
Simulation of the
Underactuated Sake Robotics
Gripper in V-REP and ROS
Bachelor-Thesis von Simon-Konstantin Thiem aus Bayreuth
Tag der Einreichung:

1. Gutachten: Dr. techn. Elmar Rueckert
2. Gutachten: Prof. Jan Peters, PhD
3. Gutachten:

Simulation of the Underactuated Sake Robotics Gripper in V-REP and ROS

Vorgelegte Bachelor-Thesis von Simon-Konstantin Thiem aus Bayreuth

1. Gutachten: Dr. techn. Elmar Rueckert
2. Gutachten: Prof. Jan Peters, PhD
3. Gutachten:

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 28. September 2017

(Simon-Konstantin Thiem)

Abstract
The Sake Robotics Gripper is a cheap, robust and versatile gripper that has not been simulated

yet. It is an underactuated gripper and therefore needs a workaround to achieve realistic behavior

in simulation. The model has to be able to interpret the exact same ROS messages the gripper

receives. This paper proposes a reproduction of the Sake Robotics Gripper in V-REP. We analyze

the tools provided by V-REP to develop an algorithm to achieve underactuation in simulation.

This contributes to the kitchen cleaning task of the GOAL-Robots project with a platform to do

machine learning on. All models are available open source. Our model can be used as a foundation

for research in complex grasping and manipulation tasks with the Sake Robotics Gripper.

i

Acknowledgments
This project has received funding from the European Union’s Horizon 2020 research and innovation

program under grant agreement No 713010 (GOAL-Robots) and No 640554 (SKILLS4ROBOTS).

ii

Contents

1 Introduction 2

1.1 Related Work . 3

1.2 Structure . 4

2 The Underactuated Gripper 5

2.1 Data-flow . 5

2.2 Problems of Current Physics Engines . 6

2.3 Controlling the Gripper . 7

2.4 Modeling . 9

2.5 Contribution to the Kitchen Cleaning Scenario . 10

2.6 Future Work . 11

3 Conclusion 12

4 Code 13

Bibliography 25

1

1 Introduction
In the last years there has been a lot of progress in the creation of domestic robots. Even though

they are able to perform certain tasks such as cleaning floors or mowing lawn, they still struggle

with more complex manipulation and grasping tasks [1]. Various grippers are built based on the

example of the human hand [2] [3]. In machine learning this results in complicated models due to

a hand’s complexity, limiting the learning results. [4].

To gain versatile grasping capabilities a simple gripper model is implemented. It is used for work

on the kitchen cleaning task in the GOAL-Robots project autonomous robots [5]. We use the

SAKE Robotics gripper (SRG) [6]. The gripper is attached to a Kuka LBR iiwa 14 R820 [7].

Compared to other state of the art grippers, the SRG is relatively cheap. This two-finger gripper

is versatile since it encompasses objects and thus can grip thin as well as bulky items. Additionally

it does not have fragile finger tips that can break. It is an underactuated gripper and has only

a simple one-dimensional input. This enables the application of control policies with only few

parameters.

In this work we provide an open source model of the SRG for the virtual robot experimentation

platform V-REP (Coppelia Robotics GmbH, Zürich Switzerland) [8]. The model enables realistic

simulations with physical contacts. We provide an interface for our simulation that requires the

same inputs as the robot. This allows the use of the same code for learning algorithms on both the

robot and the simulation. Even though the control signal of the actuator is one-dimensional, the

gripper has four degrees of freedom. We propose an algorithm that tries to mimic the behavior of

underactuation in V-REP. Also we show a workaround to handle V-REP’s lack of touch sensors.

The code to handle the underactuation is implemented in a child Script in V-REP. This way we

can maintain the advantage of having a low dimensional input. Thus the only information that

needs to be learned is how far the hand has to close. We then show how we compensate the lack

of touch sensors with proximity sensors and how we handle their differences.

2

1.1 Related Work

There has been some research about the proper design of grippers. Asfour et al. present a domes-

tic robot for research purposes that uses a five finger gripper. They propose to do offline grasp

analysis for each object that is supposed to be grasped [9]. This results in a huge database. Using

online learning the system is able to manipulate objects that have not been previously seen.

Prior to the study of Asfour et al. grippers have mainly been used and designed for industrial

purposes. In most cases they were constructed for one specific task only. Lanni and Ceccarelli

give a broad overview of two-handed grippers and then propose an objective function for the con-

strained optimization problem to develop grippers for specific tasks [10]. With machine learning

tools grippers can be taught to grasp objects that are similar in size and shape without special

hardware required. There is also research on gripping materials which are difficult to clench. Dri-

galski et al. introduce a 3D printable gripper that is able to hold textiles [11], whereas Menciassi

et al. focus on grasping objects of size of 1 mm and smaller [12].

In the late 1970s, Hirose and Umetani proposed a soft gripper which has an adjustable amount

of finger links that each result in a degree of freedom. Equally to the SRG an underactuated pull

on a wire causes the two fingers/chains to move inwards. Due to the chains being able to have a

arbitrary length, objects can be completely enveloped when grasped [13].

Being able to simulate a project ahead of its physical implementation can be used to proof a

concept and collect data for machine learning tasks. For our work, we used V-REP. It has a

kinematic, a dynamics and a path planning module. While the implementation of the kinematic

and the path planing module execute movement exactly as programmed, they are not able to

correctly detect objects and forces. The dynamics module on the other side makes use of one

of the physics engines. Ivaldi, Peters, Padois and Nori did an analysis about the tools that are

capable of dynamics simulations. While they point out the diversity of the tools, most of them

rely on physics engines like Bullet or ODE that were originally designed for video games [14].

While games try to achieve a smooth user experience, their prior concern is on speed and less

on accuracy. In robotics however, the main goal is representing the reality as close as possible.

3

This often results in a problem as modern physics engines can still be insufficient for manipulation

tasks with physical contacts.

We chose to use V-REP as development environment because it is a user friendly, intuitive pro-

gram, that has many features implemented, while maintaining an even performance with other

state of the art robotics simulation tools like Gazebo [15].

1.2 Structure

In this paper we give an overview about the Data-flow of the Simulation. We discuss the problems

that arose and propose a way to solve them. We explain the underactuation of the SRG and

discuss how we used it in simulation. We present our contributions towards the GOAL-Robots

project and conclude with some future work ideas.

4

2 The Underactuated Gripper
The SRG has a good size for gripping objects like bottles, packages and other everyday household

items that are mostly used in the kitchen. It has a grasp width of 145 mm and can hold up to 5

kg when it can grasp while wrapping around an object or 2.5 kg when holding it with finger tips.

Figure 2.1: The Client is used to send Commands to the Robot or to the V-REP Simulation using
ROS. For this the exact same Code in the Client can be used.

2.1 Data-flow

The task of learning how to grasp an object can be separated into three parts (Fig. 2.1). The

learning algorithm, the Robot Operating System (ROS) and lastly the execution on the hardware

or in simulations. For that purpose we use the Kuka LBR iiwa 14 R820 [7] with the SRG [6]

and alternatively V-REP [8] for simulation. Any desired learning algorithm can be implemented

in a high order programming language with a ROS interface. We decided to use Matlab for the

purpose of rapid prototyping.

The learning algorithm has to send ROS messages containing information about the desired motion

5

of the robot. ROS is in charge of communication between Matlab and V-REP or the robot.

Another series of messages deliver information for the motor which is in charge of moving the

fingers of the SRG. These take a value between 1 and 100 that determines how far the SRG closes.

The SRG is underactuated due to the signal for the grasp being only one-dimensional even though

it has 4 degrees of freedom. This will be discussed in the section (2C). The interpretation of these

messages take place in the Simulation Software V-REP by Coppelia Robotics [8].

A child script, written in Lua, can be attached to each simulated object. These control their

actions and can be used to receive and interpret ROS messages. We wrote them in a way, that we

are able to use the exact same ROS messages for the robot and the SRG. This is of use because it

allows the use of the same interface for simulation and hardware respectively. Hence it is possible

to generate learning data by simulations which then can be used for hardware applications.

2.2 Problems of Current Physics Engines

Several physics engines (Bullet 2.78, Bullet 2.83, ODE, Vortex, Newton) can be chosen in V-REP

to simulate the movement of the SRG. We used the Open Dynamics Engine (ODE) [16] since it

performs best for our task. There are three issues that determine the behavior in the simulation

which are outlined below.

(i) The mesh files of the SRG were taken from the official Github page of SakeRobotics [17].

Due to the SRG being a non-convex shape, the mesh files for it are non-convex as well, which

is the reason for a low cohesion of every two separate parts of the gripper. This results in the

possibility of joints being unable to apply force towards the right directions, items being pushed

away instead of being grasped and fingers of the gripper jumping back and forth. We address

the first two problems in the Section (2C). Fortunately, the ODE physics engine is able to avoid

fluctuation between non-convex shapes reasonably well.

(ii) V-REP does not have sensors implemented that recognize touch or contacts. A potential

solution is the use of a built-in force sensor in V-REP, which however requires a rigid link between

the SRG and the grasped object but this cannot slip at all. Alternatively proximity sensors can

be used. These are able to detect if an object is close to the fingers. The distance threshold at

6

which they should signal an object contact can be tuned. However these values need to be greater

than zero and therefore, the sensors will fire slightly before an actual touch will happen This will

be discussed in Section (2D).

(iii) Current physics engines are not able to handle soft items. These would require a different

behavior [18] [19]. Thus we are not able to simulate the grasp of items that can be squeezed.

2.3 Controlling the Gripper

The hardware link between the SRG and the robot has only a one-dimensional actuator. By

default torsion springs hold the fingers in a 180 degrees straight position. To close the fingers the

robot pulls on a wire exerting an opposing force against the springs, resulting in a contraction of

the gripper. This command can be sent via a ROS message with a value between 0 and 100. The

value determines how far the wire will be pulled. First the finger bases start moving until they

hit a resistance. The wire is also connected to the finger tips. When the force cannot be emitted

onto the base of the finger anymore, it will be transfered to an area with lower resistance. Here

this is the finger tip. Once the tips of the finger touch each other or the object, force is applied

towards the object. This way a firm grip surrounding the grasped object can be established (Fig.

2.2).

7

Figure 2.2: Picture of the SRG pouring a liquid.

The SRG uses a PID controller to administer the pulse width modulation that controls the motor.

This is denoted by τ and calculated by a feed forward term uF F(t) and a feedback term uFB(t) of

the torque u at the time t. The κ is the pulse width modulation limit. Let q(t) be the minimum

jerk, q̇(t) its velocity and q̈(t) its acceleration. With q∗(t) ∈ [0, 100] denoting the desired jerk,

the pulse width modulation is defined by:

τ(t) = buF F(t) + uFB(t)cκ with (2.1)

uF F(t) = KF F1
q̇(t) + KF F2

q̈(t) and (2.2)

uFB = KP(q
∗(t)− q(t)) + KI(q

∗(t)− q(t))q̇(t) +
KD(q∗(t)− q(t))

q̇(t)
resulting in (2.3)

τ(t) = bKF F1
q̇(t) + KF F2

q̈(t) + KP(q
∗(t)− q(t)) + KI(q

∗(t)

+
KD(q∗(t)− q(t))

q̇(t)
cκ . (2.4)

8

Input: posOfBase, posOfTip, proxSensorBase, proxSensorTip, newPos, currentPos
opening = false
if cur rentPos < newPos then

opening == true
else if newPos < cur rentPos then

opening == false
if opening then

Once tip is completly opened:
if posO f T ip < 0 then

open base:
posO f Base← newPos
keep tip at 0:
posO f T ip← 0

else open tip
posO f T ip← (newPos− posO f Base)

closing gripper while the base of the finger touches an object:
else if proxSensorBase then

posO f T ip← (newPos− posO f Base)
if proxSensorTip then

applying pressure:
posO f Base← 0.5(newPos− posO f Base− posO f T ip) + posO f Base
posO f T ip← 0.5(newPos− posO f Base− posO f T ip) + posO f T ip

else
posO f Base← newPos

Algorithm 1: Simulated Underactuation for one finger in a single timestep.

2.4 Modeling

Our goal is to implement this underactuation with V-REP (after the ROS messages have been

received). We receive a value between 0 and 100 and map it to all possible radiants of the finger,

where 0 is open and 100 is closed. Our algorithm (Alg. 1) closes the finger until either the desired

value is reached or one of the base proximity sensors fire. This happens slightly before they touch

an object. Thus no force is yet applied towards the item and therefore it does not move. This way

we vastly reduce the possibility that the item is pushed away by the fingers. Once the proximity

sensor of the finger tip fires, the base finger starts grasping again, too. This happens when they

either reach the object that is to be gripped or the other finger respectively. Now they apply force

9

to the object to establish a secure grip. This is done by closing the base fingers and the finger tips

at the same time (Fig. 2.3).

Figure 2.3: Sequence of the simulated gripper gripping the tomato soup can from the ycb object
model set [20] [21].

2.5 Contribution to the Kitchen Cleaning Scenario

Being able to simulate the SRG gives us the opportunity to do reinforcement learning for the

kitchen cleaning scenario in the third main objective: autonomous robots of the GOAL-Robots

project. Apart from being cheap and robust, with his underactuation the SRG has the advantage

of having a low dimensional grasp controller compared to other state of the art grippers.

The mesh models of the objects that are used in the kitchen cleaning scenario can be downloaded

from the ycb-Website [20] [21]. These can be loaded into V-REP so that graping tasks can be

performed on them (Fig. 2.3).

10

2.6 Future Work

Being able to simulate the SRG provides us with a chance to apply reinforcement learning to grasps

in simulation. This however requires a reward function of how well a grasp has been performed.

A number of such reward functions have been proposed [22] [23] [24] [25]. In future work we want

to evaluate different reward functions for grasping using our SRG model.

11

3 Conclusion
The Sake Robotics Gripper (SRG) is a powerful gripper that can grasp numerous types of objects

and supports loads up to 5 kg. To the best of my knowledge, no simulation of the SRG has

been produced yet. Hereby we present an open source model in V-REP. We circumvent V-

REP’s lack of touch sensors and display a way to use proximity sensors for this purpose. To

mimic the Sake Grippers behavior, we send a one dimensional ROS message to the simulation.

This is the same message the actual robot takes. This way we provide an interface between a

high level programming language like Matlab or Python to V-REP. In V-REP we are able to

interpret the message and let the model perform grasps. We present an algorithm that uses the

one dimensional message and creates an imitation of the SRG’s underactuation. The code is

available here: https://git.ias.informatik.tu-darmstadt.de/thiem/EZGripper_vrep_model.

12

4 Code
Child script used to control the EZ Gripper:

function setPosition(msg)

-- can be used if a static position of the fingers is desired

simSetJointTargetPosition(jl, msg.data[1])

simSetJointTargetPosition(jr, msg.data[2])

simSetJointTargetPosition(jlt, msg.data[3])

simSetJointTargetPosition(jrt, msg.data[4])

end

function grasping_switch(msg)

if (msg.data) then

grasping = 1

else

grasping = 0

end

end

function grasp(msg)

max_grip = 3

grip_strength = msg.data

new_position = max_grip*grip_strength/100

if(grip_strength < current_grasp)then

opening = true

elseif (grip_strength > current_grasp) then

opening = false

end

current_grasp = grip_strength

13

single_side_grip_control(jl, jlt, plb, plt, new_position , opening)

single_side_grip_control(jr, jrt, prb, prt, new_position , opening)

end

function single_side_grip_control(handle_joint_base , handle_joint_tip ,

handle_prox_base , handle_prox_tip , newposition , opening)

-- closing the gripper while the base touches an object

if((not opening) and

simCheckProximitySensor(handle_prox_base ,sim_handle_all) == 1) then

simSetJointTargetPosition(handle_joint_tip ,

(newposition - simGetJointPosition(handle_joint_base)))

if(simCheckProximitySensor(handle_prox_tip , sim_handle_all) == 1) then

-- applying pressure

simSetJointTargetPosition(handle_joint_base ,

0.5*(newposition - simGetJointPosition(handle_joint_base) -

simGetJointPosition(handle_joint_tip)) +

simGetJointPosition(handle_joint_base))

simSetJointTargetPosition(handle_joint_tip ,

0.5*(newposition - simGetJointPosition(handle_joint_base) -

simGetJointPosition(handle_joint_tip)) +

simGetJointPosition(handle_joint_tip))

end

-- opening the gripper while the base touches.

elseif (opening) then

-- open base if tip is open

if (simGetJointPosition(handle_joint_tip) <= 0) then

simSetJointTargetPosition(handle_joint_base , newposition)

--make sure tip stays at 0.

simSetJointTargetPosition(handle_joint_tip , 0)

-- otherwise open tip

else

simSetJointTargetPosition(handle_joint_tip ,

(newposition - simGetJointPosition(handle_joint_base)))

14

end

else

simSetJointTargetPosition(handle_joint_base , newposition)

end

end

if (sim_call_type==sim_childscriptcall_initialization) then

current_grasp = 0

opening = false

grasping = 0

jl = simGetObjectHandle(’Left_Base’)

jr = simGetObjectHandle(’Right_Base’)

jlt = simGetObjectHandle(’Left_Tip’)

jrt = simGetObjectHandle(’Right_Tip’)

plb = simGetObjectHandle(’ProxS_LB’)

plt = simGetObjectHandle(’ProxS_LT’)

prb = simGetObjectHandle(’ProxS_RB’)

prt = simGetObjectHandle(’ProxS_RT’)

simSetJointTargetVelocity(jl,0)

simSetJointTargetVelocity(jr, 0)

simSetJointTargetVelocity(jlt, 0)

simSetJointTargetVelocity(jrt, 0)

simSetJointForce(jl, 100)

simSetJointForce(jr, 100)

simSetJointForce(jlt, 100)

simSetJointForce(jrt, 100)

--grasp_handle = simExtRosInterface_subscribe(’/startgrasp’,

’std_msgs/Bool’, ’grasping_switch’)

gripper_state_handle = simExtRosInterface_subscribe(’/position_grasp’,

15

’std_msgs/Float64MultiArray’, ’setPosition’)

gripper_one_dim_signal = simExtRosInterface_subscribe(’/grasp’,

’std_msgs/Int32’,’grasp’)

end

if (sim_call_type==sim_childscriptcall_actuation) then

end

if (sim_call_type==sim_childscriptcall_sensing) then

end

if (sim_call_type==sim_childscriptcall_cleanup) then

--simExtRosInterface_shutdownSubscriber(grasp_handle)

simExtRosInterface_shutdownSubscriber(gripper_state_handle)

simExtRosInterface_shutdownSubscriber(gripper_one_dim_signal)

end

16

Child script used to control the Kuka LBR iiwa 14 R820:

function setKukaPosition(msg)

-- Set-up some of the RML vectors

--(from the original threaded child script in V-REP)

vel=110

accel=40

jerk=80

currentVel={0,0,0,0,0,0,0}

currentAccel={0,0,0,0,0,0,0}

maxVel={vel*math.pi/180,

vel*math.pi/180,

vel*math.pi/180,

vel*math.pi/180,

vel*math.pi/180,

vel*math.pi/180,

vel*math.pi/180}

maxAccel={accel*math.pi/180,

accel*math.pi/180,

accel*math.pi/180,

accel*math.pi/180,

accel*math.pi/180,

accel*math.pi/180,

accel*math.pi/180}

maxJerk={jerk*math.pi/180,

jerk*math.pi/180,

jerk*math.pi/180,

jerk*math.pi/180,

jerk*math.pi/180,

jerk*math.pi/180,

jerk*math.pi/180}

targetVel={0,0,0,0,0,0,0}

target_position = msg.data

17

for i= 1, 7 do

simSetJointTargetPosition(jointHandles[i], msg.data[i])

end

end

if (sim_call_type==sim_childscriptcall_initialization) then

jointHandles={-1,-1,-1,-1,-1,-1,-1}

for i=1,7,1 do

jointHandles[i]=simGetObjectHandle(’LBR_iiwa_14_R820_joint’..i)

simSetJointForce(jointHandles[i], 500)

end

gripper_state_handle = simExtRosInterface_subscribe(’/kuka’, ’std_msgs/Float64MultiArray’, ’setKukaPosition’)

end

if (sim_call_type==sim_childscriptcall_actuation) then

end

if (sim_call_type==sim_childscriptcall_sensing) then

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

18

Matlab Code used to sent the messages through ROS to V-REP:

whi l e (t rue)

s t a r tpo s ()

movetocup ()

g r ip ()

l i f t ()

p l a c e p o s i t i o n

s t a r tpo s ()

movetocup ()

open_ful l ()

s e cure_sta r t_pos i t i on ()

end

func t i on s t a r tpo s ()

kukamove = ro spub l i s h e r (’ / kuka ’ , ’ std_msgs/Float64MultiArray ’)

f o r i =1:500

msg = rosmessage (kukamove)

msg . Data =[0 0 0 0 0 0 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on movetocup ()

kukamove = ro spub l i s h e r (’ / kuka ’ , ’ std_msgs/Float64MultiArray ’)

19

f o r i =1:300

msg = rosmessage (kukamove)

msg . Data = [5∗ pi /180 −71∗pi /180 0 110∗ pi /180 0 90∗ pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

f o r i =1:100

msg = rosmessage (kukamove)

msg . Data = [5∗ pi /180 −75∗pi /180 0 85∗ pi /180 0 70∗ pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

f o r i =1:200

msg = rosmessage (kukamove)

msg . Data = [5∗ pi /180 −78∗pi /180 0 80∗ pi /180 0 66∗ pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on secure_sta r t_pos i t i on ()

kukamove = ro spub l i s h e r (’ / kuka ’ , ’ std_msgs/Float64MultiArray ’)

f o r i =1:100

msg = rosmessage (kukamove)

20

msg . Data = [5∗ pi /180 −75∗pi /180 0 85∗ pi /180 0 70∗ pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

f o r i =1:300

msg = rosmessage (kukamove)

msg . Data = [5∗ pi /180 −71∗pi /180 0 110∗ pi /180 0 90∗ pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

f o r i =1:50

msg = rosmessage (kukamove)

msg . Data = [0 0 0 0 0 0 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on p l a c e p o s i t i o n ()

kukamove = ro spub l i s h e r (’ / kuka ’ , ’ std_msgs/Float64MultiArray ’)

f o r i =1:1000

msg = rosmessage (kukamove)

msg . Data = [70∗ pi /180 −55∗pi /180 0 70∗ pi /180 0 −55∗pi /180 0] ;

21

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on l i f t ()

kukamove = ro spub l i s h e r (’ / kuka ’ , ’ std_msgs/Float64MultiArray ’)

f o r i =1:100

msg = rosmessage (kukamove)

msg . Data = [3∗ pi /180 −40∗pi /180 0 70∗ pi /180 0 −20∗pi /180 0] ;

msg . showdeta i l s

send (kukamove , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on c l o s e h a l f ()

pub_position_grasp = ro spub l i s h e r (’ / grasp ’ , ’ std_msgs/ Int32 ’)

f o r i =0:500

msg = rosmessage (pub_position_grasp)

msg . Data = f l o o r (i /10)

msg . showdeta i l s

send (pub_position_grasp , msg)

d i sp (msg . showdeta i l s)

end

22

end

func t i on openha l f ()

pub_position_grasp = ro spub l i s h e r (’ / grasp ’ , ’ std_msgs/ Int32 ’)

f o r i =1000:−1:500

msg = rosmessage (pub_position_grasp)

msg . Data = f l o o r (i /10)

msg . showdeta i l s

send (pub_position_grasp , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on open_ful l ()

pub_position_grasp = ro spub l i s h e r (’ / grasp ’ , ’ std_msgs/ Int32 ’)

f o r i =1000:−1:0

msg = rosmessage (pub_position_grasp)

msg . Data = f l o o r (i /10)

msg . showdeta i l s

send (pub_position_grasp , msg)

d i sp (msg . showdeta i l s)

end

end

func t i on g r ip ()

pub_position_grasp = ro spub l i s h e r (’ / grasp ’ , ’ std_msgs/ Int32 ’)

f o r i =0:1000

23

msg = rosmessage (pub_position_grasp)

msg . Data = f l o o r (i /10)

msg . showdeta i l s

send (pub_position_grasp , msg)

d i sp (msg . showdeta i l s)

end

end

24

Bibliography
[1] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-hand manipulation

with tactile features,” in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International

Conference on, pp. 121–127, IEEE, 2015.

[2] H. Liu, K. Wu, P. Meusel, N. Seitz, G. Hirzinger, M. Jin, Y. Liu, S. Fan, T. Lan, and

Z. Chen, “Multisensory five-finger dexterous hand: The dlr/hit hand ii,” in Intelligent Robots

and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp. 3692–3697, IEEE,

2008.

[3] S. Ekvall and D. Kragic, “Interactive grasp learning based on human demonstration,” in

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference

on, vol. 4, pp. 3519–3524, IEEE, 2004.

[4] T. Osa, J. Peters, and G. Neumann, “Experiments with hierarchical reinforcement learning of

multiple grasping policies,” in International Symposium on Experimental Robotics, pp. 160–

172, Springer, 2016.

[5] “Goal robots.” http://www.goal-robots.eu/project/third-main-objective-project". Accessed:

2017-09-19.

[6] “Sake robotics.” http://sakerobotics.com/products2/. Accessed: 2017-09-18.

[7] “Kuka lbr iiwa 14 r820.” https://www.kuka.com/de-de/produkte-

leistungen/robotersysteme/industrieroboter/lbr-iiwa. Accessed: 2017-09-19.

[8] “Coppelia robotics.” http://www.coppeliarobotics.com. Accessed: 2017-09-19.

[9] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, J. Schroeder,

and R. Dillmann, “Toward humanoid manipulation in human-centred environments,” Robotics

and Autonomous Systems, vol. 56, no. 1, pp. 54–65, 2008.

25

[10] C. Lanni and M. Ceccarelli, “An optimization problem algorithm for kinematic design of

mechanisms for two-finger grippers,” Open Mechanical Engineering Journal, vol. 3, pp. 49–

62, 2009.

[11] F. von Drigalski, D. Yoshioka, W. Yamazaki, S.-G. Cho, M. Gall, P. M. U. Eljuri, V. Hoerig,

J. Beltran, M. Ding, J. Takamatsu, et al., “A versatile, open-source two-finger gripper for

textile manipulation,”

[12] A. Menciassi, A. Eisinberg, I. Izzo, and P. Dario, “From" macro" to" micro" manipulation:

models and experiments,” IEEE/ASME Transactions on mechatronics, vol. 9, no. 2, pp. 311–

320, 2004.

[13] S. Hirose and Y. Umetani, “The development of soft gripper for the versatile robot hand,”

Mechanism and machine theory, vol. 13, no. 3, pp. 351–359, 1978.

[14] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating humanoid robot dynamics:

a survey based on user feedback,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS

International Conference on, pp. 842–849, IEEE, 2014.

[15] L. Nogueira, “Comparative analysis between gazebo and v-rep robotic simulators,” Seminario

Interno de Cognicao Artificial-SICA 2014, p. 5, 2014.

[16] “Open dynamics engine.” http://www.ode.org. Accessed: 2017-09-19.

[17] “Github repository of sakerobotics containing the second generation of the ezgripper.”

https://github.com/SAKErobotics/EZGripper. Accessed: 2017-09-19.

[18] D. J. Montana, “The kinematics of contact with compliance,” in Robotics and Automation,

1989. Proceedings., 1989 IEEE International Conference on, pp. 770–774, IEEE, 1989.

[19] D. J. Montana, “Contact stability for two-fingered grasps,” IEEE Transactions on Robotics

and Automation, vol. 8, no. 4, pp. 421–430, 1992.

[20] “Ycb benchmarks.” http://www.ycbbenchmarks.org. Accessed: 2017-09-19.

26

[21] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb object and

model set: Towards common benchmarks for manipulation research,” in Advanced Robotics

(ICAR), 2015 International Conference on, pp. 510–517, IEEE, 2015.

[22] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and Automation, 1992.

Proceedings., 1992 IEEE International Conference on, pp. 2290–2295, IEEE, 1992.

[23] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse rein-

forcement learning.,” in AAAI, vol. 8, pp. 1433–1438, Chicago, IL, USA, 2008.

[24] T. Baier-Lowenstein and J. Zhang, “Learning to grasp everyday objects using reinforcement-

learning with automatic value cut-off,” in Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, pp. 1551–1556, IEEE, 2007.

[25] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters, and G. Neumann, “Guid-

ing trajectory optimization by demonstrated distributions,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 819–826, 2017.

27

	Introduction
	Related Work
	Structure

	The Underactuated Gripper
	Data-flow
	Problems of Current Physics Engines
	Controlling the Gripper
	Modeling
	Contribution to the Kitchen Cleaning Scenario
	Future Work

	Conclusion
	Code
	Bibliography

