
Intuitive Imitation Learning
for One-Handed and
Bimanual Tasks Using ProMPs
Intuitives Imitation Learning für ein- und beidhändige Aufgaben basierend auf ProMPs
Master-Thesis von Moritz Knaust
Electrical Engineering and Information Technology

1. Gutachten: Prof. Jan Peters PhD, Intelligent Autonomous Systems
2. Gutachten: Prof. Dr. Jürgen Adamy, Regelungsmethoden und Robotik
3. Gutachten: M.Sc. Dorothea Koert, Intelligent Autonomous Systems
November 2019

Intuitive Imitation Learning for One-Handed and Bimanual Tasks Using ProMPs
Intuitives Imitation Learning für ein- und beidhändige Aufgaben basierend auf ProMPs

Vorgelegte Master-Thesis von Moritz Knaust

1. Gutachten: Prof. Jan Peters PhD, Intelligent Autonomous Systems
2. Gutachten: Prof. Dr. Jürgen Adamy, Regelungsmethoden und Robotik
3. Gutachten: M.Sc. Dorothea Koert, Intelligent Autonomous Systems

Tag der Einreichung:

Erklärung zur Master-Thesis

Erklärung zur Abschlussarbeit gemäß § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Moritz Knaust, die vorliegende Master-Thesis ohne Hilfe Dritter und nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen
wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

I herewith formally declare that I have written the submitted thesis independently. I did not use any
outside support except for the quoted literature and other sources mentioned in the paper. I clearly
marked and separately listed all of the literature and all of the other sources which I employed when
producing this academic work, either literally or in content. This thesis has not been handed in or
published before in the same or similar form.

In the submitted thesis the written copies and the electronic version are identical in content.

Datum / Date: Unterschrift / Signature:

i

Abstract
Intelligent assistive robots can potentially provide assistance to elderly persons and caregivers. However, the variety
of different tasks for the robots renders pre-programming of all tasks difficult and it is desirable that assistive robots
can learn new tasks also directly from the caregivers. Imitation Learning is a promising and widely used approach to
train robots without programming every motion manually. One big challenge in Imitation Learning is the generation of
demonstrations which are critical for a successful training process. Giving demonstrations can thereby often be difficult
and requires background knowledge about the used robotic system and the applied algorithms.
To this end, this thesis proposes an intuitive system that allows completely inexperienced users to teach the robot new
tasks which consist of several different steps. In particular, this thesis also introduces a simple and intuitive high-level
task structure and an automated teaching process to train the different actions and movements with kinesthetic teaching.
Besides executing point-to-point motions the system can also be used to create generalizable trajectories based on Proba-
bilistic Movement Primitives(ProMPs). The ProMPs can thereby be trained for both, one-handed and bimanual motions.
The whole system is implemented based on Behavior Trees which allows the creation of modular and reactive processes.
The framework is tested in a user study with users who are inexperienced in working with robots. The experimental
evaluation shows that users can understand the task structure and teaching processes and are able to train new tasks
completely on their own. The users are capable of training and successfully using new ProMPs, whereas the programming
of point-to-point movements often leads to collisions with the environment. On this basis, some improvements are
proposed to make the training and execution of ProMPs more reliable.

Zusammenfassung
Intelligente Assistenzroboter sind potentiell dazu in der Lage Senioren und Pfleger zu unterstützen. Die Vielzahl der
verschiedenen Aufgaben der Roboter erschwert jedoch die Vorprogrammierung aller Prozesse und es ist wünschenswert,
dass Assistenzroboter neue Aufgaben auch direkt von den Pflegern lernen können. Imitation Learning ist ein vielverspre-
chender und weit verbreiteter Ansatz, um Roboter zu trainieren, ohne jede Bewegung einzeln manuell zu programmieren.
Eine große Herausforderung beim Imitation Learning ist das Erzeugen von Demonstrationen, die aber für einen erfolgrei-
chen Trainingsprozess entscheidend sind. Das Erzeugen der Demonstrationen kann dabei oft schwierig sein und benötigt
Hintergrundwissen über das eingesetzte Robotersystem und die angewandten Algorithmen.
Zu diesem Zweck wird in dieser Arbeit ein intuitives System vorgestellt, mit dem völlig unerfahrene Benutzer dem Ro-
boter neue Aufgaben beibringen können, die aus mehreren verschiedenen Schritten bestehen. Insbesondere wird in
dieser Arbeit auch eine einfache und intuitive übergeordnete Aufgabenstruktur sowie ein automatisierter Trainings-
prozess vorgestellt, um die verschiedenen Aktionen und Bewegungen mit Kinesthetic Teaching zu trainieren. Neben
Punkt-zu-Punkt-Bewegungen können mit dem System auch generalisierbare Trajektorien auf der Basis von Probabilistic
Movement Primitives (ProMPs) erstellt werden. Dabei können die ProMPs sowohl für einhändige als auch für beidhän-
dige Bewegungen trainiert werden. Das gesamte System basiert auf Behavior Trees, die die Erstellung modularer und
reaktiver Prozesse ermöglichen.
Das Framework wird in einer Nutzerstudie mit Anwendern getestet, die im Umgang mit Robotern unerfahren sind. Die
experimentelle Auswertung hat gezeigt, dass Benutzer die Aufgabenstruktur und die Lehrprozesse verstehen und neue
Aufgaben völlig selbstständig trainieren können. Die Benutzer können ebenfalls neue ProMPs trainieren und erfolgreich
einsetzen, während die programmierten Punkt-zu-Punkt-Bewegungen häufig zu Kollisionen mit der Umgebung führen.
Auf dieser Grundlage werden einige Verbesserungen vorgeschlagen, um das Training und die Ausführung von ProMPs
zuverlässiger zu gestalten.

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Structure . 2

2. Foundations & Related Work 3
2.1. Related Work . 3

2.1.1. Imitation Learning . 3
2.1.2. Robot Learning . 3

2.1.2.1. Teaching Concepts . 3
2.1.2.2. User Studies . 4
2.1.2.3. Concepts for Demonstration Generation . 5

2.1.3. Trajectory Representation . 6
2.1.3.1. Movement Primitives . 6
2.1.3.2. Two Arm Movement Primitive Concepts . 7

2.2. Probabilistic Movement Primitives . 8
2.3. Behavior Trees . 10

2.3.1. Classical Formulation of Behavior Trees . 10
2.3.2. Comparison With Other Architectures . 11

2.3.2.1. Finite State Machines . 11
2.3.2.2. Hierarchical Finite State Machines . 12

3. Own approach 13
3.1. Task Representation . 13

3.1.1. Action Definition . 13
3.1.1.1. GoToJointAction . 14
3.1.1.2. GoToCartAction . 14
3.1.1.3. RunPrompAction . 15
3.1.1.4. GraspAction . 15
3.1.1.5. MoveGripperAction . 16

3.1.2. Skill Definition . 16
3.1.3. Task Definition . 17
3.1.4. Structure Robot Behavior as Behavior Trees . 18

3.2. Teaching Process . 19
3.2.1. Task Teaching . 19
3.2.2. Skill Teaching . 19

3.2.2.1. GoToCartAction . 20
3.2.2.2. GoToJointAction . 21
3.2.2.3. RunPrompAction . 21
3.2.2.4. GraspAction . 23

3.2.3. ProMP Teaching . 24
3.2.3.1. Simple ProMP . 24
3.2.3.2. Coordinated ProMP . 26
3.2.3.3. Simple ProMP With Both Arms . 26

3.3. Control Modes . 29
3.3.1. Model Description . 29
3.3.2. Task-Space Impedance Control . 29
3.3.3. Null-Space Impedance Control . 31
3.3.4. Application of the Model Based Controller . 31

4. Implementation 33
4.1. Hardware Setup . 33

v

4.2. Program Structure . 33
4.2.1. Low Level - Movement Generation . 33
4.2.2. Mid Level - Teaching and ProMPs . 35
4.2.3. High Level - User Interface . 35

4.3. User Interface . 35

5. Experiments 37
5.1. User Study Description . 37

5.1.1. Setup . 37
5.1.2. Tasks . 37

5.1.2.1. Experiment 1: GoTo . 37
5.1.2.2. Experiment 2: ProMP . 38
5.1.2.3. Experiment 3: Both Arms . 38

5.1.3. Users . 39
5.2. User Study Results . 39

5.2.1. Training Success and Common Errors . 39
5.2.2. User Feelings . 41

5.2.2.1. Experiment Comparison . 41
5.2.2.2. Compare Movement Types . 42
5.2.2.3. Workload . 43

5.3. Analyze of Used Task and Skill Structure . 43
5.4. ProMP Evaluation . 44

5.4.1. Reconstruction Error . 45
5.4.2. Generalization . 46

5.5. Movement Type Comparison . 47

6. Conclusion & Future Work 49
6.1. Conclusion . 49
6.2. Future Work . 50

Bibliography 51

A. User Study 55
A.1. User Background . 55
A.2. Experiment Description . 57

A.2.1. Vorbereitung . 57
A.2.2. Experiment 1 . 58
A.2.3. Experiment 2 . 59
A.2.4. Experiment 3 . 59

A.3. Questionnaire 1 . 60
A.4. Questionnaire 2 . 61

vi

Figures and Tables

List of Figures

1.1. KoBo Serving Drinks . 1
1.2. KoBo Learning New Tasks . 1

2.1. Teaching Concept Examples . 4
2.2. Overview about Different User Studies . 5
2.3. Robot Teleoperation Systems . 6
2.4. Bimanual Manipulation Categories . 7
2.5. Normalized and Weigthed Basis Functions . 8
2.6. Conditioned Example ProMP . 9
2.7. Sequence Example . 10
2.8. Fallback Example . 10
2.9. Parallel Example . 11
2.10.Action Node, Condition Node and Decorator Node . 11
2.11.Example Behavior Tree . 11

3.1. Example Task Structure . 13
3.2. Grasp Skill Behaviour Tree . 18
3.3. Example Task Behaviour Tree . 18
3.4. Task Teaching Process . 20
3.5. Extended Task Teaching Process . 20
3.6. Robot Frames with Objects . 21
3.7. Example ProMP in Different Frames . 22
3.8. Robot Gripper . 23
3.9. ProMP Teaching Process . 25
3.10.Images of the Simple ProMP Training Process . 26
3.11.Coordinated ProMP Teaching Process . 27
3.12.Images of the Coordinated ProMP Teaching Process . 27
3.13.Simple ProMP with Both Arms Teaching Process . 28
3.14.Images of the ProMP Training Process With Both Arms . 28
3.15.Task-Space Controller Overview Sheme . 29
3.16.Controller Scheme . 30

4.1. KoBo Robot Setup . 34
4.2. Program Structure . 34
4.3. Train Task User Interface . 36

5.1. KoBo User Study Setup . 38
5.2. Success Rate for All Trained Steps . 39
5.3. Approach Tray Example ProMP . 40
5.4. User Feelings Questions . 41
5.5. Compare Movement Types . 42
5.6. User Workload . 43
5.7. Task Structure Analysis . 44
5.8. ProMP Reconstruction Error . 45
5.9. Well Trained ProMP Example . 45
5.10.Generalization Range for All Given Demonstartions . 46

A.1. Aufbau einer Roboter Aufgabe . 57

vii

List of Tables

3.1. Action Nodes . 14
3.2. Parameters of the GoToJointAction . 14
3.3. Parameters of the GoToCartAction . 15
3.4. Parameters of the RunPrompAction . 15
3.5. Parameters of the GraspAction . 16
3.6. Parameters of the MoveGripperAction . 16

5.1. ANOVA User Feelings . 41
5.2. Compare Movement Types . 47

viii

1 Introduction
1.1 Motivation

One of the most common visions on how technology could improve our everyday life imagines service robots that assist
people in their households and do all the tasks we do not like to do[1, 2]. This vision was often repeated in all kinds of
stories, movies, books and future discussions, but it is far away from the way robots are used nowadays. At the moment
the only robots that are widespread, are industrial robots in big production processes. They can do one specific task and
repeat it very often. This is only working in a well known and structured environment, because most industrial robots
cannot handle new situations.
Industrial robots are programmed by highly qualified engineers and every task the robot should perform has to be
implemented by experts. So the whole programming process becomes expensive and time-consuming. This working
process is not applicable to future service robots, because they have to perform a lot of different tasks and will often face
unknown situations. So it must be possible for users, who are no experts in robotics, to train the robot new tasks.
One possibility is that the robot trains the task on its own using advanced machine learning techniques like reinforcement
learning[3]. This can result in impressive robot actions, but it also has disadvantages, like the high number of needed
training runs, the high number of failed tasks in the training period and the complex algorithm itself, which often also
needs tuning by experts. So this learning technique hardly can be applied to robot household applications.
Another approach to train a robot is Imitation Learning[4]: A human teacher can train the robot a new task while the
robot imitates the behavior of the human. Most Imitation Learning systems use demonstrations which are created by a
teacher who is moving the robot manually. Imitation Learning in general also has different challenges. Most algorithms
are highly dependent on the given demonstrations[5, 6], so this is the most important step. The generation of the
demonstration itself often is not easy, because it is needed to remote control the robot, which is often difficult. Another
problem is that the demonstrations cannot be too similar or too different, because then the robot can only learn a very
specific action or no action at all. It can be seen that Imitation Learning offers good possibilities, but also is a challenge
for inexperienced users.
This challenge becomes even greater if a two-armed robot is used and most humanoid robots[7, 8], of course, have two
arms. For bimanual tasks giving demonstrations becomes harder, because the user has to move two arms at the same
time and has to focus on the synchronization of both arms.
But training new robotic tasks not only consists of the generation of new robotic movements, but the user also has to
define the high-level task procedure. This procedure, in general, is a combination of different movements and gripper
actions. The high-level task also has to be defined by inexperienced users, so an understandable and simple task structure
must be applied.

Figure 1.1.: One planned scenario is that KoBo is au-
tonomously serving drinks to the people, so
they are encouraged to drink enough over the
day.

Figure 1.2.: Kobo also should learn new tasks which are
trained by nurses. This is the main motivation
of this project.

1

All in all the whole teaching process of a new task must be intuitive, easy to understand and controllable by inexperienced
users without robotic background knowledge.
The motivation behind this project is the KoBo robot, a robot that should assist the people and the nurses in a home for
elderly people. In the beginning, KoBo should do three different tasks: Serving meals for lunch and dinner, serving drinks
and snacks between the meals (Compare Figure 1.1) and buying and delivering things from a small shop. But KoBo also
should learn new tasks from the nurses, like shown in Figure 1.2. The development of a framework that allows every
human to teach the robot new tasks is the main goal of this project.
The used KoBo robot has two Franka Emika Panda[9] arms where each arm has seven degrees of freedom. These robotic
arms are mounted on a mobile platform, so the robot can drive around in the building. For the environmental recognition,
different sensors and an advanced image recognition system can be used.

1.2 Structure

This thesis is split into four important main parts and a conclusion:

Chapter 2: Foundations & Related Work
In Chapter 2 the related work concerning Imitation Learning in general, concepts for robot learning systems
and trajectory representation are discussed. Afterward, the two most important frameworks used in the project
are explained: Probabilistic Movement Primitives for the generation of trajectories and Behavior Trees for the
high-level task structuring.

Chapter 3: Own approach
In Chapter 3 the developed Imitation Learning system is described. At first, the representation of high-level tasks
is explained and in the second section a simple process of training a new task is developed. This also includes a
special teaching process for ProMPs which should make it possible for everyone to train new ProMPs. The third
section describes the development of a new robot controller used for the teaching and execution steps.

Chapter 4: Implementation
Chapter 4 shortly describes the robot setup, the structure of the developed software and the user interface, used
in the training process.

Chapter 5: Experiments
The whole system is evaluated in Chapter 5. This is done by a user study with inexperienced users. The results are
analyzed concerning the training success, common errors and the user feeling about the teaching process. Besides,
the trained ProMPs are analyzed to evaluate if the training of ProMPs by inexperienced users is feasible.

Chapter 6: Conclusion & Future Work
In the end, Chapter 6 concludes all findings and reports future work that can be done to further improve the
framework itself and Imitation Learning with inexperienced users in general.

2

2 Foundations & Related Work
This chapter presents important related work about Imitation Learning with robots and explains two important frame-
works used in this project: Probabilistic Movement Primitives and Behavior Trees.

2.1 Related Work

In this section an overview about related work in the area of Imitation Learning in general and Imitation Learning with
robots is given. At first different developed teaching concepts and user studies on teaching robots are presented. The
second part focuses on the representation of the trained motions with Movement Primitives.

2.1.1 Imitation Learning

The programming of autonomous systems like robots becomes more challenging for a more complex and unstructured
environment. Programming the desired behavior with classical methods is often not possible, while humans can easily
perform the desired task. The main idea of Imitation Learning is to use the knowledge of the human expert who actually
can perform the desired task and porting it to the robot. For humans, it also often is possible to give demonstrations on
how the robot should perform the desired task.
So the knowledge of people with expert knowledge in one field can be used to train the robot, even if they have no
knowledge of robot programming. In many further works[4, 10] it is proven that this kind of programming a robot is a
promising approach. One of the first systems using this technique successfully is the autonomous car ALVIN[11], which
learn to map sensor inputs to a steering output and was able to drive driver-less.
In general, different Imitation Learning approaches can be distinguished by the goal they should learn and the methods
they use. A detailed overview of a lot of different approaches is given in [12]. The simplest Imitation Learning approach
is behavior cloning which is using supervised learning to clone the demonstrated behavior[5, 13]. It is working well with
applications where the whole used state-space is covered by demonstrations but normally fails if the system leaves the
trained part of the state-space. So it should be only used in clear environments there the failure has no fatal consequences.
To improve the learned policy, the behavior can be trained afterward with an interactive human expert that gives feedback
to the system[14, 15]. This is called interactive Imitation Learning or direct behavior cloning and can help to create
policies that generalize a much better to unknown situations. The disadvantage is that the learning proves needs a
human expert who can assess how well the robot executed his task.
If this is not possible, Inverse Reinforcement Learning[3] can be used to learn a reward function from the given demon-
strations. Then the robot can train his policy using this reward function and reach the desired goal. These methods can
achieve very impressive results, but they are also much more difficult to use than for example behavior cloning.

2.1.2 Robot Learning

Imitation Learning for robots is a complex task, especially if robot arms with a high number of degrees of freedom are
used. In general, the robot has to learn a high-level procedure and additionally some low-level robotic movements. Both
parts are very important for successful robot functionality. The development of the whole teaching process becomes more
difficult in our case because we want to focus on an intuitive and simple to use teaching process. Section 2.1.2.1 deals
with the teaching of robot behavior in general, the robot movement teaching is described in sections 2.1.2.3 and 2.1.3.

2.1.2.1 Teaching Concepts

In [16] a programming by demonstration framework is developed with the focus on generalizing the acquired knowledge
to different contexts. To do this, it extracts the relevant features of the demonstrations with probabilistic methods. The
framework is tested on a humanoid robot with different manipulation tasks and shows good behavior. One problem for
our use case is that there is no focus on an intuitive learning process, so the generation of demonstrations may not be
easy to perform.
The intuitive learning process is focused in [14]. They developed a framework to teach high-level tasks to the robot in a
similar way humans teach each other. At first, the human teacher gives a demonstration, then then the robot can practice

3

(a) Teaching different simple manipulation tasks[16]. (b) Teaching industrial assembly tasks[17].

Figure 2.1.: In [16] a small humanoid robot is used to evaluate the generalization of the acquired knowledge. Kinesthetic
teaching is used to give the demonstrations, but no intuitive teaching process is used.
The teaching of industrial assembly tasks is focused in [17]. The programming is done on object level and
needs CAD models of all objects. This is a good and intuitive approach for industrial applications, but not
applicable in an unstructured household environment.

the behavior under the supervision of the teacher. The teacher gives feedback or can generate additional demonstrations
if the behavior of the robot is not good enough or it should learn a more general behavior. This system is tested on a
mobile robot with a GoTo and pickup task and is working well. The approach of imitating the human to human teaching
process is promising, but it is only tested with a very small set of actions. A robotic arm is much more complex because
it has more degrees of freedom and can execute a lot more actions. So the development of a similar teaching process for
robotic arms may be hard.
In [18] the intuitive teaching process is also focused. The robot should learn new tasks by observing humans and listening
to speech commands. The robot is controlled by speech commands and also the generation of behavior networks is done
by a set of speech commands. Besides, the human can interact with the robot to let the robot learn from demonstrations.
This concept also is a promising approach in terms of an intuitive teaching process, because the robot can be trained only
by speech and no other input is needed. The whole process uses some dialog and the robot asks questions to learn, which
makes it also similar to teaching a human. An open question is if it is straightforward for inexperienced users to create
the task structure by speech. Another point is that the system also is tested on a mobile robot with only a small set of
actions and not on a robotic arm.
In [19] the task level learning and planning are treated. The designed system learns the goal of the task and uses a
task planner to reach the learned goal. Some tasks can have underlying constraints that must be fulfilled to reach the
goal. These constraints can be defined directly by the teacher or are detected automatically by the robot from multiple
observations. To do this the demonstrations are abstracted to a state sequence, which is then used to learn the sequence
order and some underlying constraints. The system is tested on a mobile robot with a mounted robotic arm and some
pick and place tasks. So it is proven that the system can be used for more complex tasks. This approach is not focusing
on an intuitive process especially, but the whole learning process is very promising.
In [17] a framework for using robots in industrial small lot production is developed with a focus on reducing the needed
robot expert knowledge. Instead of teaching the task-space position the programming is done based on the object level.
So the human teaches how the robot should manipulate the different objects to assemble them. This system is based on
CAD models of the objects, so it is not applicable to our task. Another framework with industrial background is presented
in [20, 21] which should allow novel end users to train complete robotic tasks. It uses object recognition and predefined
SmartMoves but it is not possible to train full generalizable trajectories.

2.1.2.2 User Studies

The previously stated works explored the robot learning process in general and also worked on human-like concepts,
but they were not looking at the user and which methods are preferred by him. In the case of this project, especially
inexperienced users with no robot or computer science knowledge are important, because this is the target group of our
system. In the following, a short overview of some user studies about this topic is given.
The study [22] explored the satisfaction of nave users teaching some simple manipulation tasks to a small humanoid
robot. The main goal was to understand how the user can teach successful and also is satisfied with the result. To train
the robot learning by demonstration based on direct contact interaction is used. To control the whole teaching process
speech output and commands are used. The interesting result for this project is that most users were able to carry out
the teaching task successful. Another important point is that the users are willed to show more demonstrations to the

4

(a) User-study teaching a humanoid[22] (b) User-study on assisted kinesthetic teaching[24]

Figure 2.2.: The user satisfaction is evaluated in the user-study [22], shown in Figure 2.2a. Most users were able to carry
out the teaching task successful using kinesthetic teaching. In [24] an assisted kinesthetic teaching mode is
used to train complex robot trajectories with unexperienced users, like shown in Figure 2.2b. One focus is the
avoidance of collisions with the environment.

robot to create better results. This is a gratifying result because giving multiple demonstrations is needed for learning
trajectories that can be generalized well to new situations.
An interesting point is that most users were unsatisfied with the lack of technical background information they had. This
makes sense because the users were not experienced with robots, but it also caused some fears of contact with the robot,
because they are afraid of doing things wrong. So it should be helpful to give some technical background knowledge
to the user before they use the robot. The open question is, which information is needed and should be given to them
without overtaxing them.
In the study, a highly guided concept is used to teach the robot. This seems to perform well with inexperienced users, so
it also should be considered for this project.
In [23] the teaching with teleoperation and kinesthetic teaching is compared. To do this the same learning process is
used for both methods, but the demonstrations are created with different methods. The study is done with a simple
manipulation task on a 7-DOF robot arm. The main results are that the users can give demonstrations with kinesthetic
teaching more successful and faster than with teleoperation.
These were the objective results, but also the subjective feeling of the users is important because they must accept the
learning system. The results about these are that the users think that kinesthetic teaching also is easier and that they can
give more accurate demonstrations using it. So it seems like kinesthetic teaching is the more promising approach to give
demonstrations.
The user study [24] focuses on kinesthetic teaching. They developed a special kinesthetic mode that assists the user
during the demonstration recording phase: At first, the users train the desired null-space position for important points
in the task space. After that, the user only has to move the end-effector and the null-space of the robot is controlled
automated. In this scenario, this technique is used to avoid collisions. The developed system is very powerful and makes
it simple for the user to generate complex trajectories. This also is proven by the user study: Most users were able to
train the given task successful.
In [25] also an assisted teaching mode is developed: The user gives one demonstration, then the user repeats the
movement a few times with increasing stiffness and the user can improve the robot movement. Using this system the
users created much better demonstrations. Another important point is that the user is satisfied with the assistance and
prefers using it.
Both studies show that kinesthetic teaching, in general, can be used successfully by most users. Using some assistance
techniques to support the user can increase the quality of the demonstration a lot.

2.1.2.3 Concepts for Demonstration Generation

The generation of demonstrations is one of the most important parts of the Imitation Learning process. Except for
kinesthetic teaching, there are a lot of other methods to generate demonstrations. This section gives an overview about
them.
A lot of systems use teleoperation to control the robot in the teaching phase. On concept using an exoskeleton is shown
in [26]. The human arm joints are recorded by an exoskeleton, which allows precise measurement and avoids a few
problems concerning the joint calculation. But all in all the usage of an exoskeleton is not rational in the most use-cases.
Especially if the learning process should be intuitive, the exoskeleton is not preferred.
A similar approach is used in [27]. Instead of using an exoskeleton to record the human joint angles, IMUs are used.
This makes the system much more flexible and more comfortable to use. The human joints are mapped to the robot and
the robot is imitating the position of the human arm. This concept also is used in [28], but now extended to two arms.

5

Figure 2.3.: Different teleoperation systems can be user to remote control robots. The two left images show a exoskeleton
for human arm recording which is used in [26]. A similar concept is used in [28], but the human joint recording
is done by IMUs. A completely different approach is the robot control in virtual reality[29], shown in the right
image.

Both arms can be controlled independently with the two human arms, but it also exists a special coupled mode, where
one arm follows the other with a fixed relative end-effector position. This system makes it much easier to control both
robot arms synchronous.
One general problem of all methods that map the human joints to the robot arm is that this mapping cannot be done
directly, because the geometries of the human and robot arm differ. Also, the geometry of a human arm is not equal for
every human. This makes the teleoperation process more difficult.
A completely different approach is used in [29]. In this project the demonstration is created in virtual reality, using a
headset and some hand tracking devices. The robot grippers can be controlled by the hand tracking devices while the
user is seeing the objects in virtual reality. This system may work well, but in general, this setup is very complex and the
usage of virtual reality is very unintuitive for new users.
To avoid all technical problems concerning robot teleoperation, the learning also can be done directly from the human
movements, which is shown in [30]. The human joints are recorded, then the learning is done and the learned behavior
is executed on the robot. This procedure may work for some tasks, but it seems to not be very reliable and save.
Because of the mentioned problems the most systems use kinesthetic teaching to generate the demonstrations. In [31]
and [32] it is shown that kinesthetic teaching can be used to train complex tasks and the user studies [24] and [25]
occupy that it can be done also by inexperienced users.

2.1.3 Trajectory Representation

After generating the demonstrations the second important part of Imitation Learning[16, 6] is the modeling of the trained
movement and the generation of new trajectories. The main goal when learning from demonstrations is to reproduce and
generalize the demonstrated behavior. Generalization means that the movement should deal with a new situation that is
not exactly trained but is similar to the demonstrations. Often needed examples are new end-points or the definition of
via-points.

2.1.3.1 Movement Primitives

An approach often used in this context are Movement Primitives[13, 33, 34], which are a Behavior Cloning method. A
Movement Primitive describes one part of a more complex robotic movement and this should make it possible to compose
a complex robot behavior out of a set of simple blocks. To do this it is necessary to combine two Movement Primitives,
which is often done by activating both and blending them in each other to get a smooth movement. As told before, the
modulation to new target, via-points and speeds must be possible. Movement Primitives are in general a time-or-phase
based[35] representation of movements.
One of the first Movement Primitive frameworks that can handle all mentioned challenges were Dynamic Movement
Primitives(DMP)[13]: They use simple nonlinear systems to model the movement and were used in the beginning to
model the motor behavior of robots, but they also can be used for more high-level trajectories. DMPs can learn from
demonstration data and support spatial and temporal coupling. Although generalization to new end-points is possible.
In a lot of projects it is proven that DMPs can describe complex tasks, for example ball throwing[36] and pancake
flipping[37].
A newer approach working on the same problem are Probabilistic Movement Primitives(ProMP)[5, 38]. They are a
general probabilistic framework for representing and learning Movement Primitives and one ProMP is a distribution
over a set of demonstration trajectories. Because they use probabilistic methods, the modulation can be done simply by

6

Figure 2.4.: Bimanual Tasks can be classified in three different categories[46], depending on the needed synchronization
between both hands.

conditioning. For temporal modulation also a phase variable is used. One further advance of using probabilistic methods
is that they can describe the variance of the movement. This can be used to evaluate how safe the execution is at different
points.
The capability of ProMPs can be extended by a lot of different extensions like Interaction ProMPs[39] for interactions
between robots and humans, online adaption of ProMPs[40, 41] and sequencing ProMPs[42, 43].
There also exist some newer and less common Movement Primitives like the Impedance Based Movement Primitives[44]
where task-parametrized statistical dynamical systems are used. Another probabilistic framework are Kernelized Move-
ment Primitives[45]. The structure is similar to ProMPs, but they reduced the number of open parameters by using
kernel-based nonparametric methods. The main advantages are the handling of unpredicted situations like obstacles or
external perturbations and the extrapolation capabilities.

2.1.3.2 Two Arm Movement Primitive Concepts

Bimanual tasks can be split into three different groups, which are described in [46] and shown in Figure 2.4: The first
group includes uncoordinated two-arm manipulations which includes all tasks where both hands fulfill a manipulation
but no coordination is needed. The tasks for each hand can be executed independently, so an uncoordinated two-hand
manipulation can be split into two single-arm manipulations. This case can be treated by normal Movement Primitives.
If synchronization between both arms is needed, the task is called a coordinated two-arm manipulation, which can again
be divided into two groups: In symmetric coordinated tasks both hands manipulate the same object and create a closed
kinematic loop. In asymmetric coordinated tasks, both hands manipulate different objects.
For coordinated bimanual tasks, it is necessary to define a Movement Primitive that can describe the movements of both
arms and couples them. The usage of two independent Movement Primitives will directly lead to different problems,
especially with the synchronization and execution of the two arms. On this topic, much less research is done, compared
to Movement Primitives in general.
One simple approach is the usage of one Movement Primitive with doubled dimension[39] and each half of the Movement
Primitive describes one arm. This introduces a stochastic coupling of both arms and also allows generalization to new
situations for both arms, but it is not using coupling in the execution phase.
This can be necessary if the robot interacts with objects because a slightly wrong path of one arm can lead to high tension
on the carried object. To avoid this problem, two independent Movement Primitives can be used which are coupled over
force feedback[47]. Other approaches are the usage of DMPs which are coupled by a formation control[48] or Movement
Primitives together with symmetric control[49] to generate a system that is compilable in the absolute task but stiff in
the relative position of both arms.

7

2.2 Probabilistic Movement Primitives

A common approach to represent a robot movement are Movement Primitives. They can be used to generate robot
trajectories for one task and are adaptable to new situations, for example, a new end-position of the task. An often-used
framework are Dynamic Movement Primitives(DMP)[50]. They describe the movement as a dynamic system, guarantee
stability and can be adapted to other end positions or temporal scaling.
The adaption of DMPs to new situations is possible, but not very smooth. Because of this the newer framework of
Probabilistic Movement Primitives(ProMP)[5] is used in this project:
ProMPs use probabilistic methods to describe the movement. At first, every trajectory is approximated by a set of basis
functions and the belonging weights:

yt = Φ
T
t w + εy (2.1)

yt is the trajectory, εy N (0,Σy) i.i.d. Gaussian noise and Φt is the time-variant basis function vector. As basis functions a
set of normalized Gaussian functions is used, shown in Figure 2.5. The number of basis functions is fixed for one ProMP,
but it can be useful to change it for different ProMPs depending on the trajectory complexity. To avoid timing problems,
a phase variable z is used that equals a normalization of the trajectory duration. So one Trajectory yt can be described
only by the calculated weights and the duration.

p(τ|w) =
Y

t

N
�

yt |ΦT
t w ,Σy

�

, p(τ;θ) =

Z

w

p(τ|w)p(w ;θ)dw (2.2)

ProMPs use probabilistic methods to describe a distribution over the demonstrated trajectories . To do this, several
trajectories are needed and every trajectory is described by its weights. The probability to observe a trajectory τ under
a given weight vector w is p(τ|w) with the mean ΦT

t w and the observation noise Σy . In the next step, a distribution
p(τ|θ) with the parameters θ over the weights of all trajectories is established. It can be used to calculate the trajectory
mean and variance at each time step.
The previous model is only working for one-dimensional trajectories, but real robot trajectories have a higher number
of dimensions. An easy approach is to model each dimension independently and couple them by the phase variable.
This is possible and provides good results for easy trajectories, but it would be better to introduce the coupling in the
probabilistic model. To do this every dimension i is approximated by a weights vector wi and the combined weight
vector w is defined as w = [w T

1 , ..., w T
n]

T . The basis matrix Φt is extended to a block-diagonal matrix Ψ t and the
observation vector yt contains the observations for all dimensions:

p(yt |w) =N





















y1,t

...

yn,t











�

�

�

�











ΦT
t · · · 0
...

. . .
...

0 · · · ΦT
t











w ,Σy











=N (yt |Ψ t w ,Σy) (2.3)

Because it is assumed that everything is Gaussian distributed the calculation of p(yt |θ) can be done easily from example
trajectories. Equation (2.2) can be combined with the distribution other the weights p(w ;θ) =N (w |µw,Σw) which also
is assumed to be Gaussian.

p(yt ;θ) =N
�

yt |ΨT
t µw ,ΨT

t ΣwΨ t +Σy

�

(2.4)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

z

Φt

0 0.2 0.4 0.6 0.8 1

0

2

4

6

z

yt ΦT
t w

P

ΦT
t w

Figure 2.5.: The left figure shows the normalized Gaussian basis functions depending on the phase variable z(the normal-
ized time). The right figure shows an example function yt , the belonging weighted basis functions and the
sum of all basis functions, which results in an reconstruction of yt .

8

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

z
0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

z

Figure 2.6.: The left figure shows an example ProMP with mean as red line, 2σ surrounding and the example trajectories
as dashed lines. On the right side the same ProMP is conditioned on an observation, marked as blue cross.
The red line is the mean of the determined trajectory.

In summary, the distribution over all trajectories p(yt ;θ) which represents the ProMP and has the parameters θ =
{µw ,Σw } can be determined by approximating all demonstration trajectories by their weights and then evaluate the
mean and variance of the weights. A one dimensional example ProMP is shown in Figure 2.6.
It is possible to generate new trajectories from the ProMP depending on any number of via-points. The via-points are
known points on the goal trajectory, often the start or endpoint. In general the observed state is called y∗t at time t. The
observation x t = [y∗t ,Σ∗y] is added to the probabilistic model of the ProMP and the Bayes Theorem is applied to get the

distribution p(w |x ∗t). The conditioning results in a distribution with mean µ[new]
w and Σ[new]

w :

µ[new]
w = µw +ΣwΨ t

�

Σ∗y +Ψ
T
t ΣwΨ t

�−1 �
y∗t −Ψ

T
t µw

�

(2.5)

Σ[new]
w = Σw −ΣwΨ t

�

Σ∗y +Ψ
T
t ΣwΨ t

�−1
ΨT

t Σw (2.6)

The desired trajectory can be calculated using µ[new]
w . An example of a conditioned ProMP is shown in Figure 2.6. You

can see the trained ProMP and the new determined trajectory using conditioning. The observation is matched exactly
and the whole new trajectory is completely smooth and lies within the trained ProMP. This is a huge benefit across from
other frameworks like ProMPs because they do not show this behavior.
You can also combine and blend two different ProMPs, but this functionality is not used in this project. The belonging
methods are described in [5].

9

2.3 Behavior Trees

Behavior Trees are a new way to structure the behavior of autonomous agents, like robots or virtual entities in video
games. They are used to control the switching between different subtasks and create a modular and reactive system.
They were developed by the game industry to increase the modularity of Non-Player-Character control structures. Mod-
ularity is a key attribute in this field because it allows parallel development and much easier testing of the very com-
plex game software. After the introduction in games, they were also used by academia to control different robotic
applications[20, 51]. This is a very similar use case because in both applications you have an agent that should perform
different subtask and has to make decisions about his behavior.
At first, the structure and functionality of Behavior Trees are explained, after that, it should be compared to more classical
approaches like State-Machines.

2.3.1 Classical Formulation of Behavior Trees

The classical Behavior Tree, like it is introduced in [52], only needs a very small set of components to generate a task.
As the name says, the task is structured like a tree: The tree has internal nodes and leaf nodes. Internal nodes control
the procedure and which subtask should be executed. So they are called Control Flow Nodes. The leaf nodes are used to
execute any action, they are called Execution Nodes.
Each Control Flow Node, except the root node, has one parent and one or more children. In the tree graphic, the child
nodes are placed below the node and the parent node is placed on top of it. In Figure 2.7 a simple tree which explains
this structure is shown.
The Behavior Tree is executed following a special algorithm: The root node generates a signal called tick with a given
frequency. This tick is sent to its first children and nodes are only executed if they receive the tick signal. The first child
is the left one in the tree graphic. If a node is executed it can either return immediately Success or Failure or it can return
Running until the action is finished.
Depending on the kind of Control Flow Node used, the tick shows a different behavior after one node has finished. In the
classical formulation four types of Control Flow Nodes are used, they are explained in the following.
The Sequence-node like shown in Figure 2.7 is the most important construct and is symbolized by an arrow. It ticks the
children from the left to the right, until one child returned Running or Failure. The next child only is ticked if the child
before returned Success. If one child returns Running the whole Sequence also returns Running to its parent. If one node
failed, the Sequence is stopped and returns Failure. The following nodes in the Sequence are not executed anymore.
The Fallback node also ticks its children from the left to the right, but it always ticks the next child until one returns
Success or Running. If the child returns Failure, the execution is not stopped like in the Sequence, instead the next child is
ticked. If one child returns Success the Fallback node also returns success and the following children are not executed. If
all children fail, the Fallback node returns Failure. The Fallback node is symbolized by a question mark.
The third type is the Parallel node. It ticks all N children at the same time and returns Success, if more than M children
returned Success. M is a predefined threshold value. The Parallel node symbol is the ⇒ arrow.
Decorator nodes describe a group of nodes that manipulate the return status of their child. They can only have one
child and use a diamond as a symbol as shown in Figure 2.10. The Decorator can have two different functions: It can
manipulate the return status by a defined rule, for example, it can invert it or can always return Success. The second
function is that it can manipulate the control flow. An example is that the child node only is ticked n-times or can only
be executed for T seconds until the Decorator returns Failure.
The execution nodes are split in Actions and Conditions. Actions can perform anything the developer wants to do and need
to be developed for different tasks. They can return Running, Success or Failure. The Condition checks a custom condition
and immediately returns Success or Failure.

→

Child 1 Child 2 ... Child N

Figure 2.7.: The Sequence Node ticks its N children from
the left to the right until one child returns Fail-
ure.1

?

Child 1 Child 2 ... Child N

Figure 2.8.: The Fallback Node ticks its N children from the
left to the right until one child returns Suc-
cess.1

10

⇒

Child 1 Child 2 ... Child N

Figure 2.9.: The Parallel Node ticks its N children at the
same time.1

Action Condition

δ

Child

Figure 2.10.: The Action, Condition and Decorator node δ
are nodes that can be defined by the user
and execute every wished behavior.1

?

→

?

Ball Found Find Ball

?

Ball Close Approach Ball

?

Ball Grasped Grasp Ball

Ask for Help

Figure 2.11.: Example Behavior Tree that is used to grasp a ball. At first the ball is searched, then it is approached and
afterward grasped. If one of the steps fails, the robot asks for help.1

Nodes can also have a memory, for example, a Sequence that only ticks its children until they succeeded one time, can be
used. Another important fact is that every child can be a single node or a complete subtree. This increases the modularity
of the concept.
An example tree using Sequences, Fallbacks, Actions and Conditions is shown in Figure 2.11. It describes the task of
grasping a ball with a robot on a high abstraction level. The execution starts on the left side, so at first, it is checked if a
ball is found. If not the Find Ball action is executed. When the robot can find a ball the next Fallback is executed, if not
the first Fallback fails and because of this the whole Sequence fails and the robot asks for help.

2.3.2 Comparison With Other Architectures

Next to the new Behavior Tree framework a lot of other common frameworks exist and were used in different applications.
One of the standard approaches, Finite State Machines, is compared to Behavior Trees in the following.

2.3.2.1 Finite State Machines

The most common model to structure complex tasks in computer science are Finite State Machines(FSM). The general
structure is very clear because only states, transitions and events are used to describe the task. This is one of the
main advantages of FSMs: The are very intuitive and easy to understand[52]. Because of the clear structure, the
implementation is also easy. An additional important point is that they were used for years in all parts of computer
science, so it is a very well know concept.
But FSMs also have two important problems: One problem is the lack of modularity, which is especially important for
larger projects like robotic tasks in this case. It is necessary to create independent modules and reuse them on the next
higher organizational level. This is hard to do with FSMs, because they need a lot of transitions between the states. To
integrate one module it often is necessary to connect it with different other states, which is unpractical for an increasing
number of states.
The second problem is reactivity. The system should react to changes in the environment immediately. This can be
reached in a FSM by using a high number of transitions which often ends in a nearly fully connected network. In
general, this is no problem, but like told before it makes the modularity harder. So there is a trade-off between the two
characteristics reactivity and modularity.

1 All Behavior Tree Examples are taken from [52].

11

2.3.2.2 Hierarchical Finite State Machines

To overcome the modularity issue the Hierarchical Finite State Machine(HFSM) was developed. In this concept, super-
states were introduced which can have a set of substates and transitions between the substates. This has the advantage
that the number of transitions between the superstates can be reduced and that again increases the modularity.
Reactivity is still hard to realize and nevertheless needs a high number of transitions. In addition to the explained
disadvantages, a higher number of transitions results in the creation and later editing also becomes harder. A complete
comparison of Behavior Trees with FSMs and HFSMs including some examples can be found in [52].
The advantage of using Behavior Trees for robotic tasks is that they were specially developed to fulfill the modularity and
reactivity requirements of an autonomous agent. FSMs are a way more general concept and are also used in completely
different projects. With Behaviour Trees it is very easy to develop independent modules because they can be simply
formulated as a subtree.
The Reactivity is introduced by the usage of different Control Flow Nodes. The usage of the Sequence and Fallback nodes
is much more comfortable than the creation of a highly connected FSM. The only big disadvantage of Behavior Trees is
the much higher implementation complexity. It is not possible to implement is with little code on your own, instead, it is
necessary to use a libraries like [53].

12

3 Own approach
This chapter presents the developed intuitive Imitation Learning framework. It is structured from the high-level to the
low-level: At first the designed task structure is explained, afterward the teaching processes for this task structure are
shown. In the third part, the development of a new low-level model-based robot controller is explained.

3.1 Task Representation

The robot should perform different exercises, which can be created by the user. To organize all exercises, a structure
is needed that contains all relevant information about the task. It also can be used to create new tasks and saves all
information. This structure should be used by inexperienced users, so it needs to be easy to understand. In this project,
an own structure is developed which is based on different layers and is introduced in this section.
The new structure should be explained in an example shown in Figure 3.1. In the example exercise the robot should
place a glass on a tray. This high-level exercise now is called Task and the Task layer is the first layer of this structure.
Tasks are high-level commands, they are on a human communication level. You can compare them to the commands two
humans give each other, if they work together, so every user should understand what a task is doing. The example task
is used to put a glass on a tray and is called Put glass on tray.

Task
Put glass on tray

Skill 1
Move to glass

Action 1.1
Move to task space position

Action 1.2
Run ProMP

Skill 2
Grasp glass

Action 2.1
Grasp

Skill 3
Move to tray

Action 3.1
Move to task space position

Skill 4
Release glass

Action 4.1
Open Gripper

Figure 3.1.: Structure of an example task which puts a glass on a tray. The task consists of four mid-level skills and each
skill has some low-level actions. The actions match commands the robot can execute directly. Skill 1 has two
actions, because the robot arm should follow a special trajectory while moving to the glass.

In general, every task consists of some different steps which are executed as a sequence. These steps define the second
layer of the task representation structure and are called Skills. In the example Task the different Skills are Move Gripper
to Glass, Grasp the Glass, Move the Glass To Tray and Release Glass. The Skills should be created by the user so it may
distinguish between different users how many Skills they use and what they are doing exactly. The Skill layer is a bit
more low level orientated than the task layer, but Skills are still a more human-level description of the behavior. It can
be compared to the way a human explains an exercise detailed in a manual.
To create a behavior the robot can execute the third layer is used. This layer is called the Action-layer and consists of
commands the robot can execute directly. Every Skill uses one or more Actions. The decision how much Actions are used
in a Task lies with the user. It is possible to define very general Skills with fewer Actions, for example, to open the gripper.
But sometimes it also can be useful to define more specific Skills with some more Actions, for example, if a complex
movement with some via-points must be executed.

3.1.1 Action Definition

Actions are the lowest level in the used representation structure and define commands that can be executed directly by
the robot. The number of needed Actions should be minimized to create an easily understandable system. So every
Action has parameters that allow the generalization of the robot behavior and the reuse-ability in different Skills and
Tasks.

13

Table 3.1.: All used Actions

Action Node Function Usage

GoToCartAction Moves the end-effector to a desired position in task space Move to object

GoToJointAction Moves the robot to a desired position in joint space Move to fixed position

RunPrompAction Executes a ProMP Execute a movement

GraspAction Executes a grasp with the gripper Grasp

MoveGripperAction Moves the gripper to desired width -

Action Definition

Actions are the low-level nodes of the task representation structure. They are commands the robot can directly
execute and use parameters, so they can be reused for every new exercise. The user cannot create new Actions,
he only can define the parameters to adapt their behavior to the new situation.

It is not allowed and necessary for the user to define new Actions, so all Actions are predefined. A detailed overview of
all Actions and how they should be used is given in the following, a short summary is given in Table 3.1.
In general, for every basic robot behavior, one Action is needed. The robot behavior can be split into moving the robot
arm and using the gripper. To Move the robot arms three kinds of movements are available: The GoToCartAction, the
GoToJointAction and the RunPrompAction.

3.1.1.1 GoToJointAction

The GoToJointAction is the simplest Action to move the robot, it moves the robot to a defined position in joint space.
The Action is a simple GoTo command, so it is not following a special trajectory or supports via-points to precise the
movement. It only is necessary to define the desired joint position, the trajectory to reach the goal state is calculated
automated.
This Action always moves the robot to the exact same position and no generalization to new situations is provided.
Because of this, the action should not be used for object interaction tasks. They require the adaption of the desired
position to the object position. To make this clear to the user the GoToJointAction is called Move to fixed position in the
user interface.

Table 3.2.: Parameters of the GoToJointAction

Parameter Type Value Range Description

desired_joints array[7] - Desired values for all joints

duration numeric - Duration to reach the desired position

robot arm enum left, right Which robot arm should be moved

3.1.1.2 GoToCartAction

The second type of robot movements is the GoToCartAction. In principle, it is similar to the GoToJointAction, because it
also defines a GoTo command with automated trajectory calculation. The main difference is that this Action moves the
robot arm to a desired position in the task space and not in the joint space. The pose in the task space is defined as
position and orientation.
The desired pose can be defined in every known frame the robot is using and the transformation to the robot frame
is done completely automated. This has the advantage that the pose can also be defined in the object frame, which is
equal to the relative position of the gripper to the object. If the relative pose between object and gripper is known, the
movement can be easily generalized to new situations, like changing object positions.

14

Table 3.3.: Parameters of the GoToCartAction

Parameter Type Value Range Description

desired pose pose - Desired pose (position, orientation and frame) for the gripper

duration numeric - Duration to reach the desired position

robot arm enum left, right Which robot arm should be moved

This is one of the most important requirements on object interaction and pick and place tasks and also the majority of
exercises in our project are connected to objects. To make this understandable for the user this action is simply called
Move to object. So the user can decide if he wants to move the robot to a fixed position, which means the usage of a
joints-space command, or if he wants to interact with an object and use a task-space command. This decision can be
made without any knowledge about joint and task space in general and simplifies the usage of different movement types
a lot.
One point on this partition is that it is not possible to perform task-space movements in the base frame of the robot, but
this is not required if you think more about it.

3.1.1.3 RunPrompAction

The two previous movement Actions are only GoTo commands, so they cannot execute a special trajectory. For some more
complex tasks, it can be necessary to follow a defined way, for example, to avoid obstacles or moving to the grasping
position from a defined direction. This often is easier when the whole trajectory can be defined instead of single positions.
Although the generalization of the defined trajectories to new situations must be possible. That is especially important
if objects at different positions should be manipulated like in this project. To fulfill these requirements the ProMP
framework, which is explained in Section 2.2, can be used. ProMPs can be trained from demonstrations and allow the
creation of trajectories that can be generalized to new end-positions. The training of new ProMPs and conditioning to
new situations are described in Section 3.2.3, this part only explains the execution.
Every ProMP is recorded in both task- and joint space and also can be executed in both control modes. In general, it is
required to reach a defined position in the task space, so the execution in task space is the default mode. Each ProMP
also can be connected to an object, because they are recorded in the object frame. This allows a completely automated
conditioning process.
With ProMPs it is also possible to move both robot arms at the same time that is not possible with the two different GoTo
commands. So ProMPs also should be used for bimanual tasks that need synchronized movements of both robot arms.
To make the whole concept of following a trajectory understandable for the user, the Action is called Execute Movement
in the interface.

Table 3.4.: Parameters of the RunPrompAction

Parameter Type Value Range Description

promp name string - Name of the ProMP

control mode enum cart, joint Control mode for execution

duration numeric - Duration of the trajectory

robot arm enum left, right, both Which robot arm should be moved

3.1.1.4 GraspAction

To use the gripper the robot can execute two Actions: The GraspAction and the MoveGripperAction. The GraspAction
performs a grasp with a defined grasping force. This can be used for grasping objects with not exactly known shapes
and holding them afterward. The robot closes the grippers until the specified force is applied to the object between
the gripper. This procedure makes the grasping process much easier because the grasping and fixation afterward are
automated. The most important parameter of this Action is the grasping force because it distinguishes between different
hard and heavy objects.

15

The GraspAction can also evaluate if the performed grasp was successful. To do this, an interval for the grasping width
(gripper width ± gripper epsilon) can be defined in which the object is expected. If the gripper cannot apply the desired
force in the specified gripper width range, the grasp fails. This allows the detection if no object is grasped.

Table 3.5.: Parameters of the GraspAction

Parameter Type Value Range Description

grasping force numeric 0 - 70 Desired applied force to the object in N

gripper width numeric 0.0 - 0.08 Expected width of the gripper in m

gripper epsilon numeric 0.0 - 0.04 Allowed range for the gripper width in m

gripper speed numeric 0.0 - 0.05 Value how fast the gripper should move

robot arm enum left, right Which gripper should be used

3.1.1.5 MoveGripperAction

The MoveGripperAction is very simple and only moves the gripper to a defined opening width. The used parameters are
described in Table 3.6. It is not useful for grasping exercises, because in general it is not exactly known how big the
grasped object is. So this action only is needed to open the Gripper after it grasped an object. To avoid confusion a Skill
is predefined to open the two grippers and the MoveGripperAction is not available for creating new skills.

Table 3.6.: Parameters of the MoveGripperAction

Parameter Type Value Range Description

gripper width numeric 0.00 - 0.08 Width of the gripper in m

gripper speed numeric 0.00 - 0.05 Value how fast the gripper should move

robot arm enum left, right Which gripper should be used

3.1.2 Skill Definition

Actions are only very general commands the robot can execute. To define the desired behavior of the robot in a specific
task the user has to create new Skills. Skills are the mid-layer of the task representation structure. One Skill consists of
one or more Actions that are executed in a sequence.
The Skill should define all parameters of the Actions it contains, so it can be said that a Skill is a sequence of parametrized
Actions. In general, it can be useful to define Skills with some parameters, for example, if the same skill can be used
on the left or the right arm. In the definition of the structure and the used implementation, this is allowed, but for the
first version of the system, this functionality is blocked, because it is not clear how successful the users use the Skill and
Action structure. Understanding the structure is much easier if a Skill has no parameters and defines all parameters of
its Actions. The only disadvantage of not using Skills with parameters is that a few more Skills are needed. This is not a
problem in the beginning, because the total number of skills will be still small enough.

Skill Definition

Skills contain a sequence of one or more Actions which are executed after each other. They define all parameters
of the belonging Actions. Skills should define a small step of the robot behavior which is big enough to be a
human-understandable step. The user should create new Skills on runtime without coding and can reuse them in
different Tasks.

A Skill should describe a small step of a task and it should be possible for the user to understand intuitively what a Skill
is doing. Example for Skills are Grasp object_A or Move object_A while object_A is a specific object, for example a glass.

16

Skills should be defined specifically for every object and not for a group of objects. This reduces the reuse-ability of skills
a bit but makes the training process more simple. The user only has to focus on the one used object and has not to think
about generalization. For the example of grasping object_A, the user can define a special grasping position and set the
grasp action parameters. But at every time the robot should manipulate the same object again in a different task, of
course, the skill should be reused to reduce the teaching effort.
Another important point is that the user should create new Skills on runtime and without any coding to make the teaching
process intuitive. However Actions are not created on runtime, so at this point, less flexibility is needed. This must be
respected while implementing the whole structure.

3.1.3 Task Definition

A Task is the highest level in the task representation structure. It describes a human-level command the robot should
execute. The used structure of a Task is simple and clear to avoid confusion at the user. So a Task only is a simple
sequence of Skills. At this stage of the project, no conditions and other extensions are provided and needed for the most
pick and place task which should be executed. Before introducing more complex control architectures at first the reaction
of users to the framework should be tested and discussed. Afterward, the addition of some more complex control flow
functions to the Task structure can be considered.

Task Definition

A Task is a high-level command the robot should execute and the human user can intuitively understand. It
contains a sequence of Skills and executes them one after each other.

17

3.1.4 Structure Robot Behavior as Behavior Trees

The tree structure explained in the last sections is implemented using Behavior Trees. This has the advantage that it is
very easy to connect different actions and they also integrate the error handling if one Action fails. This makes the usage
very comfortable.
Behavior Trees support a lot of different functions like described in Section 2.3, but for this application, only some basic
nodes are used to keep the structure simple.
The main goal is to generate an easy to use structure that allows the generation of new tasks and skills without pro-
gramming knowledge during the runtime of the program. To reach this only the absolute basic functions are coded as
Actions nodes. Action nodes are coded in C++ and were compiled, so they cannot be adapted during runtime and it is
not possible to add new Actions for the user. A complete list of all action nodes is shown in Table 3.1.
Because the Actions are very general, they need to be specified for every task they should do. This is done in the Skill.
A Skill is not coded in C++, instead, the high-level Behavior Tree structure is used and every Skill is an own Behavior
Tree. To keep the structure clean, the skill-tree contains only one Sequence with any number of actions. This structure is
enough to reach all tasks in this stage of the project and it easy to create it automated by software tools.

GraspObjectSkill

→

GoToCartAction GraspAction

Figure 3.2.: Example of a grasping Skill as Behavior Tree. The Actions are basic functions to control the robot. The
information where the robot should move and how it should grasp the object is stored in the Skill.

A good example is a grasping skill shown in Figure 3.2: At first it is necessary to move the gripper to the desired grasping
position and as second to grasp the object. So the GoToCartAction and the GraspAction are used. The information where
the GoTo command should move the robot and how the Gripper should grasp the object is stored in the Skill-Tree.
Because these parameters are different for all objects it is necessary to create new skills for every object.
Every Skill describes only one small step, to complete a job different skills are needed in combination. This is done by
the Task which is similar to the Skill, but instead of Actions, it has Skills as children. So it also is a Behavior Tree with a
single Sequence, but every child is a subtree created from the different Skill-Trees.
In Figure 3.3 a example object moving task is described. It uses the GraspObjectSkill described before, then it moves the
object to the desired position stored in the MoveObjectSkill. After that, the object is released with the OpenGripperSkill
and the robot arm is moved back to a fixed home position.

ExampleTask

→

GraspObject MoveObject OpenGripper GoToHome

Figure 3.3.: Example of a Task described as Behavior Tree. The robot should move an object from one position to another,
so a GraspObject- and MoveObject-Skill are needed. Then the gripper is opened to release the object and the
robot goes back to the home position.

18

3.2 Teaching Process

The teaching process is one of the main aspects of this project. The aim is an intuitive process that can be used to
create completely new tasks. Intuitive means in this case that the system is structured simple enough that users without
background knowledge can use it successfully. From this start-point some key objectives about the teaching process can
be formulated:

• Create new tasks without coding

• Train the robot with Imitation Learning

• Use an intuitive user-interface

The first and most important point is that it must be possible to create completely new tasks without coding. It can be
assumed that the target group has no knowledge in computer science or programming, so coding would be a completely
new concept for them. Instead, the robot should be trained using Imitation Learning and an intuitive user-interface. Of
course, the user does not know what Imitation Learning is and how it is working. Because of this, the Imitation Learning
process must be created very simply and the user must be guided through the process. Every technical and mathematical
part of the Imitation Learning process must be done automated, to make the usage as easy as possible for the user.
To describe new tasks the structure explained in Section 3.1 is used. So it is necessary to train the complete task, which
is described in Section 3.2.1, and also new skills, which is described in Section 3.2.2. Besides, the user can train new
ProMPs to execute trajectories. Because the training of ProMPs is a bit more complicated, it is described in the extra
Section 3.2.3.

3.2.1 Task Teaching

The creation of a new task is the highest level of teaching in this project. At first, it is assumed that all needed skills are
available, so at this point, no skill teaching is needed. Starting from this, the teaching process is very simple and can be
compared to a human instructor who explains something using a manual. The user only has to tell the robot the steps it
should execute and the robot should execute them as a sequence.
This process is shown in Figure 3.4: At first the user selects a skill he wants to add to the task. Because the skill behavior
can be hard to imagine, the robot can execute the skill directly and the user can see if the robot behavior is equal to
his desired behavior. After the successful execution of the skill, the user can add the skill to the task. Because the user
only has to select skills and not to set any parameters or doing other training, this process is simple and should be
understandable for every user.
But for most tasks, it will be necessary to train some new skills, even if the user can reuse some other skills that were
trained earlier. This makes the process more difficult for the user because he has to think about the skills he needs. An
experienced user would preliminary plan how he wants to create a task, what skills he needs and afterward train them.
He also will focus on the reusability of the skill and will adapt his planning on this aspect. This is, in general, the best
approach, but it is not intuitive at all and would be confusing for inexperienced users. Because of this, the preliminary
planning is avoided completely in this teaching structure.
To do this the task teaching process directly includes the teaching of new skills, as shown in Figure 3.5. At the point
where the user selects the existing skills he also can choose to create a new skill. Afterward, he is guided through the
training process of the skill, which is explained in Section 3.2.2, can execute it if it is necessary and add it to the task.
This teaching process is much smoother and more interactive than the planning process, an experienced user would use.
The user only has to think about the next step the robot should do, he does not need to think about steps more in the
future.
One disadvantage could be that the reusability of the created skills is low because the users define very long skills. A
long skill with a lot of actions performs a very specific behavior, so it hardly can be reused. This does not affect the
programming of one task but increases the effort for designing multiple tasks using similar behaviors. Another possible
problem could be that the designed skill all have only one action. This increases the reusability of the skills but also yields
a very abstract skill that is far away from the human-understandable level a skill should have. But it is hard to predict
how inexperienced users would use the framework, so this must be examined in a user-study.

3.2.2 Skill Teaching

Skills define the specific behavior of the robot, so teaching new skills is the key feature of the teaching process. The
teaching of new skills should be done as an interactive process, where the user is strictly guided. This reduces the

19

Select Skill

Execute Skill

Add Skill

Select Skill

Execute Skill

Add Skill Finished?

Train Action

Select Action

Select Arm

Add Action

Finished?

yes

no

yes
no

create new skill

use skill

Figure 3.4.: The Task Teaching Pro-
cess can add excisting
Skills to a Task.

Figure 3.5.: The Extended Task Teaching Process combines the creation of the Task
itself and the creation of new Skills. The Skills and used Actions can be
trained directly.

amount of needed background knowledge and avoids user errors. The user studies described in Section 2.1.2.2 suggest
that kinesthetic teaching is the most promising approach and is also accepted by the user. Because of this kinesthetic
teaching besides of other interactive methods should be used for the robot training.
In the beginning teaching a skill is similar to teaching a task: The user now selects an action the robot should execute.
The difference at this point is that the action has parameters that must be defined. To define these parameters for every
action an own teaching process is needed. They are described in detail in the following.

3.2.2.1 GoToCartAction

The GoToCartAction is used for moving the robot gripper to a position relative to an object. At first, the user selects the
robot arm that should be used, afterward he selects an object the robot should interact with. If this is done the desired
position can be taught by kinesthetic teaching. The robot arm switches automated to the zero gravity mode so the user
can move it without much force. When the user has moved the arm to the desired position he can confirm the pose by
pressing a button.
This process is simple for the user, but using the object-relative position requires some background calculations. The
robot is using different frames for the description of object positions and the execution of GoTo commands. The most
important frames are shown in Figure 3.6. The base_link frame is the mainframe of the robot and has an orientation that
is intuitive for human operators.
The robot arm task space controller cannot directly execute commands in the base_link frame, instead every arm uses
an own frame, called link0 frame. They are placed directly under the first joint of the robot arm. The transformation
between these frames is constant over time because it only describes the body structure of the robot, which makes the
transformation simple.
Using positions relative to objects makes the process a bit more complicated because the position of objects can and will
change over time, so the transformation is not constant. To define the object frame the exact pose, consisting of position
and orientation, of the object is needed, which can be observed by object tracking techniques. The object tracking is not
directly part of this project, so it is assumed at this point that the position of all objects is known exactly.

20

Figure 3.6.: The robot is using different frames to describe the position of objects and execute commands. The main
frame is the base_link frame placed directly under the robot. The two robot arms use the _link0 frames for
executing commands. In addition every object has an own frame, so movements relative to objects can be
recorded.

If the pose of an object is known the transformation to any other frame can be done and it is possible to move the robot to
a position described relative to the object. This can be used to generalize the GoToCartAction to new situations, especially
new object positions. In theory, the robot can reach the desired position in the object frame for every task-space position
of the object and needs only one taught example position. Problems only can occur, if the robot cannot reach the position
because of joint limits.
Another point while teaching GoTo Actions is that the robot will directly move to the desired position and is not following
a specific way. This can generate problems if the robot should be moved to a grasping position because it must be avoided
that the gripper touches and moves the object while moving to the desired position. This can be solved by defining a
pre-grasp position that can be reached safely from every state and is only slightly away from the grasp position.

3.2.2.2 GoToJointAction

The GoToJointAction teaching process is very similar to the teaching of task space GoTos, but it is not connected to objects.
So the user only selects the robot arm and uses kinesthetic teaching to define the desired joint positions. Because the
joint controller of the robot can directly execute them, no transformations are needed and the GoTo in joint space can
always be executed directly.

3.2.2.3 RunPrompAction

Using ProMPs is one of the key features of this framework because it allows the user to train a trajectory the robot follows
and generalize it to new situations. To use ProMPs, two steps are required: The first is the training of a new ProMP and
the second is the execution of the ProMP. At this point, it is assumed that the ProMP is trained and only the execution is
required. The creation of a ProMP training process that is intuitive enough for unexperienced users is described in 3.2.3.
Executing a ProMP requires the generation of a trajectory using the ProMP parameters. This trajectory should be adapted
to the actual situation, in case of object interaction task, this is the position of the object. To adapt the ProMP in general
conditioning can be used. In this project ProMPs are used mainly for object interaction tasks, so a special formulation is
used to make the adaption to new object positions easier: Instead of recording the ProMP in on of the robot frames, like
it is done in the most project, the demonstrations are recorded in the object frame. This is very similar to defining a GoTo
command in the object frame, but now is handling complete trajectories.
In Figure 3.7 an example ProMP is shown in both, base frame and object frame. The ProMP describes the movement to
grasp an object and was trained with different object positions, while the start position of the trajectory always was the
same. There can be seen some important differences between the two representations: The orientation of the frames is
not the same, so it is not possible to directly compare the three axes to each other. For example, the y-axis in the base

21

0 0.2 0.4 0.6 0.8 1

0.6

0.7

x

base frame

0 0.2 0.4 0.6 0.8 1

0.1

0.0

object frame

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

y

0 0.2 0.4 0.6 0.8 1

0.0

0.2

0 0.2 0.4 0.6 0.8 1

0.6

0.8

t

z

0 0.2 0.4 0.6 0.8 1

0.2

0.1

t

Figure 3.7.: The left side of the figure shows the position part of a ProMP in the base frame of the robot, the right part
shows the same ProMP in the object frame. Grey lines are the demonstrations, the blue line is the mean with
the 2σ-surrounding. It can be seen that the base frame ProMP has different end-positions and the object
frame ProMP has different start positions.

22

Figure 3.8.: The Panda robot uses a simple two-finger gripper. It can apply a desired force on the grasped object and
holds it constant to fixate the object.

frame describes the height, which is similar to the y-axis in the object frame. But this only is a problem of visualization
and does not influence the usage of the ProMP framework.
The second point is that the start position of the trajectory in the base frame is, like expected, the same. The end positions
differ a lot because the object was placed at four different positions. If the trajectory is recorded in the object frame, this
is completely contrary, so the start positions differ and the end positions are equal. This makes sense because in object
frame the grasp position has always the same pose.
The consequence of this change in the representation is that conditioning must be done on the start position, even if
the final transformed trajectory has a new end position. This is confusing at first, but conditioning on the start position
is simple because the start position always is known at the time where the calculation must be done. The conditioned
ProMP will still has the desired end position because the variance at this point is small, so the result will be near to the
mean.
Of course, the conditioning can also be done in the base frame representation and can create similar resulting trajectories,
but the representation in the object frame has another advantage: The different demonstrations are more similar to each
other, so they can be represented better with mean and variance. This should lead to a ProMP with better generalization
capabilities.
All in all the training of a RunPrompAction is simple for the user: He only selects the ProMP, which should be executed and
selects the arm which should be used. In principle, the ProMP could be executed with the joint or task-space controller,
but conditioning is easier in the task space. So the execution also is done by default in task space. Some more advanced
methods [54] also allow the conditioning in task space and the execution in joint space, but at this point, it is enough to
use the task space controller to track the trajectory.

3.2.2.4 GraspAction

For using the GraspAction especially the gripper width parameter is needed. It defines at witch width the object is expected
and is used to evaluate if the grasping was successful. The grasping force and grasping speed were set to default values
to simplify the teaching process. The disadvantage using default values is that the gripper can only grasp objects with a
similar surface and stiffness. In future versions of this framework it will be necessary to set the other gripper parameters
automated, but grasping itself is a very complicated topic, so this would increase the effort too much at this point in the
project.
Because the grasp cannot be taught by kinesthetic teaching, the GraspAction needs a completely new teaching process.
It basically uses a test grasp: The user is asked if the object is in the right position and afterward the robot performs a
test grasp. If it was successful, it can read the actual opening width of the gripper and use it for the taught Action. In
Figure 3.8 this process is shown.
Training the MoveGripperAction is not necessary for the user and only needs to set the desired width, so it is not explained
further at this point.

23

3.2.3 ProMP Teaching

In this project, it should be possible for the user to train trajectories the robot can execute. These trajectories must be
generalizable to new end positions, for example, if the arm should move to an object and the object is placed at different
positions. This can be done using ProMPs, a framework for generating Movement Primitives described in Section 2.2. The
ProMP framework is based on Imitation Learning, so it learns from given demonstrations. The needed demonstrations
must be generated by the user, but this part of the ProMP usage is not treated in the most ProMP applications. In general,
they focus on the training and execution phases and assume that the demonstrations are simply available.
In this project, the demonstrations must be created by inexperienced users, so it must be created a concept that guides
the user through the process. In former projects, the demonstration generation is done completely manual and no special
teaching system was used. In the following a ProMP that is only using one arm is called Simple ProMP and the training
process is described in Section 3.2.3.1.
Another important point is that the robot in this project has two arms and should perform bimanual actions. Executing
bimanual GoTo commands has no advantage at all because the movements of the two arms are not synchronized. This
means that every arm reaches his goal position but the ways they use are independent of each other. However, for some
tasks, it is required to execute movements with synchronized ways on both arms. Like said before this only makes sense
if the whole trajectory is trained and because of this it is necessary to train and execute ProMPs for both arms together.
Training both arms together is more complicated for the user, so a special teaching process is developed for ProMP that
should execute a movement that is coordinated between the two arms. These ProMPs are called Coordinated ProMPs in
the following and the training is described in Section 3.2.3.2.
Before focusing on the teaching process, the general structure of a ProMP is explained in the following. To create ProMPs
that can describe both robot arms a similar structure to [39], where one ProMP describes the behavior of a controlled
and observed agent together, is used. In this project one ProMP describes the trajectory of the left and the right arm:

y(t) =
h

q(t)TR q(t)TL

iT
(3.1)

q(t), in this case, can describe the trajectory in the joint- or task-space or both. Using both is useful in this research case
because it is possible to select the representation you want later. The only disadvantage is the doubled calculation effort,
but this is no problem on the used hardware. q(t) when has the following structure with the robot arm joints q1, ..., q7
and the end-effector pose described as position and orientation as quaternion:

q =
�

q1, ..., q7, x , y, z, qw, qx , qy , qz

�

(3.2)

Using both arms in one ProMP only leads to some changes in the structure of the weight vector, all the underlying
calculations of the ProMP framework are not changed at all. The weight vector for two arms with P degrees of freedom
is structured like this:

w =
n
�

w T
1 , ...w T

p , ...w T
P

�L
,
�

w T
1 , ...w T

p , ...w T
P

�Ro

(3.3)

It can be seen that a ProMP for both arms has twice the dimensionality of one arm. To use one unique structure both
ProMPs for one and both arms use the two armed ProMP structure. This also increases the calculation effort, but the
underlying ProMP structure is more clear. When the ProMP is executed it is necessary to select the desired DOFs, in
general, the task space position and orientation of one or both arms will be used.
Some automated preprocessing steps are needed to use the demonstrations. At first, the active area of the demonstration
is selected by cutting these parts at the start and end of the recorded trajectory where all trajectories are constant. The
second step is the normalization of the time base, so all trajectories start at 0 and end at 1. This avoids problems with
different execution speeds between the demonstrations.

3.2.3.1 Simple ProMP

A Simple ProMP is a ProMP that only is executed on one robot arm, so it also is only required to train one robot arm. The
training process follows a strictly defined process which ensures that the user only has to move the robot arm, all other
steps are automated.
The used process is shown in Figure 3.9: Like explained in Section 3.2.2.3 the ProMPs are connected to objects. So in
the first step, the user selects the object that the robot should manipulate.
The second step is the recording of the demonstration. Before the recording is started the user is asked to place the
object at the desired position and to confirm the start of the recording process. Afterward, the used arm is switched in

24

Select Object

Start?

Train Arm

Stop?

Goto Start Position

Accept?

Save Demo

4 Demos?

Select Arm

yes

no

no

yes

User Input

If?

Robot Interaction

Robot Action

Figure 3.9.: The ProMP teaching process is used to train a Simple one-handed ProMP. At first, the user selects an ob-
ject, then he gives four demonstrations. Between them, the robot is moved automatically back to the start
position. The user also can discard the demonstration and create a new one.
One the right side the used symbols are explained.

the zero-g mode, so the user can easily move it and give the demonstration with kinesthetic teaching. The user can stop
the recording by pressing a button. Then the robot will move back to the start position, so the user can directly give the
next demonstration.

In some cases, it can happen that the user is not satisfied with the demonstrations, for example, if the movement was not
smooth or the robot was moved in a joint limit. To handle this case, the user is asked if he wants to use the demonstration
before it is saved.

One parameter that must be normally adapted by the operator is the number of given demonstrations. In general, it
depends on the complexity of the movement and the area in which the ProMP should be possible to generate generalized
movements. A ProMP of course only can generalize to new situations, in this case, new endpoints that are similar to the
trained ones. If the desired area of generalization is big it is better to give more demonstrations, if the area is small a
small number is enough.

For an inexperienced user, it is hard to understand this problem and he cannot assess how much demonstrations are
needed. Because of this, the number of demonstrations is fixed to four in this teaching process. Four demonstrations
are in most cases enough to teach a rectangle area where the generalization is successful. For very simple tasks with
fewer generalization requirements four demonstrations are too much, but in that case, giving one demonstration needs
not much time. All in all four demonstrations should be a good compromise between a good generalization and a fast
teaching process, but this point also can be evaluated in the user study. To ensure that the ProMP can still generalize to
a new position the user is requested to place the object at a new position after every iteration of the recording.

25

Figure 3.10.: One user is training a Simple ProMP using the teaching process in Figure 3.9. He only has to move the
robot gripper in kinesthetic teaching mode on the desired trajectory to give a demonstration. This must be
repeated four times.

3.2.3.2 Coordinated ProMP

The Coordinated ProMP represents a bimanual movement witch synchronization of the left and right arm. Teaching both
arms at the same time is very hard for one single user because he must move both arms at the same time. If the user is
trained in this it is possible, but the results are often not satisfying. One possible solution is that two users train the robot
together. This makes it much easier, but in this project, the training should be done by one single person.
To make this possible a special teaching process is used, which is shown in Figure 3.11. The main idea is that the user
teaches the two arms after each other. If this should be done the synchronization between the two arms is still hard. If
the demonstrations for both arms have different lengths and speeds the synchronization cannot be done automated.
Instead of recording the demonstrations for both arms completely independent, the user at first gives the demonstration
for one arm and this demonstration is replayed in the second step by the robot. During the replay, the user teaches the
second arm of the robot and can directly adapt its movement to the first arm. During this, the movement of both arms is
recorded and used as a demonstration for both arms. This process avoids the problem of synchronizing two independent
recordings while using an interactive training process.
The rest of the training process is the same as in Simple ProMP training. So the user can still select an object and has to
give four demonstrations. He also can select if the demonstration should be used or if he wants to create a new one.

3.2.3.3 Simple ProMP With Both Arms

The Coordinated ProMP can handle the most use-cases for the bimanual task, but not all: Sometimes it is not possible
to move each arm independent from each other. This is especially the case if the two arms are connected, for example,
because they have grasped the same object and should lift it. The advantage of two connected arms is that teaching them
together is much easier when teaching two independent arms at the same time.
For this special use-case, the teaching process, shown in Figure 3.13, can be used. It is similar to the Simple ProMP
teaching process but is using two arms. The only disadvantage is that moving two arms connected with a grasped object
automated back to the start position is more difficult and so the user has to move them back on his own in the second
step. To do this the robot is switched in zero-gravity mode again.

26

Select Object

Start?

Train Arm 1

Stop?

Goto Start Position

Accept?

Save Demo

4 Demos?

Select first Arm

no

yes

Replay Arm 1

Start?

Move Arm 1

Stop?

Accept?

Goto Start Position

yes

nono

yes

Figure 3.11.: The Coordinated ProMP Teaching Process is used to train coordinated bimanual tasks. The two arms can
be trained successively. After the first arm is trained the movement is replayed and the second arm can be
synchronized to the first one.

Figure 3.12.: An user is training a coordinated ProMP. At first, the left robot arm is trained, afterward it is replayed and
the right arm is trained. The user can easily synchronize the movement of both arms.

27

Select Object

Start?

Train Arms

Stop?

Accept?

Save Demo

4 Demos?

yes
no

no

yes

Move to

Start Position

Figure 3.13.: Simple ProMP with Both Arms Teaching Process: This process is used to train both arms at the same time ad
is recommended, it both arms has grasped the same object. In this process the user has to move the robot
manually in the start position.

Figure 3.14.: An users teaching both arms at the same time with the Teaching Process shown in Figure 3.13. This is recom-
mended, if the robot has grasped an object with both grippers like shown in this example.

28

3.3 Control Modes

The robot controllers are the lowest level we can access the robot because they directly control the torque of the joint
motors. This is still one level under the actions in the tree structure from Chapter 3.
The robot needs different controllers for the teaching and execution mode. To follow a desired trajectory or reach a
position joint- and task-space controllers are needed. To use the kinesthetic teaching a gravity compensation mode is
necessary. The gravity compensation mode is supported by default by the Panda robot and Franka Emika also developed
a good joint controller. Both can be used in this project, so no own development is needed. The Franka task-space
controller has the disadvantage that it uses some null-space control methods but they are unknown and the desired null-
space position cannot be submitted. Additionally, the controller is very stiff, so the development of an own task-space
controller is necessary. Further, an assisted teaching controller should be developed to assist the user in the kinesthetic
teaching mode.
Both tasks, the task space controller with null-space control and the assisted teaching controller can be reached with the
same controller structure if the controller decouples the task-space and null-space behavior like Figure 3.15 shows.

3.3.1 Model Description

To reach this goal, a model-based controller is used, based on the standard model of an n-dimensional manipulator,
which can be written as

M(q)q̈ +C(q , q̇)q̇ + g (q) +τex t = τ (3.4)

with the (n× 1) joint angle vector q. M(q) describes the (n× n) inertia matrix, C(q , q̇)q̇ the (n× 1) vector containing
the centrifugal and Coriolis effects and g (q) represent the gravity effects. The model inputs are the motor-torque τ and
the external torques τex t , which appear if the robot interacts with the environment. The terms M(q), C(q , q̇)q̇ and g (q)
are nonlinear dependent on the joint angles and velocities, so the manipulator model is a non-linear model.

3.3.2 Task-Space Impedance Control

The knowledge of the manipulator model can be used to linearize the system using the control law

τ = M(q)q̈c +C(q , q̇)q̇ + g (q) +τex t (3.5)

with the new control input qc . This control law assumes that the external forces are known. Because this approach uses
the knowledge of the inverse of the dynamics this controller type is also called inverse dynamics control. The task-space
tracking control can be reached by a model based PD controller like the Operational Space Inverse Dynamics Controller
explained in [55]:

qc = J−1(q)
�

ẍc − J̇ q̇
�

(3.6)

ẍc = ẍd + KD
˙̃x + KP x̃ (3.7)

To get a well arranged equation x̃ = xd − x describes the error from the desired position xd , while KP is the desired
stiffness and KD is the desired damping. J is the Jacobian matrix describing the relation:

ẋ = J(q)q̇ (3.8)

xd
Task-Space
Controller

robot

qd
Null-Space
Controller

q

k(·)

−

−

Figure 3.15.: Overview of the task- and null-space controller structure. The desired task- and null-space position can be
submitted independently and use an own controller block.

29

xd

ẋd

ẍd

KP

KV J# M(q) robot

C(q , q̇)

g (q)

q̇

q

J̇

J
k(·)

τex t

ẍc q̈c τ

−

q̇

−

q

−

NM−1
dBd

Kd

q̇d

qd

q̈d
τex t

−

−

Figure 3.16.: The overall controller scheme can be split in the task- and null-space part. The upper block controls the task-
space position of the end-effector, while the lower part controls the null-space position in joint space using
the null-space projection N .

For a 7-DOF manipulator and a six-dimensional task space consisting of three translational and three rotational degrees
of freedom the Jacobian is a (6× 7) matrix, so it is not square and not invertible. To avoid this problem, the generalized
inverse J† can be used which fulfills the condition I = J J†. A common approach for J† is:

J† = J T (J J T)−1 (3.9)

The manipulator model in equation (3.4) does not include friction in the different robot joints. In general, this should not
generate problems, because the robot has a low-level integrated friction compensation. However some own experiments
with the robot show that the friction in the last joint that rotates the end-effector, is very high and not completely
compensated.
Because of the resulting big model errors, the model-based controller can only hardly move the last joints, which results
in big orientation errors. The end-effector position is controlled much better nevertheless because the last rotational joint
is not needed for position control.
To avoid this problem, the model based task-space impedance controller is expanded with an standard PD operational
space controller[55]:

τ = J T (KP x̃ + KD
˙̃x) + g (q) +C(q , q̇) (3.10)

The model-based part than only controls the position, while the PD part controls the orientation. With this approach, it
is possible to control both position and orientation with satisfactory accuracy. The disadvantage of this approach is that
the desired compliant impedance behavior is only fulfilled for the translation and not for the orientation. The orientation
now is much stiffer, but in general, this is not a problem.

τ = τrot +M(q)q̈t rans + g (q) +C(q , q̇) (3.11)

τrot = J T
rot(KP x̃ rot + KD

˙̃x rot) (3.12)

qc = J−1(q)
�

ẍd + KD
˙̃x t rans + KP x̃ t rans − J̇ q̇

�

(3.13)

The resulting controller scheme is shown in Figure 3.16.

30

3.3.3 Null-Space Impedance Control

To avoid undesired joint positions generated by the task-space controller, the null-space of the manipulator should be
controlled in parallel. The main goal of the used null-space control is to push the manipulator as good as possible in a
desired joint position without influencing the task-space behavior.
A controller with independent task- and null-space stiffness is published in [56] and the same structure also is used in
this project. It uses a model based joint-space controller based on the linearization shown in equation (3.5):

q̈c = q̈d +M−1
d (Bd

˙̃q + Kd q̃ −τex t) (3.14)

Because the controller should only influence the null-space, the control-law is projected in the null-space of the Jacobian
with the projection N. In general, this projection can be achieved by the projection matrix

N = I − J†J (3.15)

but as described in [57], this only guarantees that the task-space position is not influenced in the equilibrium point. It
does not secure that the dynamic behavior in the task space is not influenced. However, this is an important requirement
in the training use case, because then the end-effector is moved dynamically by the operator while the null-space should
be controlled automatically.
To also reach dynamically consistent null-space control a special generalized inverse

J# = M(q)−1J T (J M(q)−1J T)−1 (3.16)

can be used to calculate the null-space projection N# = I − J#J . The joint-space control (3.14) law can be combined
with the null-space projection and the task-space control-law (3.6) to the combined control law:

q̈c = q̈task + q̈null

q̈task = J#(ẍd − J̇ q̇)

ẍc = ẍc + KD
˙̃x + KP x̃

q̈null = N#(q̈d +M−1
d (Bd

˙̃q + Kd q̃ −τex t)

(3.17)

This control law has the desired task space trajectory xd and the belonging null-space position qd as input and control
them independently.

3.3.4 Application of the Model Based Controller

With the previously designed controller, it should be possible to control the task-space and the null-space independently.
This can be used for an assisted teaching mode in which the user can move the end-effector of the robot and the null-
space is controlled automatically. A system like this is also used in [24] and has the advantage that the user has not to
care about the null-space, especially the joint limits and possible collisions of the robot arm with the environment.
To reach a behavior like this the KD and KP parameters of the task space controller must be set to zero, so the end-
effector can be moved completely free. Besides, a null-space control law that resolved the redundancy[58], for example
by pushing the robot away from the joint limits or to a defined position can be used.
The second application of this controller is the execution of trajectories and especially ProMPs. It is much easier to define
the desired trajectory in task space, but when the joint configuration is not defined exactly, because the robot has more
degrees of freedom in joint space than the task space. Using ProMPs which describe both, the task and joint space, it
would be simple to generate trajectories that lead to the exact task space position and also provide an approximated
joint space position. This can be done by conditioning on the task space, the joint space is then coupled through the
stochastic ProMP structure. So the controller can use the task space trajectory to perform the exact movement and the
approximated joint space trajectory to control the null-space.
In theory, this concept is very advanced, but through the implementation, the biggest problem was a missing useful robot
simulator. The determination of good and stable controller parameters is really hard if they only can be tested on the
real system. It was possible to find parameters that show a stable behavior in most areas, but they need a lot more
optimization until they can be used safely on the real system. This can only be done in simulation because tuning the
parameters on the real system takes too much time.
Because the developing of new controllers is not the main task in this project, the work on the advanced controllers was
stopped and instead the normal robot controllers provided by Franka were used. They do not allow advanced null-space
control and are very stiff if an accurate behavior is needed, but it is possible to use them at this state of the project. If a
simulator for the robot is available in the future, the development of a new model-based controller is recommended.

31

4 Implementation
This chapter describes the implementation of the developed Imitation Learning system. In the following the used hard-
ware setup, the developed program structure and the user interface are described.

4.1 Hardware Setup

The used robot is a special robot configuration from Franka Emika as shown in Figure 4.1. It has two Franka Emika
Panda1 arms mounted in a human-like position. The arms use the same structure as the most modern robots, so every
arm has seven rotational degrees of freedom. They can hold a maximum payload of 3 kg and also support force and
torque sensing for every joint and the end-effector.
The used end-effector on both arms is a simple two-finger gripper. The gripper also supports force sensing, so it can grasp
an object with the desired force and hold the force afterward. This is very useful for grasping objects whose shape is not
exactly known. All in all the gripper is using a very simple structure, so grasping more complex and round objects with
this gripper is difficult. It is possible to mount new extensions to the gripper and use them to expand the capabilities of
the gripper.
The robot also has an advanced image recognition system using an Intel realsense depth camera2. This camera can be
used to recognize human movements with skeleton tracking and detect object positions for object tracking. In this project,
the camera is not used, because object tracking using a camera is a complicated field and requires a lot of research on its
own. Because this project should not focus on the tracking part, an Optitrack system3 is used for tracking objects instead.
It uses special markers and infrared light to track the objects and delivers more reliable and accurate object poses. The
disadvantage of this system is that every used object must be prepared with the special markers. The system is also not
portable and must be mounted and calibrated in the room where the robot is placed. This is a big disadvantage for the
final task because in the real application it is not possible to mount an Optitrack system in every room. So in the final
version of the robot system, the camera must be used for object recognition, but at this stage of the whole project using
the Optitrack system instead makes the development much easier.

4.2 Program Structure

An often-used framework for controlling robots and developing robot applications is ROS[59]. It is a collection of tools,
libraries and conventions that should simplify the development of complex and robust robot software. It allows the
creation of independent nodes that can collaborate and provides a lot of useful methods, for example for localization and
frame transformation.
The Panda robot can be controlled directly using ROS because it is using the ROS Control[60] structure for all controller
implementations and provides all state information through ROS interfaces. Therefore ROS also is used for all other
components of the whole system. The developed structure is shown in Figure 4.2 and can be split into three parts: The
low-level part, including all functionalities for the generation and execution of robot arm movements, the mid-level part
which controls the teaching process and manages the usage of ProMPs and the high-level part that basically includes the
user interface and the high-level task representation.

4.2.1 Low Level - Movement Generation

This is one of the first projects working with this robot setup, so a lot of basic functions must be developed to use the
robot. The most important function is to move the robot arms both in joint- and task-space. To do this a controller is
necessary which controls the joint torques. Franka-Emika provides a Multi-Mode Controller which can control the robot
on the desired joint or task-space trajectory. They both are closed source controllers, so no adaption is possible. This is a
problem because the Task-Space Controller shows a very bad trajectory following behavior if the stiffness is not very high.
Because of this the controller from Section 3.3 is implemented as TUD-Task-Space Controller, even if it is not perfectly
working.

1 https://www.franka.de/
2 https://www.intelrealsense.com/
3 https://optitrack.com/

33

https://www.franka.de
https://www.intelrealsense.com/
https://optitrack.com/

Figure 4.1.: The KoBo robot is using two Franka Emika Panda robotic arms and two grippers. They are mounted in a
human-like position. Between the arms a movable camera is installed.

Multi-Mode

Controller

TUD-Joint

Controller

TUD-Task-Space

Controller

Assisted-Teaching

Controller

Hardware

Interface

Motion Generator
Recording

Node

ProMP Generator

Data

Teaching Control

Node

Task / Skill - Interface

Move Joint/

Task-Space

Record

Demonstration

Run ProMP

Start/Stop

Recording

Switch Mode

Figure 4.2.: This figure shows the structure of the low-level robot control and data recording programs. Big arrows show
data flows and small arrows show commands.

34

Another controller type is the Zero-Gravity controller. It compensates the gravity and can hold the robot arm in the actual
position. It also allows the user to move the arm without much force. This controller is used for kinesthetic teaching.
All controllers can only follow a given trajectory, they cannot reach a position that is far away from the start position.
Because of this a Motion Generator is needed, which generates a trajectory from the actual starting position to the desired
goal position including specified via-points. The Motion Generator also has some extra functions: It automatically switches
the control mode running on the robot and starts and stops the different controllers. The second function is that it can
recover the robot from error states like joint-limit violations or collision detections. All in all the Motion Generator is the
most important component to interact with the robot.
Another part of the low-level functions is the Recording Node. It synchronizes the states of both robot arms and can record
the positions over time and also save them in files. This is a basic functionality used for demonstration generation.

4.2.2 Mid Level - Teaching and ProMPs

The mid-level includes the teaching functions and the management of ProMPs: To control the overall teaching process,
the Teaching Control Node is used. It can be assessed during ROS services and starts and stops the recording of the robot
state. It also automatically switches the robot control modes, so the user has not to care about this on his own. The
third function is the management of the ProMP demonstration recording process like it is explained in Section 3.2.3. This
means that the demonstrations are stored in the right folders and for the coordinated teaching process the movements
are replayed.
A second component of the mid-layer is the ProMP Generator, it is used to execute ProMPs on one or both robot arms.
It can load demonstrations from the storage and train a new ProMP using demonstrations or use a pre-trained ProMP.
The ProMP Generator can condition the ProMP on a new end-position and sends the execution commands to the Motion
Generator which can execute the ProMP in both task- or joint-space.

4.2.3 High Level - User Interface

The high-level software consists of the user interface, the implementation of the task representation structure and the
implementation of all teaching processes. Because the user interface is an important part on its own, it is described in
Section 4.3.
The tasks and skills all are structured as behavior trees. Because behavior trees are a complex concept, the
Behaviortree.CPP[53] implementation is used, instead of developing an own one. It has some advantages over other
implementations, for example, it can execute asynchronous actions, it allows the creation of new trees on runtime and
allows a simple generation of custom treenodes. All in all the implementation fulfills all the requirements of this project.
In this library, the trees are stored as XML files. To create them a special Graphical Editor can be used or the XML
syntax can be implemented manually. Both ways are not simple enough to use them with inexperienced users, so an own
custom system is developed to create the tree XML-files automatically from the defined Task-Skill-structure. It is using
two custom classes for Tasks and Skills and directly represents the task representation structure.
All teaching processes explained in Section 3.2 are also implemented with behavior trees. This allows a simple and safe
creation of new processes that can be adapted easily in the future.

4.3 User Interface

The teaching process should be executed completely alone by the user, so a user interface is needed to control both, the
robot and the teaching process itself. Using terminal commands and outputs like it is often done for research robots is no
option, because this is very confusing for all users without a computer science background. So a graphical user interface
is used, which can be controlled on a touchscreen. The user interface is German because all users in the user study are
German.
The most important windows of the user interface are shown in Figure 4.3: At first the start tab is shown, the user can
select to create a new Task or execute an existing one. If he wants to create a new one, the Create Task tab is opened
and the user can select existing Skills to execute and add them to the task. In addition the user can create a new Skill,
using the New Skill button and the Create Skill tab. In this window, the user can select an action he wants to add to the
Skill. At first, the action must be trained. Afterward, some actions can be executed, while others are executed during the
training process. The training is done with different windows, similar to the shown example. The training process used
in the training windows exactly follows the developed process from Section 3.2.2. After training the action the user has
to add the Action to the Skill.
All Skills from the opened task are shown in the box on the left bottom side, while all Actions in the actual Skill are
shown on the right side. So the user can get a short overview of the steps he had finished yet.

35

(a) Start Tab (b) Create Task Tab

(c) Create Skill Tab (d) Train Action Tab

Figure 4.3.: The user interface has three main windows, the start -, create task - and create skill -tabs. The user is guided
through the complete process, so he only has to use New... and Save... buttons, the window is changed
automated afterwards. To train the Actions, different windows are used, one example is shown in Figure 4.3d.

36

5 Experiments
In this section, the developed teaching process should be evaluated. To do this it is necessary to test the teaching with
inexperienced users and to assess the generated ProMPs. To do this a user study was carried out, which is explained in
Section 5.1 and evaluated in Section 5.2.
The trained ProMPs are examined in Section 5.4.

5.1 User Study Description

The main goal of this user study is to evaluate if users, which are inexperienced in training and programming robots, can
teach new tasks to a robot if the teaching interface is intuitive enough. To do this the user should use the user interface
and teaching processes shown in Chapter 3, so these processes also should be evaluated.
Another important point in this user study is the comparison of GoTo and trajectory following commands. To execute and
train trajectories that can be generalized to new positions ProMPs are used. The most known projects only had evaluated
ProMPs with professional operators and more difficult tasks, but not with simple tasks and inexperienced users. So it
should be evaluated if successful training of ProMPs is possible and accepted by users without a robot or computer science
background.

5.1.1 Setup

In the user study, the user interacts with the KoBo robot described in Section 4.1. In the future, the robot should support
the people and the staff in a home for elderly people and therefore it also should perform simple household tasks in this
user study.
To create an attractive and well-arranged environment two different objects, the robot can interact with, are used:
A simple tray and a pack of cookies, both shown in Figure 5.1. Because the gripper of the robot is a very simple
construction, it was necessary to select objects that are very simple to grasp. This is fulfilled by the two selected objects.
Another important point is the mass of the object: If they are too heavy the zero-gravity control mode is not working as
requested anymore.
Both objects are prepared with OptiTrack markers, so the object tracking system can easily measure the position and
orientation.

5.1.2 Tasks

The user study is split into three different experiments every user should take part in. The explanation of the three
experiments with a short manual of all Actions that are given to the users can be found in appendix A.2, an overview is
given in the following.

5.1.2.1 Experiment 1: GoTo

In Experiment 1 the robot should grasp the cookies and lay them on the new position. The exact desired procedure is the
following:

• The robot grasps the cookies with the left arm

• The robot hands over the cookies to the right arm

• The robot places the cookies on the tray

• In the end both arms are in the start position again

To train this behavior the user can use the Actions: Grasp, GoTo Object and GoTo Fixed Position. So the user can only use
GoTo commands and no trajectory following commands. This makes the teaching simpler, but the user also has to define
via points at the right positions to ensure that the robot is moving on an allowed trajectory and not colliding with objects
or the environment.
The robot has no predefined skills in the beginning, so the user has to create completely new tasks with new skills. So
this experiment can be used to examine both, the high-level task structure and the low-level GoTo Position teaching.

37

Figure 5.1.: In the user study the KoBo robot is used with two objects, a simple tray and a package of cookies. Both
objects are prepared with Optitrack markers to allow an exact object tracking.

5.1.2.2 Experiment 2: ProMP

Experiment 2 is using the same assignment like Experiment 1, but instead of using GoTo commands the user now must
use the Execute Movement Action which is executing a ProMP. To do this the user has to give four demonstrations following
the ProMP teaching process.
This experiment can be used to evaluate how successful the users can train ProMPs, how good the generalization capa-
bilities are and if the training of a ProMP is accepted in general or even preferred over using a GoTo command. To get
unbiased information about this, the users were not given background information about the way ProMPs are calculating
the trajectory. They only know that the robot will execute a trajectory similar to the demonstrated ones. The user also is
asked to move the object before giving a demonstration to ensure some generalization.

5.1.2.3 Experiment 3: Both Arms

In Experiment 3 the robot should use both arms to grasp the tray and lift it. The desired procedure is the following:

• The robot grasps the cookies

• The robot places the cookies on the tray

• The robot grasps the tray with both arms at the same time and grasps it

• The robot lifts the tray

In this experiment, the users can use both movement types, GoTos and ProMPs, and also all Skills they have created
before. To train the tray grasping step the Coordinated ProMP teaching mode should be used, which also is described
to the user. For the training of the Lift Tray step it is necessary to train a Simple ProMP with both arms, so the user has
to move both arms at the same time. This becomes more simple than normal because both arms grasp the tray and are
connected over it.
This experiment can be used to evaluate if the user can perform the two different both arm teaching modes. A second
interesting point is that it is necessary to define a via point or use a ProMP if the robot should move the cookies on the
tray without colliding with the tray before. So it can be evaluated if the user remembers this recommendation or is trying
to execute this step with only one GoTo command.

38

ap
pr

oa
ch

co
ok

ie
s

gr
as

p
co

ok
ie

s

ha
nd

 o
ve

r
co

ok
ie

s

la
y

co
ok

ie
s

on
 tr

ay

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
sr

at
e

in
 %

 (n
=1

0)

Exp. 1: GoTo

ap
pr

oa
ch

co
ok

ie
s

gr
as

p
co

ok
ie

s

ha
nd

 o
ve

r
co

ok
ie

s

la
y

co
ok

ie
s

on
 tr

ay

0.0

0.2

0.4

0.6

0.8

1.0
Exp. 2: ProMP

ap
pr

oa
ch

co
ok

ie
s

gr
as

p
co

ok
ie

s

la
y

co
ok

ie
s

on
 tr

ay

ap
pr

oa
ch

tra
y

lif
t t

ra
y

0.0

0.2

0.4

0.6

0.8

1.0
Exp. 3: Both Arms

success
wrong goto
via point
missing
others
bad gripper
position
wrong gripper
rotation

Success Rate for All Trained Steps

Figure 5.2.: This figure is showing the success rate for all three experiments. Every experiment is split into small steps and
each step is rated on its own. The left blue bar shows the proportion of users that trained the step in a way
that it can be executed completely successful. The right bar is showing the proportion where the execution
failed. Some common errors are shown with different colors: The Wrong GoTo error means that the user
used a GoTo Fixed Position instead of GoTo Object. Via Point Missing means that the user forgot to define via
points for the robot trajectory and so the robot collided with the object instead of approaching it the right
way. The Bad Gripper Position error occurs, if the gripper is not positioned sufficiently accurate and failed to
grasp the object.

5.1.3 Users

The user study is carried out with ten users, who have no background in robotics. One-half of the users were male the
other female and the age of the users was between 18 and 55, while half of the users were between 21 and 29 years old.
All except one user were students, but they all are studying subjects not directly related to computer science and robotics.
This also can be seen in the overview questions in appendix A.1: Only two users answered the question about the robot
knowledge with "I have basic knowledge about the construction and functionality of robots". The rest reported that they
have no experience or only have seen robots in action.
The knowledge about programming languages also was asked and only two user reported that they use them occasion-
ally(At least once per month) or regularly(At least once per week). The rest only had basic knowledge or no experience
at all. So it can be said that the tested user group has less background knowledge like it is needed to evaluate a system
for inexperienced users.

5.2 User Study Results

In this section, the results of the user study are reported. At first, it is evaluated in Section 5.2.1 how successful the
training was and if the task could be executed without errors. In the second step the feelings of the users about the
training in general and the different movement types are evaluated in Section 5.2.2.

5.2.1 Training Success and Common Errors

To assess the training success every experiment is split into small steps that are analyzed on their own. An overview of
the analysis is shown in Figure 5.2. It shows the success rate for each step of all three experiments as bars. The bars are
split in the two parts Successful Execution and Execution with Errors.
The first step of Experiment 1 and 2 is approach cookies, so the robot should move the gripper in a grasping position near
to the cookies. Using GoTo Actions 80 % trained a successful skill, the other 20 % used a GoTo Fixed Position instead of
GoTo Object Action, so the Skill cannot generalize to new cookie positions. Using ProMPs all users selected the right object
and trained a ProMP that was able to grasp the cookies at a position similar to the training position. The generalization
capabilities are analyzed in Section 5.4.2 and at this point, a ProMP step count as successful, even if the generalization
capabilities are small.

39

To Tray - left arm

Figure 5.3.: This is the left arm part of an example ProMP trained to approach the tray. This ProMP cannot be executed
successfully, because the operator gave one demonstration where the gripper was rotated in a different
direction. So the demonstrations are not similar enough. This can be directly seen in the gripper joint q7 and
also in q5, where the wrong demonstration is highlighted in red.

After approaching the cookies the robot should grasp them. The Grasp action was trained successfully by every user in
all experiments and no problems occurred. The users also understood that it is necessary to train the Grasp Action again
for different objects.

The third part of the task is the handover from the left to the right arm. This is more difficult because the robot has to lift
the cookies first and grasp them with the other hand. Using GoTo Actions only 40 % of the trained Skills were successful.
The main error, done by 50 % of the users, was that no via points were defined. When the user tries to move the cookies
from the start position directly in the right gripper, the cookies often collide with the gripper and the robot stops. Using
ProMPs this happened less often and 60 % of the users trained a successful Skill. But in this step, a new error occurred:
The cookies were not positioned well in the second gripper and so the gripper lost them during the handover. This is an
issue that is mainly related to the gripper itself and not the training, because the gripper is very simple and using it for
grasping objects sometimes is hard.

The last step is the placement of the cookies on the tray. This was successful for 70 % of the GoTo skills and all ProMPs.
Again some users used the wrong GoTo action and some others grasped the cookies at such a bad position during the
handover that the placement failed.

In Experiment 3 the first two steps again are approaching and grasping the cookies. Because the users were allowed to
reuse the skills they trained before, all users succeeded in these two steps. The third step is the placement of the cookies
on the tray and is much more interesting because only 40 % trained a successful skill. In this experiment, the user could
decide to use GoTos or ProMPs on their own, but 80 % of the users using GoTos forgot to define the necessary via point
and the cookies collided with the tray. This leads to an overall failure rate of 40 % only because of missing via points. In
contrast, all users using a ProMP(30 %) were able to train a successful skill. This could be a first indicator for the point
that GoTos are unintuitive to use and training whole trajectories is more intuitive.

In the approach tray step the Coordinated ProMP teaching process is used to train a trajectory that can be executed on
both arms at the same time. The success rate for this step is only 30 %, but the main errors are not related to the both arm
training: The most users tried to grasp the tray from the side, which needs a 90 ° rotation of both grippers. The grippers
are symmetric, so the rotation can be done in both directions, but for a successful ProMP training it is necessary to give
all demonstrations with rotation in the same direction. An example of a not working ProMP is given in Figure 5.3, where
the wrong demonstration can be seen directly. This problem was not foreseen in the planning of the teaching process,
but in the future, an algorithm to automatically find demonstrations that are not similar enough must be used.

Compared to this 75 % of all users grasping the tray from the backside were successful, so the teaching process itself
seems to be usable for most users. They also had no problems with the synchronization of the movement of both arms,
so the Coordinated ProMP seems to be a good solution.

The last step is using a Simple ProMP for both arms to lift the tray. The training for this step is a bit difficult because
the grippers cannot hold the tray very secure, so it can happen that the tray is falling. Yet 60 % of all users trained a
successful skill, the rest had problems with moving the grippers and the tray. An improvement of the grippers so that
they can hold the tray stronger and more stable would help at this point.

40

comprehensibly unwell predictable easy

Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

Results of Experiment Questionnaire
Exp.1: GoTo Exp.2: ProMP Exp.3: Both Arms

Figure 5.4.: The box plots show the feelings of all users about the robot teaching process and compare the three different
experiments. A normal box plot with the median as a black line and mean as a green stashed line is used to
represent the results. The users were asked after each experiment if the teaching process is comprehensible
if they unwell using the robot, if the robot behavior is predictable and if it was easy to move the robot at the
desired position.

5.2.2 User Feelings

In this chapter, the user feeling about the three experiments and the different movement types are analyzed. To do this the
users had to answer some questions after each experiment, the results are shown in Section 5.2.2.1. After all experiments
the users were asked to compare the two movement types (Section 5.2.2.2) and to rate the workload (Section 5.2.2.3).

5.2.2.1 Experiment Comparison

To analyze the user feeling about the experiment and the movement types, the users were asked the following four
question, which should be answered using the 5-point Likert Scale(Strongly Disagree to Strongly Agree):

• The training process is comprehensible

• I felt uncomfortable when using the robot

• The robot behavior is predictable

• The movement of the robot to the desired position is easy for me

The full questionnaire can be found in appendix A.3 as Questionnaire 1. The result is shown in Figure 5.4, where the
three experiments are compared for every question. The results were analyzed using a nonparametric ANOVA with the
Kruskal Wallis test to find statistically relevant differences. A significance level of α = 0.05 is used, which is often used
in the literature[41] in similar studies. The results are shown in Table 5.1, but none of the differences is statistically
relevant, so the results are analyzed using the median and quartiles.

Table 5.1.: ANOVA User Feelings

pE1E2 pE1E3 pE2E3

Comprehensible 0.492 0.635 0.216

Unwell 0.770 0.567 0.331

Predictable 0.714 0.631 0.760

Easy 0.824 0.741 0.927

41

simple intuitive useful
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pe
rc

en
ta

ge
 o

f u
se

rs
 (n

=1
0)

Compare Movement Types
GoTo ProMP

Figure 5.5.: The bars compare the user feelings about the movement types GoTo and ProMP. The user was asked for which
type the usage was simple, more intuitive and more useful.

The first question about the comprehensibility can be used to rate the teaching process itself. High approval is wished
because the teaching process should be clear and not confusing for the user. For the GoTo experiment 80 % agree to the
statement and the median is Strongly Agree. This is the expected result because teaching a GoTo is very easy with this
framework.
In comparison to the first experiment, the ProMP experiment leads to a bit worse results. This also is expected, because
training a ProMP is much more complicated. But all in all the results are still good because no users disagree with the
comprehensibility statement. The result for the both arm experiment is surprising, because nearly all users Strongly Agree
to the statement, even if training a both arm ProMP is much more complicated. One reason could be that this is the last
experiment and the users get used to the whole teaching process.
The opinion of the users on the predictable robot behavior differs a lot between the three experiments: For the GoTo
experiment, the median is Strongly Agree, so more than half of the users think that the behavior is predictable. Compared
to the ProMP experiments this is a much higher value. This result makes only little sense if it is compared to the fact that
most users forget to define via-points for the GoTo command and so the trained Skills often failed. It seems that most
users think that the GoTo behavior is easy to predict, but they predict the wrong behavior. This is a fundamental problem
because it results in that the user often uses GoTos, but they use them in the wrong way.
The users also think that the ProMP experiment is harder to predict, the median now only is Agree. This result could
be explained by the fact that the users have to train the ProMP four times and do not completely understand why they
have to do it that often. Another point is that ProMPs show completely unpredictable behavior if the applied condition is
outside of the trained area. To avoid this it could be useful to use an algorithm that can detect if the condition is outside
of the trained area and rejects the execution.
The both arm experiment seems to be much harder to predict for the users, but this could be related to the high number
of failures because of the wrong demonstrations as explained in Section 5.2.1.
The question if users feel unwell during the robot usage was contradicted by nearly all users. Both mean and median are
in the area of disagreement and there is no big difference between the three experiments. The results are a bit worse for
the ProMP experiment, but this also is expected.
In all three experiments, the users have the opinion that moving the robot to the goal position is easy: For all three
experiments, the median is Strongly Agree while 75 % of the users agree to the statement and only a few outliers disagree.
The good results on the unwell and easy questions could be an indicator for the point that kinesthetic teaching is the right
method to teach the robot and is in general accepted by the users.

5.2.2.2 Compare Movement Types

After all three experiments, the users were asked to compare the training process of the two different movement types,
GoTos and ProMPs. They were asked the following questions in Questionnaire 2 (Appendix A.4):

• For which movement type the training is easier?

• For which movement type the training is more intuitive?

• Which movement type is more useful?

The results of this questionnaire are shown in Figure 5.5: For the first question 60 % of the users have the opinion that
teaching GoTos is easier. This is the expected result because the training itself is much faster and less complex. It is

42

M
en

ta
l

De
m

an
d

Ph
ys

ica
l

De
m

an
d

Te
m

po
ra

l
De

m
an

d

Ov
er

al
l

Pe
rfo

rm
an

ce

Ef
fo

rt

Fr
us

tra
tio

n
Le

ve
l

0

5

10

15

20

sc
or

e

NASA TLX

Figure 5.6.: This Boxplot shows the user workload using the widely used NASA Task Load Index. Low scores describe a
low load or a good performance.

interesting that still 40 % of all users think that ProMP teaching is easier even if it much bigger effort. It seems that they
take into account that the GoTo action needs the definition of via-points to work correctly.
In terms of intuitiveness 70 % of all users prefer ProMP teaching and 60 % think that they are more useful. Together this
is a clear result for the acceptance of ProMPs and it seems like the users even prefer training ProMPs over using GoTos.
This speaks for the usage of ProMPs in an intuitive Imitation Learning systems, especially concerning the high failure
rates using GoTos.

5.2.2.3 Workload

At the end of the user study, the users should rate the workload. This is done with the widely used NASA-TLX[61]
assessment tool which splits the workload into six subscales: Mental Demand, Physical Demand, Temporal Demand,
Performance, Effort and Frustration. The user can rate each subscale on a scale from zero to twenty, while low scores
describe a low workload or a good performance.
The results are reported with box plots in Figure 5.6. At first, it can be said that the opinions on the workload strew a
lot, only at the physical demand the users agree that it is low, but this is not surprising, because the users had not to do
any physical exhausting work. The opinions on the mental demand provide no clear picture: More than 50 % of all users
think that the mental demand is higher, but some also rate it as very low. Also, no clear context between the mental
demand and the users working background and previous knowledge can be found.
The temporal demand is rated as lower by 75 % of all users, but there were no time limits for the users and so this is
not meaningful. The rating of the overall performance is similar to the results of the examination of the training success
in Section 5.2.1: 50 % of all users think that they had a good performance and 25 % rate it with neutral. The rest of
the users has the opinion that their performance was bad, which could be related to the high number of failures in
experiment 3. Related to the performance the frustration level also strews a lot, from zero values to values near 20. So
the frustration allows no general statement, it is highly depending on the user. In the future, it should be focused to
minimize the frustration level, because high frustration will lead to users not using the system.
The effort the user has to apply is rated as low by 50 % of the users, the rest thinks that it is a bit higher (scores from 7
to 15). All in all the results are better than expected: For all users training a robot was a completely new task, so a high
workload could be expected. Instead, the median of the users thinks that the workload is lower in all subscales, except
for the mental demand.

5.3 Analyze of Used Task and Skill Structure

The analyze of the used task and skill structure applied by the users should give an overview of the reusability of all skills
created by the users. If the defined skill has a high number of actions this is in an indicator that the skill is executing a
very specific procedure, so it hardly can be reused in other Tasks. If the number of actions per skill is low, for example
only one action in every skill, the skills execute a very abstract behavior. This is harder to imagine for the operator, so the
reusability also is not optimal. But the reusability of very small Skills is still higher compared to very large skills because
in theory the Skill can be reused very often, even if the application is harder for the user.

43

0 2 4 6 8 10
number of actions

0

2

4

6

8

10

nu
m

be
r o

f s
ki

lls

Number of Created Skills Compared to the Number of
Used Actions per Task

Figure 5.7.: This figure shows the number of used Skills compared to the number of used Actions in a Task. Every dot
marks a Task created by the users and every user is represented by their own color. The red crosses are
examples of well-structured tasks. The dashed line marks the border at which the number of skills is equal
to the number of actions. In the green area, the tasks are structured similar to the recommended structure
while the tasks in the yellow area have a lot of skills with a little number of tasks. In the red area, the tasks
use only a few skills with a lot of actions.

In Figure 5.7 the number of skills and actions for each trained task in the user study is shown. Besides, three example
tasks are added which use a skill architecture like it is recommended in terms of reusability. Starting from this an area is
marked in green which includes all tasks with a similar number of actions per skill, so these skills also have a structure
that be reused easily. The red area marks tasks that have a too high number of actions per skill. So they cannot be reused
for other tasks, because their behavior is very specific. The yellow area describes the tasks where the most skills only use
one action.

It can be seen that one-third of all tasks only use one action per skill and only a few users define very long skills. But
only one-third of the created tasks are in the recommended area, so it seems that the users were not using the Task-Skill
structure in the way it is thought. One reason for this could be the fact that the users were not instructed to define Skills
with a useful structure and because the whole theme was completely new for them, they were not thinking a lot about
this.

Another problem for a lot of users was the naming of the skills they created. It seems to be difficult to find useful names
for people without a background in programming because they are not used to work like this. Often the skills were
named similar to "move arm down" or "grasp" instead of easily understandable names like "move right arm to cookies"
or "grasp cookies". The bad naming of the created skills confuses the users later if they want to reuse a skill they trained
before. This was allowed in Experiment 3, but ~25 % of all users were not able to reuse their skills, even if they wanted
to because they could not remember the right name.

This simple problem was not predicted during the development of the framework, but it causes a lot of issues in the real
application. It is difficult to provide a technical solution for this problem, but it could help to explicitly remember the
users to give a meaningful name and giving some examples when they create a new Skill.

5.4 ProMP Evaluation

In this section, the usage of ProMPs in general and the training of ProMPs by inexperienced users should be evaluated.
To analyze the ProMP behavior in general on these tasks, at first the reconstruction error is considered in Section 5.4.1.
To rate the training of the ProMPs, the generalization capabilities are analyzed in Section 5.4.2.

44

5 10 15 20
number of basis

functions

0.2

0.0

0.2

0.4

0.6

re
co

ns
tru

ct
io

n
er

ro
r

Grasp Cookies 1

5 10 15 20
number of basis

functions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Put on Tray 1

5 10 15 20
number of basis

functions

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Grasp Cookies 2

5 10 15 20
number of basis

functions

0.00

0.01

0.02

0.03

0.04

0.05

Put on Tray 2
Reconstruction Error over Number of Basis Functions

Figure 5.8.: Every plot shows the Reconstruction Error (after equation 5.1) for an different ProMP and an increasing num-
ber of basis functions. The dotted line is showing the mean of all given demonstrations while the error bars
show the 2σ surrounding. The ProMPs were used to approach the cookies and lay them on the tray in
Experiment 2 and were trained by two different users.

To Cookie - left arm

Figure 5.9.: Example for a well trained ProMP used to grasp the cookies in the first step of Experiment 2. It can be seen
that the given demonstrations are similar, but the object position is different. The course of the mean is similar
to the demonstrations, so the ProMP trajectory will follow a similar way. The task space trajectory of the robot
end-effector is shown in the object frame, so different object positions lead to different start-positions, while
the end position is the same. In joint space the start position is the same while the end-position is different.

5.4.1 Reconstruction Error

The reconstruction error of a ProMP can be used to evaluate how well the ProMP can describe a given demonstration.
This is important to train ProMPs that can reproduce the desired behavior. The calculation of the reconstruction error eR
for a ProMP and one demonstration is described in equation 5.1, where d is the demonstration and d 0 is the reconstructed
trajectory using the ProMP weights and conditioning on the start-point of d.

eR,i =
1
T

T
X

t=0

�

di − d 0i
�2

(5.1)

In this application, every ProMP is calculated from four demonstrations (i = 1, ..., 4), so the reconstruction error is
calculated for every demonstration. The results of this calculation are shown in Figure 5.4.1 for different ProMPs and an
increasing number of basis functions.
The chosen ProMPs were each two for grasping the cookies and to put them on the tray in Experiment 2. These ProMPs
were trained well by the users and also can generalize well to new object positions. For every ProMP the mean and the
2σ-surrounding of the four demonstrations is plotted, which both are decreasing with a higher number of basis functions.
At first, it can be said that the reconstruction error is very small for a higher number of basis functions. To visualize this
one of the example ProMPs with ten basis functions is shown in Figure 5.9. It can be seen that the ProMP can describe
the demonstrations very well and that the demonstration has a good amount of generalization.

45

0.4 0.2 0.0 0.2 0.4
x in m

0.4

0.2

0.0

0.2

0.4

y
in

 m

Start Positions of GraspCookies ProMP Training

(a) Cookie positions of all demonstrations for the Grasp-
Cookies ProMP used in the beginning of Experiment 2.

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
x in m

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

y
in

 m

Start Positions of LayCookiesOnTray ProMP Training

(b) Tray Positions for all demonstrations for the LayCook-
iesOnTray ProMP used in the end of Experiment 2.

Figure 5.10.: This figure evaluates the generalization capabilities of the trained ProMPs and is showing the different object
positions the users used. The object positions of the four demonstrations are shown in different colors
for each users and the ellipse indicates the 2σ surroundings. The cross symbolizes the mean of the four
demonstrations. In Figure 5.10b the most users forgot to move the tray and used the same object position
four times, so no 2σ-surroundings are visible.

Using Figure 5.8 and the reconstruction error the recommended number of basis functions can be evaluated: In general
the number of basis functions at the point where the mean is short before constant should be used. In three of the example
ProMPs, this is a value of six to seven basis functions, but the first example is showing a less predictable behavior and
needs more basis functions. The mean of the error becomes constant at 15 basis functions, but a number of ten should be
enough. In this user study always ten basis functions were used to execute the trained ProMPs. This seems to work well in
most cases, but in the future, the usage of an algorithm to determine the best number of basis functions is recommended.

5.4.2 Generalization

When a ProMP is trained it is important to give demonstrations for different object positions because this is the main
factor for the generalization capabilities of the ProMP. Because of this, it is examined where the users position the objects
for their demonstrations. This is done for two examples in Figure 5.10. The first example is showing the position of the
cookies for all demonstrations in the Grasp Cookies step of Experiment 2. In the second example, the tray position in
the Lay Cookies On Tray step is shown. For every user, the mean and 2σ-surrounding is plotted as an ellipse in different
colors. This can be used to assess the area in which the ProMP can be generalized.

For the first example, all users moved the object at variable positions and created different demonstrations. Some users
only moved the object 15 cm away from the start position. That is a bit less for good generalization capabilities, but it
still can be used. It must be said that the users were not instructed on how they must move the object and what the
background of this procedure is, so most of them intuitively selected a good area to train the robot.

A general problem can be seen in the second example: Only three users moved the tray to the new position when giving
the demonstrations, the rest gave four demonstrations with the same object position. In this experiment, this was not
generating problems, because the tray was not moved before the trained task was tested, but in a real application, these
ProMPs cannot be used. It seems like the users simply forget to move the object, even if they are told so in the teaching
process. So in future, a system that can detect if the object was moved, should be used to remember the user.

46

Table 5.2.: Compare Movement Types

GoTo GoTo with
Motion Planner

Trajectory
Following

ProMP

Simple Training + + o -

Avoid Collisions - + + +

Generalization + + - +

Calculation Time + - + +

5.5 Movement Type Comparison

Finally Table 5.2 compares the used movement types GoTo and ProMP and besides the possibilities of GoTos with motion
planning and following a single trajectory. A GoTo with a motion planner is using a complex motion planning system that
knowns the environment of the robot and the robot arm limits and parameters to calculate a trajectory to the desired
end-point. This trajectory has no collisions with the environment and respects the joint limits of the robotic arm. In
theory, this is a very promising concept, but it has several disadvantages: It often needs a lot of computation time to find
the trajectory, so the interaction with the robot will take a lot of time. Another problem occurs if the robot grasps an
object: The motion planner needs the exact shape and position of all objects in the environment to calculate a trajectory
with no collisions between the object and the environment. The shape detection is very difficult with the used hardware
setup in this structured environment, so the disadvantages outweigh and no motion planners were used.
Another option is the training of simple trajectories the robot should follow. This movement type also is simply trainable
and generates a reliable movement, but it not supports generalization at all. Because of this, it cannot be used in an
unstructured environment like in this project.
The big advantage of GoTo commands is that the training and the generalization to new object positions is very simple.
Collision avoidance is, however, more difficult and unintuitive because the user has to define manually the right via-
positions. This problem is avoided by using ProMPs, but for them the training is more complicated and takes more
time.

47

6 Conclusion & Future Work
The focus of this thesis was the development of intuitive processes to make Imitation Learning of whole tasks possible
for everyone, even for users without a robot or computer science background. After developing these methods they were
evaluated with a user study.

6.1 Conclusion

The basis of this framework is the newly designed high-level task structure. It is using Task, Skills and Actions to describe
the complete behavior. It allows the creation of new robot tasks without using any programming language. Instead, it
is only necessary to define and select the right skills. A skill is a small step of the robot behavior and the goal is easily
understandable for humans. A skill can have several Actions, which are predefined commands with parameters that can
be executed directly on the robot. The Action used in this project are GoToCart, GoToJoint, RunProMP, MoveGripper and
Grasp.
The task structure allows the reuse of Skills in other Tasks, so the training of new tasks becomes easier with a growing
number of skills.
To make the definition of new tasks and skills as easy as possible a teaching process was developed to guide the user
through the creation of new Tasks and Skills and the training of the used Actions. This is done by giving direct instruction
to what the user has to do and asking easily understandable questions to set the Action parameters. The whole process
of switching robot control modes between teaching- joint-space- and task-space-mode is done automatically, so the user
has not to care about this.
In addition to the general teaching process, special training processes were designed to make the ProMP training possible
for inexperienced users. During this teaching process, the user only has to move the robot in the kinesthetic teaching
mode to give the demonstrations, the complete data processing is done automatically.
It is possible to train ProMPs for one or both arms or use a special Coordinated ProMP teaching process. A Simple ProMP
is a normal ProMP for one arm which can be trained by moving the arm four times on the desired trajectory and varying
the end position. Between the demonstrations, the robot arm moves back to the start position automated. If both arms
should be used the Coordinated ProMP can be used. It allows a synchronized training of both arms. At first, one arm is
trained alone, when this movement is replayed and the user can train the second arm and synchronize the movement to
the first arm. If the training of both arms independent is not possible, the Simple ProMP process can also be used in a
similar version for both arms.
The whole teaching process for the task structure and the ProMP training was implemented with a graphical user in-
terface, so it can be controlled by every user on his own. Besides, a low-level motion generator was developed which
calculates trajectories from via points and sends them to the robot. It also can switch the different control modes
automatically.
Another important outcome of this thesis is the result of the applied user study which evaluates the success and acceptance
of the designed training framework with inexperienced users. The first important point is that all users understand the
teaching process and were able to teach new tasks to the robot. Most users also think that the process is comprehensible.
They all were able to define new tasks and skills on their own, but some users do not use the task structure in the
recommended way and define a lot too many skills.
The users also understood how GoTo commands and ProMPs are working and what their difference is. In the application
of GoTo commands the definition of via-point often was forgotten which lead to a collision between the robot and its
environment. Yet the users think that training ProMPs is easy and that the robot behavior for GoTos is predictable. But it
seems like the users predict the behavior wrong which often results into collisions.
All users were able to train new ProMPs, even if this is much more complicated. The users understand the higher
training effort and have not complained about it. Instead, more than half of all users even prefer ProMPs over GoTos.
The generalization capabilities of the ProMPs also were good enough to execute them with different object positions,
but sometimes the users simply forgot to move the object to new positions. This can be avoided by a mechanism that
remembers the user if they have not moved the object. All in all the success rate in ProMP training was higher than for
GoTos, so maybe this kind of movement should be preferred in the future.
Another important finding is that all users can use the kinesthetic teaching mode without problems. Most users also
agree that moving the robot to the desired position is easy. So kinesthetic teaching seems to be the right decision for the
generation of demonstrations.

49

6.2 Future Work

The first point that should be considered is the usage of GoTo commands or trajectory training methods like ProMPs.
Because GoTos often failed in the user study, using ProMPs seems to be a good approach, but using them for all robotic
movements is too costly. A good compromise would be the usage of ProMPs for all movements related to an object and
using GoTos for all movements to fixed positions. So the user only has to decide, if the robot should move to an object or
a fixed position.
If ProMPs should be used in a real application, some further improvements must be done: In the training process, it
is necessary to ensure that the user gives demonstrations with different object positions. This can be easily done by
comparing the object positions before starting the demonstration recording. During the training process, it happened
regularly that users gave demonstrations that are not similar enough to each other. A common example was that the last
joint of the arm was rotated in different directions, but the end-position was the same. The ProMP calculated from these
demonstrations will, unavoidably, results in undefined behavior, so this error must be avoided automatically. To do this
an algorithm is needed that finds demonstrations that are not similar enough and deletes them from the training data. It
should be possible to do this using cross-validation and evaluating if the demonstration is in the 2σ-surrounding of the
other demonstrations.
A second important improvement is to check if the point, the ProMP should be conditioned on, is in the trained area,
before the ProMP is executed. If ProMPs are conditioned on points outside the trained area, they often show an unpre-
dictable behavior and this must not happen in a real-world application. A first idea to do this is a check if the point is
between all demonstrations, or in the 2σ-surrounding.
Another challenge is the execution of both arm movements. In this project, they only were coupled by probabilistic
methods and no really strict rules were used. Because this work focuses on the training process itself and not on the
execution, this was not a problem, even if the execution often was far from optimal. So it will be necessary to use more
advanced representations for both arm movements using force[62, 47] or relative position for the coupling[48, 49].
The reliability of the whole system could be improved a lot by using the task-space controller which can detect and avoid
the joint limit automatically. This is often a problem during both the execution of task-space trajectories and the recording
of demonstrations. This task can be done by different motion planners, but they often need too much computation time
for real-time applications, so this is still a big challenge. An assisted teaching controller similar to [24] with automated
joint limit avoidance would improve the generation of demonstrations with kinesthetic teaching a lot.

50

Bibliography
[1] B. Gates, “A robot in every home,” Scientific American, vol. 296, no. 1, pp. 58–65, 2007.

[2] M. Ford, Rise of the Robots: Technology and the Threat of a Jobless Future. Basic Books, 2015.

[3] S. J. Russell, “Learning agents for uncertain environments,” in COLT, vol. 98, pp. 101–103, 1998.

[4] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in cognitive sciences, vol. 3, no. 6, pp. 233–
242, 1999.

[5] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement primitives,” in Advances in neural
information processing systems, pp. 2616–2624, 2013.

[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning
attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[7] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda humanoid robot,” in Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 2, pp. 1321–1326,
IEEE, 1998.

[8] M. A. Diftler, J. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M. Sanders, R. S. Askew, D. M. Linn,
J. D. Yamokoski, F. Permenter, et al., “Robonaut 2-the first humanoid robot in space,” in 2011 IEEE international
conference on robotics and automation, pp. 2178–2183, IEEE, 2011.

[9] “Franka emika.” https://www.franka.de/, 2019. [Online; accessed 26. November 2019].

[10] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robotics
and autonomous systems, vol. 57, no. 5, pp. 469–483, 2009.

[11] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Advances in neural information
processing systems, pp. 305–313, 1989.

[12] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al., “An algorithmic perspective on imitation
learning,” Foundations and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[13] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning motor primitives,” in Advances
in neural information processing systems, pp. 1547–1554, 2003.

[14] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task learning: Instructive demonstrations, general-
ization and practice,” in Proceedings of the second international joint conference on Autonomous agents and multiagent
systems, pp. 241–248, ACM, 2003.

[15] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G. Barto, “Learning grounded finite-state rep-
resentations from unstructured demonstrations,” The International Journal of Robotics Research, vol. 34, no. 2,
pp. 131–157, 2015.

[16] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a task in a humanoid robot,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007.

[17] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll, “Intuitive instruction of industrial robots:
Semantic process descriptions for small lot production,” in 2016 ieee/rsj international conference on intelligent robots
and systems (iros), pp. 2293–2300, IEEE, 2016.

[18] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso, “Interactive robot task training through dialog and demon-
stration,” in Proceedings of the ACM/IEEE international conference on Human-robot interaction, pp. 49–56, ACM,
2007.

51

https://www.franka.de/

[19] S. Ekvall and D. Kragic, “Robot learning from demonstration: a task-level planning approach,” International Journal
of Advanced Robotic Systems, vol. 5, no. 3, p. 33, 2008.

[20] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar: Instructing collaborative robots with behavior
trees and vision,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 564–571, IEEE,
2017.

[21] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager, “User experience of the costar system for instruction
of collaborative robots,” arXiv preprint arXiv:1703.07890, 2017.

[22] A. Weiss, J. Igelsbock, S. Calinon, A. Billard, and M. Tscheligi, “Teaching a humanoid: A user study on learning
by demonstration with hoap-3,” in RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human
Interactive Communication, pp. 147–152, IEEE, 2009.

[23] B. Akgun and K. Subramanian, “Robot learning from demonstration: kinesthetic teaching vs. teleoperation,” Un-
published manuscript, 2011.

[24] S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba, and J. Steil, “A user study on kinesthetic teaching
of redundant robots in task and configuration space,” Journal of Human-Robot Interaction, vol. 2, no. 1, pp. 56–81,
2013.

[25] M. Tykal, A. Montebelli, and V. Kyrki, “Incrementally assisted kinesthetic teaching for programming by demonstra-
tion,” in The Eleventh ACM/IEEE International Conference on Human Robot Interaction, pp. 205–212, IEEE Press,
2016.

[26] H. Lee, J. Kim, and T. Kim, “A robot teaching framework for a redundant dual arm manipulator with teleoperation
from exoskeleton motion data,” in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2014,
(Piscataway, NJ), pp. 1057–1062, IEEE, 2014.

[27] M. Hessinger, A. Buchta, R. Werthschützky, and M. Kupnik, “Imu-based motion capture system for real-time body
joint angle measurement,” in Annual Meeting of the German Society of Biomedical Engineering and Joint Conference
in Medical Physics, Oktober 2017.

[28] M. Laghi, M. Maimeri, M. Marchand, C. Leparoux, M. Catalano, A. Ajoudani, and A. Bicchi, “Shared-autonomy
control for intuitive bimanual tele-manipulation,” in 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids), pp. 1–9, IEEE, 2018.

[29] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imitation learning for com-
plex manipulation tasks from virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–8, IEEE, 2018.

[30] R. Caccavale, M. Saveriano, G. A. Fontanelli, F. Ficuciello, D. Lee, and A. Finzi, “Imitation learning and attentional
supervision of dual-arm structured tasks,” in 2017 Joint IEEE International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), pp. 66–71, IEEE, 2017.

[31] N. Figueroa, A. L. P. Ureche, and A. Billard, “Learning complex sequential tasks from demonstration: A pizza
dough rolling case study,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pp. 611–612, Ieee, 2016.

[32] J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell, “Learning bimanual end-effector poses from demonstrations
using task-parameterized dynamical systems,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 464–470, IEEE, 2015.

[33] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,”
IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[34] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and J. Peters, “Movement templates for learning of
hitting and batting,” in 2010 IEEE International Conference on Robotics and Automation, pp. 853–858, IEEE, 2010.

[35] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators. Springer London, 2000.

[36] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific generalization of discrete and periodic dynamic move-
ment primitives,” IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

52

[37] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordination with em-based reinforcement learn-
ing,” in 2010 IEEE/RSJ international conference on intelligent robots and systems, pp. 3232–3237, IEEE, 2010.

[38] A. Paraschos, G. Neumann, and J. Peters, “A probabilistic approach to robot trajectory generation,” in 2013 13th
IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 477–483, IEEE, 2013.

[39] G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters, and G. Neumann, “Learning interaction for collaborative
tasks with probabilistic movement primitives,” in 2014 IEEE-RAS International Conference on Humanoid Robots,
pp. 527–534, IEEE, 2014.

[40] D. Koert, S. Trick, M. Ewerton, M. Lutter, and J. Peters, “Online learning of an open-ended skill library for collab-
orative tasks,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–9, IEEE,
2018.

[41] D. Koert, J. Pajarinen, A. Schotschneider, S. Trick, C. Rothkopf, and J. Peters, “Learning intention aware online
adaptation of movement primitives,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3719–3726, 2019.

[42] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to sequence movement primitives from demonstrations,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4414–4421, IEEE, 2014.

[43] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning movement primitive attractor goals and sequential skills
from kinesthetic demonstrations,” Robotics and Autonomous Systems, vol. 74, pp. 97–107, 2015.

[44] L. D. Rozo, S. Calinon, D. Caldwell, P. Jiménez, and C. Torras, “Learning collaborative impedance-based robot
behaviors,” in Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[45] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized movement primitives,” The International Journal of
Robotics Research, vol. 38, no. 7, pp. 833–852, 2019.

[46] R. Zollner, T. Asfour, and R. Dillmann, “Programming by demonstration: Dual-arm manipulation tasks for hu-
manoid robots,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 1, pp. 479–484, IEEE, 2004.

[47] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement primitives: Interaction with the environment
and bimanual tasks,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[48] J. Umlauft, D. Sieber, and S. Hirche, “Dynamic movement primitives for cooperative manipulation and synchronized
motions,” in IEEE International Conference on Robotics and Automation (ICRA), 2014, (Piscataway, NJ), pp. 766–771,
IEEE, 2014.

[49] A. Batinica, B. Nemec, A. Ude, M. Rakovic, and A. Gams, “Compliant movement primitives in a bimanual setting,” in
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), (Piscataway, NJ), pp. 365–371,
IEEE, 2017.

[50] S. Schaal, “Dynamic movement primitives-a framework for motor control in humans and humanoid robotics,” in
Adaptive motion of animals and machines, pp. 261–280, Springer, 2006.

[51] F. Rovida, B. Grossmann, and V. Krüger, “Extended behavior trees for quick definition of flexible robotic tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6793–6800, IEEE, 2017.

[52] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and Al: An Introduction. CRC Press, 2018.

[53] D. Faconti, “Behaviortree.cpp.” https://www.behaviortree.dev/, 2019. [Online; accessed 08. November 2019].

[54] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters, “Adaptation and robust learning of probabilistic
movement primitives,” IEEE Transactions on Robotics, 2018.

[55] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and control. Springer Science &
Business Media, 2010.

[56] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Task-space control of robot manipulators with null-space
compliance,” IEEE Transactions on Robotics, vol. 30, no. 2, pp. 493–506, 2013.

53

https://www.behaviortree.dev/

[57] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space projections for redundant, torque-controlled
robots,” The International Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.

[58] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[59] “Ros.” https://www.ros.org/about-ros/, 2019. [Online; accessed 08. November 2019].

[60] W. Meeussen, “Ros control.” http://wiki.ros.org/ros_control, 2019. [Online; accessed 08. November 2019].

[61] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results of empirical and theoretical
research,” in Advances in psychology, vol. 52, pp. 139–183, Elsevier, 1988.

[62] E. Pignat and S. Calinon, “Bayesian Gaussian mixture model for robotic policy imitation,” IEEE Robotics and Au-
tomation Letters (RA-L), vol. 4, no. 4, pp. 4452–4458, 2019.

54

https://www.ros.org/about-ros/
http://wiki.ros.org/ros_control

A User Study

A.1 User Background

Bitte füllen Sie folgende Angaben aus:

Geschlecht:

Mann Frau divers

Alter:

17 oder jünger 40-49

18-20 50-59

21-29 60 oder älter

30-39

Was ist Ihr höchster Bildungsabschluss?

kein Schulabschluss abgeschlossene Ausbildung

Grund-/Hauptschulabschluss Bachelor (Fachhochschule oder Hochschule)

Realschule (mittlere Reife) Master oder Diplom (Fachhochschule/Hochschule)

Gymnasium/Fachoberschule (Abitur) Promotion

anderer höchster Bildungsabschluss:

In welchem Bereich arbeiten/studieren Sie:

55

Wie viel Erfahrung im Umgang mit Programmiersprachen haben Sie?

Keine Erfahrung

Grundkenntnisse
Gelegentliche Anwendung (mindestens monatlich)

Regelmäßige Anwendung (mindestens wöchentlich)

Häufige Anwendung (nahezu täglich)

Wie viel Erfahrung im Umgang mit Robotern, die dem Roboter im Versuch ähnlich sind, haben Sie?

Keine Erfahrung

Ich habe bereits Roboter in Aktion gesehen

Ich habe aktiv einzelne Aktionen mit Robotern durchgeführt

Ich habe Grundkenntnisse über Aufbau und Funktionsweise von Robotern
Ich bin in der Lage Roboter zu programmieren und kenne den Aufbau eines Roboters

56

A.2 Experiment Description

In dieser Studie besteht Ihre Aufgabe darin, dem Roboter neue Aufgaben beizubringen, die an einfache Haushaltsarbeiten
angelehnt sind. Diese Aufgaben werden nach einer bestimmten Struktur aufgebaut, die im Folgenden kurz erklärt wird:

Task
Put glass on tray

Skill 1
Move to glass

Action 1.1
Move to task space position

Action 1.2
Run ProMP

Skill 2
Grasp glass

Action 2.1
Grasp

Skill 3
Move to tray

Action 3.1
Move to task space position

Skill 4
Release glass

Action 4.1
Open Gripper

Figure A.1.: Aufbau einer Roboter Aufgabe

Abbildung A.1 zeigt die Beispielhafte Aufgabe: Stelle ein Glas auf das Tablett. Diese Aufgabe heißt in der verwendeten
Struktur ab jetzt Task. Da diese Aufgabe aus mehreren kleinen Schritten besteht, kann auch ein Task aus mehreren
Bausteinen bestehen. Diese heißen Skills. In der Beispielaufgabe sind mögliche Skills zum Beispiel Greife das Glas und
Bewege das Glas zum Tablett.
Die Skills können von Ihnen erzeugt werden, indem sie eine oder mehrere Aktionen auswählen, die der Roboter in einem
Skill ausführen soll. Eine Aktion bringen sie dem Roboter bei, indem sie diese „Trainieren“ und dem Roboter so zeigen,
wie er die Aktion ausführen soll. Die dafür notwendigen Schritte werden Ihnen später vom Programm vorgegeben.
Welche Aktionen Ihnen zur Verfügung stehen, wird im weiteren Versuchsablauf erläutert.
Ihre Aufgabe besteht darin verschiedene Tasks zu definieren, die unterschiedliche Aufgaben erfüllen sollen. Dafür können
Sie beliebig viele Skills erzeugen, die sie dann in jedem Task wiederverwenden können.

A.2.1 Vorbereitung

Zur Vorbereitung der Experimente können Sie die Handhabung des Roboters üben. In den folgenden Experimenten
werden Sie den Roboter manuell in die gewünschte Position bewegen, um ihm so das Anfahren einer neuen Position
beizubringen. Um diesen Vorgang zu testen und sich an die Bewegungsmöglichkeiten des Roboters zu gewöhnen, kann
der Versuchsleiter den Roboter in einen Trainingsmodus schalten in dem er sich sehr leicht bewegen lässt. Testen Sie
dabei vor allem die Reichweite des Roboters und beobachten Sie welche Gelenke Sie bevorzugt bewegen.

57

A.2.2 Experiment 1

In diesem Experiment bringen Sie dem Roboter bei eine Kekspackung zu greifen und an eine neue Position zu legen. Der
gewünschte Ablauf ist folgender:

• Der Roboter greift die Kekspackung mit dem linken Arm

• Der Roboter übergibt die Kekse an den rechten Arm

• Der Roboter stellt die Kekse auf das Tablett

• Am Ende sind beide Arme wieder in der Startposition

Für die Durchführung dieser Aufgabe können sie die Aktionen Greifen, Bewege zu fester Position und Bewege zu Objekt
verwenden. Diese werden im folgenden kurz erklärt.
Die Greifen Aktion schließt den Greifer und greift so ein Objekt. Anschließend wird das Objekt festgehalten.
Der Roboter ist in der Lage, die Position von Objekten zu erkennen, deshalb kann er auch seine Bewegungen an Objekten
ausrichten. Dazu können Sie die Bewege zu Objekt Action verwenden. Diese bewegt den Greifer des Roboters an eine
Position, die sie vorgeben können und sich anschließend immer an der Objektposition orientiert. Dazu wählen Sie als
erstes das Objekt (In diesem Versuch das Tablett oder die Kekspackung) aus, zu dem sich der Roboter bewegen soll.
Anschließend können Sie den Roboter mit Hand an die gewünschte Position bewegen.
Wenn der Roboter nicht mit einem Objekt interagieren soll, können Sie die Bewege zu fester Position Aktion verwenden.
Diese bewegt den Roboterarm nach dem Training immer an die genau gleiche Position und orientiert sich nicht an
Objekten.
Für einen erfolgreichen Trainingsprozess beachten sie folgende Hinweise:

• Die Bewege zu... Aktionen bewegen den Roboter immer auf direktem Weg zur Zielposition, es ist oft sinnvoll
einige Zwischenschritte zu definieren, damit der Roboter einem sinnvollem Weg folgt

– Wenn der Roboter ein Objekt greifen soll, ist es sinnvoll Ihn erst in die Nähe des Objekts zu fahren und erst
im zweiten Schritt direkt zum Objekt.

• Der Ablauf wird oft dadurch erleichtert, dass Sie den Roboter zwischen zwei Schritten wieder zurück in die Start-
position fahren. Dazu können Sie den goto_home Skill verwenden.

• Zum Öffnen der Greifer können Sie den open_gripper Skill verwenden.

Der Trainingsprozess funktioniert wie folgt:

• Erzeugen Sie einen neuen Task mit dem Neuer Task Knopf

• Jetzt können Sie dem Task neue Skills hinzufügen. Dazu können Sie einen vorhandenen Skill auswählen und mit
dem Ausführen Knopf direkt auf dem Roboter ausführen lassen. Mit dem Hinzufügen Knopf fügen Sie den Skill
zum Task hinzu. Alle Skills in einem Task werden Ihnen im linken unteren Feld angezeigt.

• Immer wenn der Roboter etwas neues lernen soll, müssen Sie einen neuen Skill erzeugen. Dazu verwenden Sie den
Neuer Skill Knopf. Anschließend können Sie eine Aktion auswählen und diese mit dem Trainieren Knopf trainieren.
Nach dem Training können sie die Aktion ausführen und dem Skill hinzufügen.

• Wenn Sie dem Skill alle gewünschten Aktionen hinzugefügt haben, können Sie ihn speichern und er wird automa-
tisch zum Task hinzugefügt.

58

A.2.3 Experiment 2

In diesem Experiment sollen Sie dem Roboter noch einmal die gleiche Aufgabe wie in Experiment 1 beibringen. Dazu
sollen Sie jetzt aber statt der Bewege zu ... Aktionen die Bewegung ausführen Aktion verwenden.
Mit der Bewegung ausführen Aktion können sie den Roboter genau einem Weg folgen lassen, den sie vorher vorgeben.
Dies erleichtert das Umfahren von Hindernissen oder das Anfahren von Objekten aus einer bestimmten Richtung.
Um die Folge Trajektorie Aktion zu trainieren müssen sie dem Roboter die Bewegung vier mal demonstrieren. Auch
diese Bewegungen orientieren sich an einem Objekt, deshalb müssen Sie dieses als erstes auswählen. Zwischen den
verschiedenen Demonstrationen werden sie aufgefordert das Objekt an eine neue Position zu legen, so kann der Roboter
lernen, eine ähnliche Bewegung für verschiedene Postionen des Objekts auszuführen.
Das Training einer neuen Bewegung funktioniert wie folgt:

• Wenn Sie einen neuen Skill erzeugen, können Sie die Bewegung ausführen Aktion verwenden. Bevor Sie diese
trainieren, müssen sie mit dem Neue einfache Bewegung Knopf eine neue Bewegung aufnehmen.

• Als erstes können Sie den Roboterarm in eine Startposition bewegen oder dafür einfach die aktuelle Position
verwenden

• Anschließend werden sie aufgefordert den Roboterarm auf dem gewünschtem Weg zu bewegen

• Danach bewegt sich der Arm automatisch wieder in die Startposition und sie können die eben erzeugte Demon-
stration verwenden oder verwerfen, falls Sie eine bessere Demonstration erzeugen möchten

• Dieser Prozess wird vier mal wiederholt

• Anschließend müssen Sie die Bewegung ausführen Aktion noch trainieren und können Sie Ausführen und dem Skill
hinzufügen.

A.2.4 Experiment 3

Das Dritte Experiment ist etwas aufwändiger, dabei soll der Roboter die Kekse auf das Tablett legen und dieses an-
schließend anheben. Der gewünschte Ablauf ist der Folgende:

• Der Roboter greift das Tablett und stellt es vor sich

• Der Roboter legt die Kekse auf das Tablett

• Der Roboter greift das Tablett mit beiden Armen gleichzeitig und hebt es anschließend an

Zur Durchführung dieser Aufgabe können Sie alle in Experiment 1 und 2 verwendeten Skills und Actions verwenden.
Zusätzlich können Sie die Bewegung ausführen Aktion jetzt auch mit zwei Armen verwenden. Dies ist notwendig,
wenn der Roboter beide Arme gleichzeitig bewegen soll. Im koordinierten Modus trainieren Sie erst einen Arm einzeln,
anschießend wird die Bewegung auf diesem Arm ausgeführt und sie trainieren den zweiten Arm. Der Roboter ist danach
in der Lage beide Roboterarme gleichzeitig zu bewegen. Diesen Modus können Sie zum Beispiel verwenden um das
Tablett zu greifen. Der Training für diesen Bewegungstyp funktioniert genauso wie in Experiment 2, Sie müssen nur
Neue koordinierte Bewegung statt Neue einfache Bewegung auswählen.
Wenn es nicht möglich ist beide Arme nacheinander zu trainieren, können Sie die neue Bewegung auch trainieren,
indem Sie beide Roboterarme gleichzeitig bewegen. Dazu wählen Sie neue Neue einfache Bewegung und anschließend
Beide Arme aus. Diese Aktion bietet sich immer dann an, wenn beide Arme verbunden sind, zum Beispiel wenn sie das
gleiche Objekt greifen.
Während dem Training bewegen Sie beide Arme zusammen auf dem gewünschtem Weg und müssen diese anschließend
auch wieder manuell in die gewünschte Startposition bewegen. Achten sie dabei besonders darauf, dass der Roboter das
Objekt weiter festhält und nicht verliert.

59

A.3 Questionnaire 1

Bitte geben Sie im Folgenden an in wieweit die jeweiligen Aussagen auf Sie zutreffen.
Hierbei können Sie Abstufungen zwischen „trifft nicht zu“ und „trifft zu“ auswählen. Sollte eine Aussage nicht zutreffen,
tragen Sie bei Anmerkungen den Grund dafür ein.
Die Aussagen beziehen sich hierbei nur auf das direkt vorangegangene Experiment.

Der Ablauf des Trainingsvorgangs ist nachvollziehbar.

trifft nicht zu trifft eher nicht zu teils-teils trifft eher zu trifft zu

Ich habe mich bei der Bedienung des Roboters unwohl gefühlt.

trifft nicht zu trifft eher nicht zu teils-teils trifft eher zu trifft zu

Das Verhalten des Roboters ist vorhersehbar.

trifft nicht zu trifft eher nicht zu teils-teils trifft eher zu trifft zu

Die Bewegung des Roboters an die gewünschte Position fällt mir leicht.

trifft nicht zu trifft eher nicht zu teils-teils trifft eher zu trifft zu

Anmerkungen:

60

A.4 Questionnaire 2

Bitte geben Sie im Folgenden an, inwieweit die jeweiligen Aussagen auf Sie zutreffen.
Die Aussagen beziehen sich auf die zwei verschiedenen Roboterbewegungstypen(Bewegungen zu einem Punkt und das Folgen
einer festgelegten Trajektorie), die Sie in den vorangegangenen drei Experimentensets kennengelernt haben.

Bitte geben Sie an, für welchen Bewegungstyp Ihnen das Training am einfachsten erscheint:

Ich finde das Training des Bewegungstypen in Teil 1 am einfachsten

Ich finde das Training des Bewegungstypen in Teil 2 am einfachsten

nichts davon, sondern:

Bitte geben Sie an, für welchen Roboter-Bewegungstyp Sie das Training im Vergleich am intuitivsten empfunden haben:

Ich finde das Training des Bewegungstypen in Teil 1 am intuitivsten

Ich finde das Training des Bewegungstypen in Teil 2 am intuitivsten

nichts davon, sondern:

Bitte geben Sie an, welcher Bewegungstyp Ihnen in der Anwendung am nützlichsten erscheint:

Ich finde das Training des Bewegungstypen in Teil 1 am nützlichsten

Ich finde das Training des Bewegungstypen in Teil 2 am nützlichsten

nichts davon, sondern:

Anmerkungen:

61

	Introduction
	Motivation
	Structure

	Foundations & Related Work
	Related Work
	Imitation Learning
	Robot Learning
	Teaching Concepts
	User Studies
	Concepts for Demonstration Generation

	Trajectory Representation
	Movement Primitives
	Two Arm Movement Primitive Concepts

	Probabilistic Movement Primitives
	Behavior Trees
	Classical Formulation of Behavior Trees
	Comparison With Other Architectures
	Finite State Machines
	Hierarchical Finite State Machines

	Own approach
	Task Representation
	Action Definition
	GoToJointAction
	GoToCartAction
	RunPrompAction
	GraspAction
	MoveGripperAction

	Skill Definition
	Task Definition
	Structure Robot Behavior as Behavior Trees

	Teaching Process
	Task Teaching
	Skill Teaching
	GoToCartAction
	GoToJointAction
	RunPrompAction
	GraspAction

	ProMP Teaching
	Simple ProMP
	Coordinated ProMP
	Simple ProMP With Both Arms

	Control Modes
	Model Description
	Task-Space Impedance Control
	Null-Space Impedance Control
	Application of the Model Based Controller

	Implementation
	Hardware Setup
	Program Structure
	Low Level - Movement Generation
	Mid Level - Teaching and ProMPs
	High Level - User Interface

	User Interface

	Experiments
	User Study Description
	Setup
	Tasks
	Experiment 1: GoTo
	Experiment 2: ProMP
	Experiment 3: Both Arms

	Users

	User Study Results
	Training Success and Common Errors
	User Feelings
	Experiment Comparison
	Compare Movement Types
	Workload

	Analyze of Used Task and Skill Structure
	ProMP Evaluation
	Reconstruction Error
	Generalization

	Movement Type Comparison

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography
	User Study
	User Background
	Experiment Description
	Vorbereitung
	Experiment 1
	Experiment 2
	Experiment 3

	Questionnaire 1
	Questionnaire 2

	[b][][c]1cmMann: Off
	[b][][c]1cmFrau: Off
	[b][][c]1cmdivers: Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm : Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm : Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm : Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm : Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm : Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off
	[b][][c]1cm: Off

