2 is the dynamic
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environment replicating a restaurant scenario with chairs, tables, poles, and plants with ran-

domly walking five pedestrians, as shown in Fig 4.2b. Pedestrian did not follow any rule, thus

making the environment very challenging.

The learning rate for all networks is set at 0.0001, and the hyper-parameters of the reward

function were set trivially. The buffer size is 50000, batch-size is 128, and the gamma is

0.995. We trained the model from scratch on Env-1, i.e., for static obstacles and transferred

the learning from the Env-1 to Env-2, i.e., environment with dynamic obstacles with an SGD

optimizer on a single Nvidia GeForce GTX 1060 3GB with an Intel Core i5-8400 CPU @

2.80GHz 6-core processor.

4.8 Result

(a) (b) (c)

Figure 4.11: Figure4.11a shows the training curve for the static environment. The agent

learned the policy in 1000 episodes. Also, learning is not stable. Figure 4.11b shows the

training curve for the same static environment with lower action frequency. The effect of low

action frequency improved the learning speed and made the policy more stable. The agent

learned in 100 episodes. Figure 4.11c shows the training curve for the dynamic environment.

The agent used the previous model trained on the static environment and learned the policy in

70 episodes.
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Figure 4.11 shows the training curve for a static and dynamic environment. Each episode has

800 time-step, with each time-step taking 0.2 seconds after lowering the action frequency,

which helps stabilize the learning. It is found that with the default action frequency of around

20Hz makes the learning unstable and slower. We decrease the frequency to 5Hz, which

makes a big difference in learning. This makes the policy stable and 10x times faster than that

based on default frequency. Fig 4.11a shows the unstable learning curve under default action

frequency, which is improved by lowering the frequency, which is shown in Fig 4.11b for

the static environment. We tried to train the policy from scratch for a dynamic environment.

However, the agent did not learn anything, so we transferred the previously learned model to

the dynamic environment. We got a stable policy in just 70 episodes, which is shown in Fig

4.11c.

4.9 Evaluation

(a) (b)

Figure 4.12: Frame grabs from evaluation video showing the path followed by the agent to

achieve the goal.
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(a) (b)

Figure 4.13: It is showing the comparison of different controllers. Fig 4.13a shows the

controller based on the RL policy, which fails to achieve the goal. Fig 4.13b shows our

proposed controller, which is based on a global planner that is the upper-level controller and

lower-level controller based on RL policy.

We evaluated the learned policy; the frame grab of the path traveled by the agent in a static

environment is shown in Fig 4.12a. The agent traveled a distance of 9.5 meters in 72 seconds

without colliding with the obstacles. Obstacles were in a different position in evaluation than

in the training environment. Click on this Static World Video.

Figure 4.12b shows the frame grab of the path traveled by the agent in a dynamic world. The

agent achieved the goal place at 4 meters in 20 seconds without colliding with pedestrians

who are moving randomly. Click on this Dynamic world video.

Figure 4.13 shows the comparison of different controllers for the long-range. The controller,

based on RL policy failed to achieve long-range goals in a dynamic world. It may be because
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we are not using any LSTM or RNN policy, or policy got stuck in local minima.Click on this

Controller failed video. This problem is solved by our proposed approach, which consists of

a global planner as the upper-level controller, which gave via-point to the policy, which is the

lower-level controller. The purple dots in fig 4.13b were the via-points. We found that our

proposed controller for a similar goal position covers a distance of 8 meters in 36 seconds

without any collision. Click on this Long-range controller video.
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Chapter 5

Assembly of skid-steer drive wheeled robot

Skid-steer drive locomotion is widely used on tracked vehicles such as bulldozers and tanks. It

is also used on many wheeled vehicles such as four and six wheels [6]. The relative velocities

of the left and right side wheels are used to steer in a skid-steer drive vehicle. Thus, the

slipping of wheels with respect to the ground is required for turning [7]. This drive is energy

inefficient due to the slipping with the ground, and controlling is difficult when compared

with the differential drive robot. Moreover, the tires wear out faster [8]. However, with all

the above shortcomings of the skid-steer drive vehicles, it has higher maneuverability like

a differential steering. Here more wheels make a robust structure than a differential drive

vehicle, which makes enough room for circuit and sensors [8].

Seeing the advantage of maneuverability and robustness, we assembled a four-wheel skid-

steer vehicle. Its Chassis is made up of ABS with a dimension of 266 mm x 230 mm. We

used wheels of 110 mm in diameter. Figure 5.1 shows the dimension of the robot.
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Figure 5.1: Dimension of the robot

5.1 Torque Calculation and Motor Selection

Assumptions:-

1. The maximum acceleration of the robot at maximum load is 0.5m/s2.

2. We took a motor efficiency of 60%.

3. The calculated torque is 1/4th of the actual torque.

Radius of the wheel = 0.055 m

Number of drive wheels = 4

Maximum Load = 4 kg

Thus,

Calculated Torque = weight×acceleration×radius
Number o f drive wheel

Calculated Torque = 4×0.5×0.055
4 = 0.0275Nm
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Taking Motor efficiency of 60%.

Calculated Torque = 0.0275
0.6 = 0.0458Nm

Since calculated torque is 1/4th of the actual torque.

Actual Torque = 0.0458×4 = 0.188Nm

Motor Selection:- Since the actual torque required is 0.188 Nm for a load of 4kg with a

maximum acceleration of 0.5m/s2. We selected a dc motor with a stall torque of 3 kgf-cm,

i.e., 0.294 Nm with an RPM of 624. We selected a motor with a higher rating to consider all

the factors not taken in assumptions. This motor has an operating voltage of 3∼12 V with

its no-load current value of 0.19 A. The weight of the motor is 82 grams, which makes this

motor lightweight considering the load capacity of the robot.

5.2 Selection of Development Board

As we aim to build a platform capable of doing online learning in the real world, we need

a board that has a powerful CPU and GPU. The board also requires to be power-efficient

as the objective is to build a mobile platform. Therefore we selected Nvidia AGX Xavier

development board as it features an NVIDIA VOLTA 512 core GPU with 64 tensor cores

and a 64-bit ARM-based eight-core CPU. In addition to this, it consists of a dedicated chip

for accelerating deep learning programs coupled with 16GB RAM and 32GB eMMC flash

memory. The boards have their custom Ubuntu OS which is capable of running ROS and

almost all arm based python libraries. The board has three power modes to choose from, i.e.,

10 watts, 15watts, and 30 watts. Thus based on the processing requirement, different modes

can be selected, which makes it power efficient.

Power supply:- We selected a LiPo battery of capacity 5000mAh 14.8 V with a constant

discharge of 20C. Thus the maximum discharge rate of the battery is: -

Discharge rate = 5000×20
1000 = 100 Ampere constant discharge rate
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Thus, we can only draw a maximum of 100 A current from the battery. We have used a voltage

regulator to eliminate the surge in power for the safety of the board. Also, we have stepped

down the voltage to 12V. Considering Nvidia board to run at 30 watts with 12 V supply we

need a current of 2.5 A.

Thus,

T heoretical running time = 5000
1000×2.5 = 2 hours

5.3 Selection of LiDAR Sensor

(a) Nvidia AGX Xavier1 (b) RPLiDAR A1 M82

Source: 1Nvidia autonomous machines 2Slamtec Co., Ltd

Figure 5.2: (a) Nvidia AGX Xavier development board. (b) A 360°LiDAR sensor

LiDAR stands for light detection and ranging, it uses a pulse from a laser to collect the mea-

surement from the environment to build a 3D or 2D map of the world. We used a low-cost

RPliDAR A1 M8 model for the robot. It provides a 360°scan field with a frequency ranging
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from 2∼10 Hz. The sensor’s frequency is changed by changing the PWM of the motor, which

rotates the laser sensor. It has a sample rate of up to 8000 times at 10 Hz. The detection range

at 10 Hz is 8 meters, with an angular resolution of 1-degree and a minimum range of 0.2 cm.

It requires a power supply of 5 V. Another reason to select this sensor is its ROS support,

which makes it easy to use with SLAM algorithms. It is directly connected to the Nvidia

board with a micro USB cable.

5.4 Miscellaneous Components

We used an L298n motor driver with Arduino to control the dc motor since it can control both

the speed and the spinning direction of the motor. The speed is controlled by changing the

PWM (Pulse Width Modulation), and H-bridge controls the direction. The PWM values are

transferred from the Nvidia board to Arduino via i2c communication between Arduino and

Nvidia board. The L298n motor driver requires either 5 V or 12 V for the operation. We used

a 12 V power supply as our motor rating is 12 V. We used Arduino nano as it offers the same

connectivity features as of Arduino UNO in a smaller factor. It has 8-bit PWM output at pins

3, 5, 6, 9, 11. For i2c communication, we use pin A4(SDA) and A5(SCA). A step-down buck

converter is used to provide an input voltage of 5 V from a battery capacity of 11.1 V.

5.5 I2C Communication

Xavier’s GPIO library supports PWM only on external hardware PWM controllers such as

Arduino since the library does not implement Software emulated PWM, which makes the

Xavier control the motor in two modes either on or off. Therefore, we used Arduino nano

via i2c communication. The i2c protocol needs two lines to send and receive data. With

the i2c interface, one can connect a single master to multiple slaves or multiple masters to a
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single slave. It uses SDA (Serial Data) for data transmission and SCL (Serial Clock), which

carries the clock signal. As the clock signal changes from low to high, a single bit of data is

transferred. Thus, it is a serial communication as the data is transferred bit-by-bit. To remove

the latency between the right and the left side wheels, we used a dedicated Arduino nano

board. Thus, the Nvidia board transmits PWM values to the Arduino board.

5.6 Circuit Diagram

Figure 5.3 shows the schematics of the circuit diagram of the robot. There are two independent

power supplies. The one with 11.1 V is connected to the dc motors, Arduino nano, and the

other with 14.8 V is connected to the Nvidia Xavier development board. There is a voltage

regulator between the Nvidia board and its power supply, which step-downs the voltage from

14.8 V to 12 V. The purpose of the regulator is to ensure constant power supply free from any

power surge.

The 11.1 V battery is connected to dc motor via L298n motor driver. The L298n can control

two motors. The left side motor driver is connected with 10, 11, 12 pins of the left side

Arduino nano, and the right side moor driver is connected with 9, 6, 7 pins of the right side

Arduino nano. The two buck converters convert 11.1 V supply to 5 V supply. These 5 V

supplies are connected with the Ardunio nano boards. For i2c communication left and right

side Ardunios are connected with the (1 x 8 address bus), i.e., pins [3, 5, 6] and (1 x 1 address

bus), i.e., pins [25, 27, 28] of the Nvidia GPIO pins respectively.
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Figure 5.3: Circuit diagram of the robot
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Figure 5.4: Snapshot of the Hardware

Figure 5.5: Circuit on the real hardware
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5.7 Action-Space in Real Hardware

• The motor needs PWM signals to change the RPS of wheels. However, in the simu-

lation, we can only control the RPS of the wheels. The model obtained in simulation

gives action in the form of RPS as output that is useless in real hardware. Thus, a trans-

fer function is needed to convert the PWM to RPS values in simulation. Therefore our

agent can directly learn the PWM values in simulation, which in theory can be used

directly in real hardware.

• Since we did not get any direct transfer function from the manufacturer, we did poly-

nomial regression on the PWM values vs. the velocities obtained from the SLAM.

Each experiment is run for 1 second with different PWM values. We received a transfer

function for the robot. Figure 5.6 shows the polynomial regression curve obtain after

running the experiments up to 85th PWM value.

Figure 5.6: Regression curve between RPS and the PWM for DC Motor
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We got the following Transfer function: -

y = 0.3362x7−1.781×10−15x6−2.665x5 +5.669×10−15x4

+6.533x3−3.77×10−15x2−1.174x+4.245×10−16
(5.1)

Since it a four-wheel-drive system, which means each wheel has its own power. Thus, we

have not taken into account the effect during turning of the vehicle on the slippery floor as

there will be a drop at the coefficient of road adhesion, which may cause drive wheels to

slip [58]. There is no provision of traction control for reducing the torque on the wheel,

which is slipping. We also found this issue during our limited testing on the robot. The cause

was the uneven load distribution, which leads to the slipping of one wheel.

5.8 Planned Experiments

1. To implement the policy learned on the simulation in the environment with no obstacles.

From this experiment, we are expecting a policy which is capable of navigating in the

real world. As there are no obstacles, the agent’s primary aim is to learn the dynamics

of the vehicle while navigating towards the goal.

2. To implement the policy learned in the previous experiment in the environment with

static obstacles. We are expecting the agent to learn the dynamics of the system in the

last experiment. Then the primary aim of this experiment is to navigate towards the

goal while avoiding the static obstacles.

3. In the final experiment, if the agent learns to navigate in the environment with static

obstacles. Then the primary aim of this experiment is to implement the previous policy

in the environment with the dynamic obstacles. The dynamic obstacles here will be the

humans walking randomly in the test space.
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Conclusion

In this thesis, deep reinforcement learning is implemented for navigation of the skid steer

wheeled robot. We have kept the traditional global planner but have replaced the local planner

with the DRL policy. The objective of the global planner is to find an optimal path based on

the available information. The optimal path is divided into via-points at an interval of 4

meters. Then the local planner takes the immediate via-point as its goal and navigates. We

have developed a learning infrastructure for a local policy that uses the hector slam algorithm

for localization, mapping, and A* algorithm as a global planner. The state of the art DRL

algorithm soft-actor critic (SAC) is applied to train local policy. The trained policy outputs

continuous control action in the form of PWM to the robot. The continuous control actions

gives better control over the trajectory executed by the agent.

In the first stage, we have trained the agent in the simulation environment containing no

obstacles. The aim was to find the best performing observation-space and action-space. The

observation-space containing sine and cosine of the robot’s orientation to the goal performs

better than others. We found a unique way of providing action to the robot, which makes the

agent learn faster.

In the second stage, we have trained the agent in the environment with static obstacles. We

have formulated a function for the collision penalty. The agent has successfully learned to
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navigate and achieved all the goals. To check the robustness of the policy, we have also

placed obstacles in a different position. The agent successfully meets all the targets.

In the third stage, the complexity of the environment has been increased by introducing pedes-

trians. Moving objects imply time-dependent decisions; thus, we gave a stack of four obser-

vations at different time steps to the agent. We decreased the agent’s action frequency to 5 Hz

from 20 Hz, which makes the policy extremely stable compared to other policy we found ear-

lier. The integration of the global planner eliminates the need to use LSTM or RNN policies,

making the learning easier.

6.1 Future Work

Although the obtained results are promising, future improvements are required in this ap-

proach. The following future work are needed: -

• The above work is tested only in the simulated environment. Thus there is a need to

transfer model from simulation to real-world.

• There is a slight delay when the global planner finds the via-points. Thus it is needed to

make A* to compute new paths parallelly with the SAC policy. Therefore, the upper-

level controller finds the new path when the robot is near the via-point, which is the

short term goal. The upper-level controller, i.e., A*, will take that short term goal as the

start point for the new path.

47



Bibliography
[1] I. F. Vis, “Survey of research in the design and control of automated guided vehicle

systems,” European Journal of Operational Research, vol. 170, no. 3, pp. 677–709,

2006.

[2] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition

for autonomous driving,” IATSS research, vol. 43, no. 4, pp. 244–252, 2019.

[3] J. Cecılio, K. Duarte, P. Martins, and P. Furtado, “Robustpathfinder: Handling uncer-

tainty in indoor positioning techniques,” Procedia computer science, vol. 130, pp. 408–

415, 2018.

[4] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part i,”

IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[5] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts,

methods, theoretical framework, and applications,” International Journal of Advanced

Robotic Systems, vol. 16, no. 2, p. 1 729 881 419 839 596, 2019.

[6] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, “Kinematic model-

ing and analysis of skid-steered mobile robots with applications to low-cost inertial-

measurement-unit-based motion estimation,” IEEE transactions on robotics, vol. 25,

no. 5, pp. 1087–1097, 2009.

[7] A. Mandow, J. L. Martinez, J. Morales, J. L. Blanco, A. Garcia-Cerezo, and J. Gonza-

lez, “Experimental kinematics for wheeled skid-steer mobile robots,” in 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IEEE, 2007, pp. 1222–

1227.

48



Bibliography

[8] K. Kozłowski and D. Pazderski, “Modeling and control of a 4-wheel skid-steering

mobile robot,” International journal of applied mathematics and computer science,

vol. 14, pp. 477–496, 2004.

[9] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al., “A review: On path planning strate-

gies for navigation of mobile robot,” Defence Technology, vol. 15, no. 4, pp. 582–606,

2019.

[10] F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study for robot navi-

gation techniques,” Cogent Engineering, vol. 6, no. 1, p. 1 632 046, 2019.

[11] J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation in unknown dynamic

environments based on deep reinforcement learning,” Sensors, vol. 19, no. 18, p. 3837,

2019.

[12] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” 2011.

[13] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–

292, 1992.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the

game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,

p. 484, 2016.

[16] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning with parameter-

ized actions,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

49



Bibliography

[17] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic re-

inforcement learning: Standard and natural policy gradients,” IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6,

pp. 1291–1307, 2012.

[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-

mization,” in International conference on machine learning, 2015, pp. 1889–1897.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.

Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-

tional conference on machine learning, 2016, pp. 1928–1937.

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep re-

inforcement learning that matters,” in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy max-

imum entropy deep reinforcement learning with a stochastic actor,” arXiv preprint

arXiv:1801.01290, 2018.

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.

Gupta, P. Abbeel, et al., “Soft actor-critic algorithms and applications,” arXiv preprint

arXiv:1812.05905, 2018.

[24] S. Russell and P. Norvig, “Artificial intelligence: A modern approach,” 2002.

[25] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson,

“Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and

sampling-based planning,” in 2018 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, 2018, pp. 5113–5120.

50



Bibliography

[26] S. James, M. Freese, and A. J. Davison, Pyrep: Bringing v-rep to deep robot learning,

2019. arXiv: 1906.11176 [cs.RO].

[27] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based path planning,”

in Proceedings of the international workshop on planning under uncertainty for au-

tonomous systems, international conference on automated planning and scheduling

(ICAPS), 2005, pp. 9–18.

[28] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, and E. Romera, “Towards life-long vi-

sual localization using an efficient matching of binary sequences from images,” in

2015 IEEE international conference on robotics and automation (ICRA), IEEE, 2015,

pp. 6328–6335.

[29] W. Maddern, A. D. Stewart, and P. Newman, “Laps-ii: 6-dof day and night visual local-

isation with prior 3d structure for autonomous road vehicles,” in 2014 IEEE Intelligent

Vehicles Symposium Proceedings, IEEE, 2014, pp. 330–337.

[30] C. McManus, W. Churchill, W. Maddern, A. D. Stewart, and P. Newman, “Shady

dealings: Robust, long-term visual localisation using illumination invariance,” in 2014

IEEE international conference on robotics and automation (ICRA), IEEE, 2014, pp. 901–

906.

[31] J. Le Cras, J. Paxman, and B. Saracik, “Improving robustness of vision based local-

ization under dynamic illumination,” in Recent Advances in Robotics and Automation,

Springer, 2013, pp. 155–170.

[32] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–

57, 2002.

[33] N. D. Carlevaris-Bianco, “Long-term simultaneous localization and mapping in dy-

namic environments,” MICHIGAN UNIV ANN ARBOR DEPT OF ELECTRICAL

ENGINEERING and COMPUTER SCIENCE, Tech. Rep., 2015.

51

https://arxiv.org/abs/1906.11176


Bibliography

[34] H. Zhao, M. Chiba, R. Shibasaki, X. Shao, J. Cui, and H. Zha, “Slam in a dynamic large

outdoor environment using a laser scanner,” in 2008 IEEE International Conference on

Robotics and Automation, IEEE, 2008, pp. 1455–1462.

[35] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoidance

through end-to-end learning,” in Advances in neural information processing systems,

2006, pp. 739–746.

[36] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle avoid-

ance,” in 2016 IEEE/RSJ international conference on intelligent robots and systems

(IROS), IEEE, 2016, pp. 2759–2764.

[37] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for

direct perception in autonomous driving,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2722–2730.

[38] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-slam: A semantic

visual slam towards dynamic environments,” in 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 1168–1174.

[39] M. S. Bahraini, A. B. Rad, and M. Bozorg, “Slam in dynamic environments: A deep

learning approach for moving object tracking using ml-ransac algorithm,” Sensors,

vol. 19, no. 17, p. 3699, 2019.

[40] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, “Generalization in deep learning,” arXiv

preprint arXiv:1710.05468, 2017.

[41] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”

The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[42] L. Qiang, D. Nanxun, L. Huican, and W. Heng, “A model-free mapless navigation

method for mobile robot using reinforcement learning,” in 2018 Chinese Control And

Decision Conference (CCDC), IEEE, 2018, pp. 3410–3415.

52



Bibliography

[43] Y. Liu, H. Liu, and B. Wang, “Autonomous exploration for mobile robot using q-

learning,” in 2017 2nd International Conference on Advanced Robotics and Mecha-

tronics (ICARM), IEEE, 2017, pp. 614–619.

[44] L. Tai and M. Liu, “Towards cognitive exploration through deep reinforcement learning

for mobile robots,” arXiv preprint arXiv:1610.01733, 2016.

[45] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep reinforcement

learning with successor features for navigation across similar environments,” in 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE,

2017, pp. 2371–2378.

[46] S. Feng, H. Ren, X. Wang, and P. Ben-Tzvi, “Mobile robot obstacle avoidance based on

deep reinforcement learning,” in International Design Engineering Technical Confer-

ences and Computers and Information in Engineering Conference, American Society

of Mechanical Engineers, vol. 59230, 2019, V05AT07A048.

[47] X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile robot navigation based on deep rein-

forcement learning,” in 2019 Chinese control and decision conference (CCDC), IEEE,

2019, pp. 6174–6178.

[48] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-supervised deep re-

inforcement learning with generalized computation graphs for robot navigation,” in

2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018,

pp. 1–8.

[49] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R.

Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex environ-

ments,” arXiv preprint arXiv:1611.03673, 2016.

[50] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-

driven visual navigation in indoor scenes using deep reinforcement learning,” in 2017

53



Bibliography

IEEE international conference on robotics and automation (ICRA), IEEE, 2017, pp. 3357–

3364.

[51] M. Dobrevski and D. Skocaj, “Map-less goal-driven navigation based on reinforcement

learning,” in 23rd Computer Vision Winter Workshop, 2018.

[52] Y. Sun, J. Cheng, G. Zhang, and H. Xu, “Mapless motion planning system for an au-

tonomous underwater vehicle using policy gradient-based deep reinforcement learn-

ing,” Journal of Intelligent & Robotic Systems, vol. 96, no. 3-4, pp. 591–601, 2019.

[53] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with

deep reinforcement learning,” in 2017 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), IEEE, 2017, pp. 1343–1350.

[54] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic, decision-

making agents with deep reinforcement learning,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3052–3059.

[55] Z. TP et al., “Learning continuous control through proximal policy optimization for

mobile robot navigation,” 2018.

[56] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continu-

ous control of mobile robots for mapless navigation,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 31–36.

[57] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot simu-

lation framework,” in 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems, IEEE, 2013, pp. 1321–1326.

[58] G. Shuang, N. C. Cheung, K. W. E. Cheng, D. Lei, and L. Xiaozhong, “Skid steer-

ing in 4-wheel-drive electric vehicle,” in 2007 7th International Conference on Power

Electronics and Drive Systems, 2007, pp. 1548–1553.

54


	Abstract
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Background
	Thesis Objective
	Contribution

	Literature Review
	SLAM Based Navigation
	Deep-Learning Based Navigation
	Deep Reinforcement Learning Approach
	Research Gaps

	Problem Statement and Approach Overview
	Problem Statement
	Approach Overview

	Environment and Setup
	PyRep
	Environment
	MDP Formulation
	State/Observation Space
	Action Space
	Reward Functions

	Implementation
	Approach-1
	Observation Space Definition
	Action Space Definition
	Reward Function Definition
	Limitation

	Final Proposed Approach
	Experiment
	Result
	Evaluation

	Assembly of skid-steer drive wheeled robot
	Torque Calculation and Motor Selection
	Selection of Development Board
	Selection of LiDAR Sensor
	Miscellaneous Components
	I2C Communication
	Circuit Diagram
	Action-Space in Real Hardware
	Planned Experiments

	Conclusion
	Future Work


