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Abstract

Latent variable models in general and mixture models in particular are popular parametric families in
probabilistic modeling and density estimation. The Expectation Maximization (EM) algorithm [Demp-
ster et al., 1977] is a well-established approach for fitting them to samples. EM maximizes the likelihood
of the data given the model, which can lead to solutions that average over modes that can not be rep-
resented by the model and can yield significant probability mass in regions where there is no data to
support it. In the context of robotics and autonomous systems, averaging over modes can lead to haz-
ardous behavior. In this work, we introduce Expected Information Maximization (EIM), a novel approach
to fit latent variable models to samples. EIM aims at finding the information-projection (I-projection),
which ignores modes it cannot represent. We combine recent advances in variational inference [Arenz
et al., 2018] with density ratio estimation [Sugiyama et al., 2012a] to obtain an upper bound objective
that can be optimized using an EM-like procedure. The objective is derived for marginal and conditional
latent variable models. Additionally, we provide efficient implementations of EIM for Gaussian mixture
models and mixtures of experts by exploiting similarities to information theoretic policy search methods
[Deisenroth et al., 2013]. Introducing density ratio estimation relates EIM to Generative Adversarial
Networks(GANs) [Goodfellow et al., 2014]. Yet our approach is not adversarial and aims at scenarios
where a tractable model is required. We analyze the exact connection between EIM and GANs, as well
as other related work. In our experiments, we show the benefits of the I-projection and demonstrate that
our approach outperforms existing methods capable of finding it.

Zusammenfassung

Latente Variablenmodelle und insbesondere Mischmodelle sind beliebte parametrische Familien in der
probabilistischen Modellierung und Dichteschätzung. Der Expectation Maximization (EM)-Algorithmus
[Dempster et al., 1977] ist ein etablierter Ansatz, um diese Modelle von Daten zu lernen. EM maxi-
miert die Wahrscheinlichkeit das die Daten mittels des Modells erzeugt wurden. Dies kann zu Lösungen
führen, welche über Modi die nicht dargestellt werden können, mitteln und eine signifikante Wahr-
scheinlichkeitsdichte in Regionen aufweisen in denen die Daten dies nicht rechtfertigen. Im Kontext von
Robotik und autonomen Systemen kann dies zu gefährlichen Verhalten führen. In dieser Arbeit stellen
wir Expected Information Maximization (EIM) vor, einen neuen Ansatz latente Variablenmodelle von
Daten zu lernen. EIM arbeitet mit der Informationsprojektion, welche Modi ignoriert die nicht darge-
stellt werden können. Wir kombinieren aktuelle Verfahren der Variationsinferenz [Arenz et al., 2018]
und der Schätzung von Dichteverhältnissen [Sugiyama et al., 2012a], um eine obere Schranke zu er-
halten, welche wir in einem EM-artigen Verfahren optimieren. Wir leiten diese Schranke für marginale
und bedingte latente Variablenmodelle her. Darüber hinaus, leiten wir effiziente Implementierungen für
Gaußsche Mischmodelle und Mixtures of Experts her. Hierzu nutzen wir Ähnlichkeiten zu informati-
onstheoretischer Strategiesuche [Deisenroth et al., 2013]. Die Nutzung von Methoden zu Schätzung
von Dichteverhältnissen verbindet EIM und Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014]. Unser Ansatz ist jedoch nicht gegnerisch und zielt auf Szenarien ab in denen ein berechenbares
Modell erforderlich ist. Wir analysieren den genauen Zusammenhang zwischen EIM und GANs sowie an-
deren verwandten Arbeiten. In unseren Experimenten zeigen wir den Nutzen der Informationsprojektion
und, dass unser Ansatz besser dazu geeignet ist diese zu finden als bestehende Methoden.
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1 Introduction

Learning generative models from and estimating the probability density of data are common and impor-
tant tasks in machine learning.
Mixture models are commonly used as a class of parametric distributions. By combining simpler dis-
tributions, one can construct arbitrary rich models which are still intuitive and efficient to work with.
Furthermore, the model complexity can be controlled in an intuitive manner by adapting the number of
components. Arguably, the most popular mixture model is the Gaussian mixture model (GMM), consist-
ing of a categorical mixture distribution and Gaussian components. If a conditional distribution should
be learned, mixtures of experts have proven to be a reasonable extension to GMMs [Jacobs et al., 1991;
Yuksel et al., 2012].
The most common approach to fit mixture models to data is the Expectation Maximization algorithm
[Dempster et al., 1977]. This iterative scheme works by maximizing the likelihood of the training data
under the model. Yet, maximizing the likelihood for mixture models is prone to over-fitting as well as
premature convergence to spurious local optima. Additionally, the maximum likelihood objective forces
the model to assign probability density to every value for which the density of the target distribution is
non-zero. Thus, in the common case where the model is not rich enough to perfectly fit the target distri-
bution, it averages over modes it cannot represent and may assign the majority of the model’s density to
regions where there is no data to justify it.

When modeling behavior, especially in the context of autonomous systems and robotics, such averaging
behavior can have catastrophic consequences. Averaging over the behavior from multiple experts might
cause a robot or an autonomous car to enter regions of their state space that should be avoided. See
Figure 1.1 for an example.
Computing the information-projection (I-projection) of the model onto the data distribution provides
an alternative. In the unusual case that the model is rich enough to fit the data, both, maximizing the
likelihood and computing the I-projection, yield the same solution. However, in the more common case
of a model that is not rich enough, the I-projection ignores the modes it cannot represent instead of
averaging over them. While the I-projection may ignore some parts of the data, there is also no density
where it is not justified by the data, resulting in a safer, more robust behavior. Thus, the I-projection may
be the more reasonable choice in the context of autonomous systems and robotics.

Yet, to the best of our knowledge, the only methods capable of finding the I-projection solely based on
samples are based on Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]. Extensions
of the original approach are capable of minimizing arbitrary f-divergences [Nowozin et al., 2016; Poole
et al., 2016; Uehara et al., 2016] of which the I-projection is a special case. A key feature of GANs is that
they do not require the model density to be tractable which allows using powerful models. Such models
can be used to learn high dimensional distributions, e.g., over images. Yet, assuming an intractable model
also prevents GANs from utilizing information about the model structure during training. Additionally,
their adversarial objective makes training GANs particularly hard.
Recently, Arenz et al. [2018] introduced Variational Inference by Policy Search (VIPS), a novel method
for variational inference. Their approach minimizes an upper bound objective in an EM-like procedure.
Yet, like all variational inference approaches, they assume access to the unnormalized density of the
target distribution. Based on the VIPS objective, we propose Expected Information Maximization (EIM),
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(a) Expert Data (b) Maximum Likelihood (c) Information Projection

Figure 1.1.: We recorded expert data of a 10-link planar robot, tasked with reaching the small green dot,
without colliding with an obstacle, i.e., the large red circle. The expert data has two modes in
joint space, reaching under and over the obstacle. We fit a single Gaussian to the expert data
by maximizing the likelihood and finding the I-projection. The maximum likelihood solution
averages over both modes in the expert data, and thus fails to reach the point and collides
with the obstacle. The I-projection solution, on the other hand, focuses on one mode and
manages to solve the task. Yet, the I-projection solution also ignores the second mode.

a novel approach capable of finding the I-projection between the model and the target distribution solely
based on samples from the target distribution. In order to work with this upper bound objective based
on samples, we use density ratio estimation [Sugiyama et al., 2012a] to approximate quantities we
are unable to compute due to the lack of access to the target distribution. The usage of density ratio
estimation relates our approach and GANs.
Yet, while GANs focus on learning models with intractable densities over high dimensional data, we, on
the other hand, focus on rather low dimensional scenarios where a tractable model is needed or desired.
In this case, one can exploit knowledge about the model density and structure during learning.

Additionally, we derive a similar upper bound objective for conditional distributions to enable learning
conditional latent variable models, which increases the number of potential applications of our approach
dramatically.
Based on those general derivations we introduce EIM for Gaussian mixture models and mixtures of
experts. In the conditional case, the distribution might depend linearly or nonlinearly on the conditioning
variable. For both cases, we present efficient implementations of EIM. Similar to [Arenz et al., 2018],
we exploit similarities to information theoretic policy search [Peters et al., 2010; Deisenroth et al., 2013;
Abdolmaleki et al., 2015], a class of reinforcement learning algorithms, to efficiently realize the updates
of the model distributions. Finally, we compare our approach to existing related work on a qualitative
level by means of an in-depth analysis and on a quantitative level by means of experiments. Those
experiments show the benefits of our approach over GANs as well as EM and further demonstrate the
usefulness of the I-projection objective.
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2 Preliminaries

In this section, we introduce mixture models, the class of probabilistic models we use throughout this
work, as well as the KL divergence, and in particular, the information projection, which will serve as our
objective. Additionally, we review several established concepts that are relevant to the derivations of our
approach or are conceptually related to it. We work with the same upper bound objective as Variational
Inference by Policy Search (VIPS) [Arenz et al., 2018], a recent variational inference approach. Both,
VIPS and our approach use ideas from the classical EM algorithm [Dempster et al., 1977] to optimize
this upper bound. As we assume only samples are available of the target distribution, we need to employ
density ratio estimation [Sugiyama et al., 2012a] to make the bound computable. During the implemen-
tation of our approach, we exploit similarities with information theoretic policy search [Deisenroth et al.,
2013]. Generative Adversarial Networks [Goodfellow et al., 2014] are not only the only other approach
capable of computing the I-projection based on samples, but they are also related to our approach by the
used density ratio estimation techniques.

2.1 Mixture Models and EM

Introducing latent variables is a common way to model complex distributions. If carefully chosen, the
latent variables can significantly simplify the model structure. Such models are referred to as latent vari-
able models. While being higher dimensional, the joint distribution over observed and latent variables is
often more tractable and easier to handle than the marginal over the observed variables.
A popular class of latent variable models are mixture models. The main idea is to split the responsibility
of modeling the data between several usually relatively simple components, e.g., Gaussians. The com-
ponents are then combined using a mixture distribution, assigning each component a weight. Mixture
models have several appealing properties. They can model arbitrary complex distributions while still
being easy to work with. For many common operations, such as computing the density, and algorithms,
including the one presented in this work, computations can be performed independently for the single
components and the mixture distribution. Additionally, adapting the number of components provides an
intuitive way of controlling model complexity.
Mixtures of experts [Jacobs et al., 1991] are a natural extension of mixture models to conditional distri-
butions. For those models both the single components as well as the mixture distribution depend on a
conditioning variable. The weighting distribution is often realized as a softmax and referred to as gating.
Mixtures of experts are a commonly used model class [Yuksel et al., 2012] that share many benefits of
general mixture models.

In the following, we formally introduce the types of mixture models used as parametric families through-
out this work and review on established approaches to learn them from data, in particular, the Expecta-
tion Maximization (EM) algorithm [Dempster et al., 1977].
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2.1.1 Gaussian Mixture Models and Mixtures of Experts

Arguably, the Gaussian distribution is the most popular distribution in machine learning. Thus it is
natural that Gaussian mixture models (GMMs) are among the most popular mixture models. GMMs
consist of a categorical mixture distribution

q(z) = Cat (π)

and d multivariate Gaussian components

q (x|zi) =N
�

µi,Σi

�

.

For the mixture of expert case various possibilities to formulate the gating and components exist. We
want to focus on Gaussian components and softmax gating. For both, we consider models where the con-
ditional parameters depend either linearly or nonlinearly on the conditioning variable. For the softmax,
the linear and nonlinear cases are given by

q(z|y) = softmax (Vy+ v) or q(z|y) = softmax (ψs(y))

respectively. The Gaussian components can be formalized as

q (x|zi,y) =N (Wiy+wi,Σi) or q (x|zi,y) =N
�

ψµ,i(y),ψΣ,i(y)
�

,

for linear and nonlinear models respectively.

2.1.2 Learning Mixture Models

A common objective for fitting parametric model distributions to samples x ( j) drawn from an unknown
distribution p(x) is maximizing the likelihood of the samples under the model q(x)

max
q(x)

L (q(x)) =
N
∏

j=1

q
�

x ( j)
�

.

Due to the finite precision of computers, the product over the densities of all data points is problematic
in practice. Hence, usually, the log likelihood

max
q(x)

logL (q(x)) =
N
∑

j=1

log q
�

x ( j)
�≈max

q(x)
Ep(x) [log q(x)]

is maximized. Yet, maximizing the likelihood for Gaussian mixture models is an ill-posed problem
[Bishop, 2006]. If the model has more than one component, it is possible that one of the compo-
nents focuses on a single sample which yields a variance of 0 and thus an infinitely large likelihood.
Additionally, a less severe form of this problem, i.e., components focusing not on a single sample but on
a small number of them, can lead to severe over-fitting.

Nevertheless, maximum likelihood is a popular approach to fit Gaussian mixture models, and a variety
of algorithms for optimizing this objective exists. Besides the EM algorithm, which we will discuss in
detail in the next section, gradient-based methods, such as Mixture Density Networks [Bishop, 1994],
have been developed. Additionally, Bayesian approaches have been used to alleviate the aforementioned
problems of maximum likelihood. By adding a suitable prior, the ill-posed problem formulation can be
avoided, and over-fitting alleviated. This approach leads to the Variational Bayes EM algorithm [Attias,
1999; Bishop, 2006].
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2.1.3 Expectation Maximization

Expectation Maximization [Dempster et al., 1977] (EM) is a general algorithm for fitting latent vari-
able models using maximum likelihood. The key assumption behind EM is that maximizing the log-
likelihood of the observed variables x under the model, Ep(x) [log q(x)] is hard while maximizing the
joint log-likelihood of observed and latent variables Ep(x ,z) [log q(x , z)] is easier. In order to exploit this
assumption and work with the joint likelihood, a lower bound to Ep(x) [log q(x)] is derived. To this end
an auxiliary distribution q̃(z|x) is introduced. The following derivations are valid for all q̃(z|x), and we
will see later how to choose it. The lower bound is given by

Ep(x) [log q(x)] = Ep(x)

�∫

q̃(z|x) log q(x)dz

�

=Ep(x)

�∫

q̃(z|x) (log q(x , z)− log q(z|x) + log q̃(z|x)− log q̃(z|x)) dz

�

=Ep(x)

�∫

q̃(z|x)
�

log
q(x , z)
q̃(z|x) + log

q̃(z|x)
q(z|x)

�

dz

�

=Ep(x)

�∫

q̃(z|x) log
q(x , z)
q̃(z|x) dz

�

+Ep(x)

�∫

q̃(z|x) log
q̃(z|x)
q(z|x)dz

�

= L(q, q̃)
︸ ︷︷ ︸

lower bound

+Ep(x) [KL (q̃(z|x) ‖ q(z|x))]
︸ ︷︷ ︸

≥0

.

Here KL denotes the Kullback-Leibler divergence which we will introduce in detail in section 2.2. Maxi-
mizing the lower bound is equivalent to maximizing the joint log-likelihood

L(q, q̃)) =

∫

p(x)

∫

q̃(z|x) log
q(x , z)
q̃(z|x) dzd x =

∫∫

p̃(x , z) log
q(x , z)
q̃(z|x) dzd x

=

∫∫

p̃(x , z) log q(x , z)dzd x −
∫∫

p̃(x , z) log q̃(z|x)dzd x = Ep̃(x ,z) [log q(x , z)]− const,

where p̃(x , z) = p(x)q̃(z|x). Yet, as we only have samples from p(x), q̃(z|x) needs to be chosen in order
to compute this expectation. EM works by iterating two steps, the E-step, and the M-step. During the
E-step the model from the previous iteration qold(x) is used to obtain q̃(z|x) by setting

q̃(z|x) = qold(x |z)qold(z)
qold(x)

.

With this choice of q̃(z|x), the upper bound is tight after the E-step since the KL vanishes. The new
q̃(z|x) also allows us to estimate the latent z( j) for all samples x ( j). Those are needed to maximize the
joint log-likelihood in the next step, i.e., the M-step. Dempster et al. [1977] proved that this procedure
monotonically increases the log-likelihood of the observed variables and thus eventually converges to a
local maximum.

For mixture models the M-step can be decomposed into individual updates for each of the components
and the mixture distribution. The derivations of EM for GMMs, mixtures of experts, and various other
latent variable models can be found in [Murphy, 2012]. EM for GMMs is also displayed in algorithm 1.
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Algorithm 1: Expectation Maximization for Gaussian Mixture Models [Murphy, 2012]

EM-for-GMMS({x( j)} j=1···N , q(x));
Input: Data {x( j)} j=1···N , Initial Model q(x) =

∑k
i=1 q(zi)q(x|zi) =

∑d
i=1πiN (x|µi,Σi)

for i in number of iterations do
qold(z) = q(z), qold(x|zi) = q(x|zi) for all components i
E-Step: compute responsibilities

ri j = q̃
�

zi|x( j)
�

=
qold(x |z)qold(z)

qold(x)
=

πold,iN (x( j)|µold,i,Σold,i)
∑d

k=1πold,kN
�

x( j)|µold,k,Σold,k

�

M-Step: maximum likelihood for joint q(x, z)

ri =
∑N

j=1 ri j, πi =
ri

N
, µi =

∑N
j=1 ri jx

( j)

ri
, Σi =

∑N
j=1 ri j

�

x( j) −µi

� �

x( j) −µi

�T

ri

2.2 Kullback-Leibler Divergence and Information-Projection

The Kullback-Leibler Divergence (KL) [Kullback and Leibler, 1951], sometimes also referred to as relative
entropy, can be used to measure the divergence between two probability distributions p1(x) and p2(x)
defined over the same sample space. It is defined as

KL (p1(x) ‖ p2(x)) =

∫

p1(x) log
p1(x)
p2(x)

d x .

Note that the KL is not a metric in the strict mathematical sense since it is clearly not symmetric. However,
using Jensen’s inequality, it can be shown that KL ((p1(x) ‖ p2(x)) ≥ 0 and KL (p1(x) ‖ p2(x)) = 0 if and
only if p1(x) = p2(x) almost everywhere.

For conditional distributions p1(x |y), p2(x |y) and a distribution p(y) over the conditioning variable y
the expected KL is defined as Ep(y) [KL (p1(x |y) ‖ p2(x |y))].

2.2.1 Using the KL to fit Probability Distributions

Due to its asymmetry the KL provides two different optimization problems to fit a model distribution
q(x) to a target distribution p(x), i.e.,

min
q(x)

KL (p(x) ‖ q(x)) and min
q(x)

KL (q(x) ‖ p(x)) .

The former is referred to as moment-projection (M-projection) and the latter as information-projection
(I-projection). Some authors refer to the first simply as KL and to the latter as reverse KL. Since the KL
is minimal, i.e., equal to 0, if and only if q(x) = p(x) it can immediately be seen that both provide the
same solution if the model is rich enough to perfectly match the target.

To see how the solutions differ if q(x) is not rich enough to represent p(x) first consider the M-
projection

KL (p(x) ‖ q(x)) =

∫

p(x) log
p(x)
q(x)

d x =

∫

p(x) log p(x)d x −
∫

p(x) log q(x)d x .
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Target
Model

(a) Moment-Projection (b) Information-Projection

Figure 2.1.: Moment- and information-projection of a univariate Gaussian mixture with two components
onto the set of univariate Gaussians. The model is clearly not rich enough to represent the
target distribution. The density of the M-projection needs to be greater 0 wherever the
target distributions density is greater 0, and thus it needs to average over both modes. The
I-projection, on the other hand, focuses on a single mode, in this case, the larger one. For
the displayed example, focusing on the smaller mode is a spurious local minimum of the
I-projection.

The first term is the negative entropy of the target p(x) which is constant and thus irrelevant for the
optimization. The second term becomes infinitely large if q(x) = 0 for some x with p(x) > 0, which
forces the model to have a density greater than 0 wherever the target has a density greater than 0.
Additionally, one can immediately see that computing the M-projection is equivalent to maximizing the
likelihood by noting that

min
q(x)

∫

p(x) log p(x)d x −
∫

p(x) log q(x)d x =min
q(x)
−
∫

p(x) log q(x)d x =max
q(x)
Ep(x) [log q(x)] .

Consider now the I-projection

KL (q(x) ‖ p(x)) =

∫

q(x) log
q(x)
p(x)

d x =

∫

q(x) log q(x)d x −
∫

q(x) log p(x)d x .

While the latter term would be optimal if all density mass of q(x)would be at the point where the density
of p(x) is maximal, the former term prevents this by penalizing low entropy of q(x). See Figure 2.1 for
additional elaboration on the difference between M-projection and I-projection.

2.2.2 f-Divergences

A commonly used generalization of the KL-divergence is the concept of f -divergences [Ali and Silvey,
1966]. The f -Divergence between two distributions p1(x) and p2(x) is defined as

Df (p1(x) ‖ p2(x)) =

∫

p2(x) f
�

p1(x)
p2(x)

�

d x ,

for convex functions f (t) with f (1) = 0. For f (t) = t log(t) we obtain the M-projection of p1(x) onto
p2(x) and for f (t) = − log(t) the I-projection of p1(x) onto p2(x).
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2.3 Density Ratio Estimation

Suppose two probability distributions p1(x) and p2(x), of which only samples are available. As suggested
by the name, density ratio estimation [Sugiyama et al., 2012a] aims at estimating the ratio between the
density of the two distributions, i.e.,

r(x) =
p1(x)
p2(x)

.

The naive solution to this problem would be estimating the densities of both p1(x) and p2(x) individually
and use them to compute the ratio. However, dividing by the estimated density of p2(x) can increase
the unavoidable inaccuracy in the estimates. Additionally, especially in high dimensional spaces, density
estimation in general is a hard problem and there exist simpler, more reliable approaches for estimating
p1(x)/p2(x) without the need of explicitly modeling either p1(x) or p2(x).

2.3.1 Density Ratio Estimation by Probabilistic Classification

Following [Sugiyama et al., 2012a] we artificially assign labels to the samples of p1(x) and p2(x) and
introduce the conditional distribution

p(x |y = 0) = p1(x) and p(x |y = 1) = p2(x).

Using this distribution, Bayes rule can be applied to obtain

r(x) =
p1(x)
p2(x)

=
p(x |y = 0)
p(x |y = 1)

=
p(y = 0|x)p(x)

p(y = 0)
p(y = 1)

p(y = 1|x)p(x) =
p(y = 1)
p(y = 0)

p(y = 0|x)
p(y = 1|x) . (2.1)

The first factor of Equation 2.1 can be estimated based on the amount of samples available from p1(x)
and p2(x) and can be neglected if the same number of samples is available for both. The second factor
can be estimated using a probabilistic classifier, which reduces the problem of density ratio estimation
to probabilistic classification, a well-studied problem, solvable by a variety of established approaches. In
this work, we choose a binary logistic regressor.

In general, binary logistic regression estimates the probability p(y = 1|x), which in our case corresponds
to the probability that a given sample x was drawn from p2(x). To this end a parametric model p(y =
1|x) = σ(φ(x)) is used, where σ(x) denotes the sigmoid function, i.e., σ(x) = 1/ (1+ exp(−x)) and
φ(x) is an arbitrary parametric function, e.g., a neural network. By using p(y = 0|x) = 1− p(y = 1|x)
we get

p(y = 0|x)
p(y = 1|x) =

�

1− 1
1+ exp(−φ(x))

�

1+ exp(−φ(x))
1

=
�

1+ exp(−φ(x))− 1
1+ exp(−φ(x))

�

1+ exp(−φ(x))
1

= exp(−φ(x)).

In order to train the logistic regressor itself the following optimization problem is solved

min
C(x)
−Ep2(x) [log C(x)]−Ep1(x) [log (1− C(x))] .

This objective is the well known binary cross entropy.
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2.3.2 Density Ratio Estimation by Bregman Divergences

Bregman divergences [Bregman, 1967] are distance measures over elements of convex sets defined by

BR f (p1||p2) = f (p1)− ( f (p2) + f ′(p2)(p1− p2))

for strictly convex functions f (t) and their derivatives f ′(t). Intuitively BR f (p1 ‖ p2) is the difference
between f (p1) and the first order Taylor expansion of f around p2 at p1. Not all Bregman divergences
are metrics, however, many common metrics can be expressed as a special case of a Bregman divergence.
For example, the squared euclidean distance can be obtained with f (t) =‖ t ‖2.

Sugiyama et al. [2012b] derived a framework to obtain density ratio estimators r(x) based on samples
by minimizing the Bregman divergence to the true density ratio estimator r∗(x) = p(x)/q(x). By using
p(x) = r∗(x)q(x) they obtain

BR f (r
∗(x) ‖ r(x)) =

∫

q(x)
�

f (r∗(x))− ( f (r(x)) + f ′(r(x)) (r∗(x)− r(x)))
�

d x

=

∫

q(x) f (r∗(x))− q(x) f (r(x))− q(x) f ′(r(x))r∗(x) + q(x) f ′(r(x))r(x)d x

=

∫

q(x)
�

f ′(r(x))r(x)− f (r(x))
�

d x −
∫

p(x) f ′(r(x))d x + const.

It becomes clear that a density ratio estimator can be obtained by solving

min
r(x)
Eq(x)

�

f ′(r(x))r(x)− f (r(x))
�−Ep(x)

�

f ′(r(x))
�

. (2.2)

Based on this optimization problem a whole family of density ratio estimation techniques is derived and
by using

f (t) = t log(t)− (1+ t) log(1+ t)

the previously introduced case of density ratio estimation by logistic regression can be obtained.

2.4 Generative Adversarial Networks

First introduced by Goodfellow et al. [2014], Generative Adversarial Networks (GANs), are nowadays
among the most popular deep models. The main idea is to train two competing networks, a generator and
a discriminator. The generator’s task is generating new data from random noise while the discriminators
objective is to distinguish between the real data from the training set and the fake data generated by the
generator. Generator and discriminator are trained in an alternating fashion and need to successively
improve to keep up with their opponent. Given perfect conditions, i.e., rich enough models, infinite
training data, and perfect optimization, this procedure results in an equilibrium where the generator
produces samples indistinguishable from the real data, and the discriminator is maximally confused.

More formally, the generator, i.e., a latent variable model q(x) =
∫

q(x |z)q(z)dz, and the discriminator
D(x), play a two player min-max game

min
q(x)

max
D(x)

v (q(x), D(x)) (2.3)
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with objective v (q(x), D(x)). Usually, both generator and discriminator are realized by deep neural
networks. In the case of the generator, this network takes a latent variable z, usually sampled from
a fixed uniform distribution q(z), as input and produces an output x . Thus, the generator network
implements the conditional distribution q(x |z). One of the main benefits of GANs is that they work
solely based on samples of q(x) and do not need to explicitly compute the density of q(x |z) or q(x),
which allows the usage of powerful models, even if their density is intractable.
Solving min-max games as in Equation 2.4 analytically or numerically with a single optimization is
intractable. Thus, one optimizes alternatingly w.r.t. q(x |z) and D(x) while keeping the other fixed.
In their original work Goodfellow et al. [2014] proposed realizing the discriminator as a neural network
with sigmoid output and used

min
q(x)

max
D(x)

v (q(x), D(x)) = Ep(x) [log D(x)] +Eq(x) [log (1− D(x)))] (2.4)

as the min-max objective.

The popularity of GANs has led to a variety of works proposing different objectives v and a large num-
ber of other extensions aiming at more stable training, faster convergence and other aspects. In the
following, we will focus on works and aspects relevant to this work.

2.4.1 GANs for f -Divergences

Nowozin et al. [2016] derived an objective that allows training GANs such that an arbitrary f -divergence
between the true distribution p(x) and the generator distribution q(x) is minimized. To this end they
use a lower bound of the f-divergence [Nguyen et al., 2010],

Df (p(x) ‖ q(x))≥ sup
T (x)
Ep(x) [T (x)]−Eq(x) [ f

∗(T (x))] , (2.5)

where f ∗(x) = supu ux− f (u), which is known as the Fenchel conjugate [Hiriart-Urruty and Lemaréchal,
2012]. The variational function T (x) can be seen as a discriminator and is parameterized by g f (ψD(x)),
where ψ(x) is a neural network and g f (t) denotes the output function. Inserting g f (ψD(x)) into Equa-
tion 2.5 yields

min
q(x)

max
ψD(x)

v (q(x),ψD) = Ep(x)

�

g f (ψD(x))
�

+Eq(x)

�

f ∗(g f (ψD(x)))
�

.

The choice of g f (t) is arbitrary, yet it should exclusively output values within the domain of f ∗, since its
output values are subsequently fed into f ∗. Nowozin et al. [2016] propose g f for different f-divergences.
Examples can be found in Table 2.1. Note that all of them are monotone increasing functions where large
outputs correspond to samples from p(x) and small outputs to samples from q(x).

2.4.2 GANs and Density Ratio Estimation

Consider again the original GAN objective stated in Equation 2.4. When optimizing with respect to D(x)
and keeping q(x |z) fixed the objective simplifies to

min
D(x)
−Ep(x) [log D(x)]−Eq(x) [log (1− D(x))] .
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Divergence f (t) f ∗(t) g(v )

KL (M-Projection) t log(t) exp(t − 1) v

KL (I-Projection) − log(t) −1− log(−t) −exp(−v )

Jensen-Shannon −(t + 1) log 1+t
2 + t log t − log(2− exp(t)) log(2)− log(1+ exp(−v ))

Pearson χ2 (t − 1)2 1
4 t2 + t v

Table 2.1.: Generating functions f (t) for popular f -divergences, together with their Fenchel conjugate
f ∗(t) and output activations g(v ) as proposed by Nowozin et al. [2016]. Note that the f -GAN
corresponding to the Jensen-Shannon divergence is equivalent to the original GAN [Goodfel-
low et al., 2014], up to constants.

This objective is again the binary cross entropy. Thus, it becomes clear that the discriminator can be
seen as a probabilistic classifier, aiming at classifying samples as true or fake. The same classifier was
used for density ratio estimation in section 2.3.1, which relates GANs and density ratio estimation.
While Goodfellow et al. [2014] did not elaborate on this connection in their original work, several other
authors exploited it to derive alternative GAN formulations [Nowozin et al., 2016; Uehara et al., 2016;
Poole et al., 2016].

It can be shown that the optimal T (x) in Equation 2.5 is given by T (x) = f ′ (r(x)) with r(x) =
p(x)/q(x), i.e., the derivative of f at the density ratio between target and model distribution. While
Nowozin et al. [2016] note this fact, they do not exploit it. Uehara et al. [2016], on the other hand,
exploit the fact in their b-GAN approach. Given the true density ratio estimate the bound becomes tight
and the f-divergence can be rewritten as

Df (p(x) ‖ q(x)) = sup
r(x)
Ep(x)

�

f ′(r(x))
�−Eq(x)

�

f ∗( f ′(r(x))
�

= sup
r(x)
Ep(x)

�

f ′(r(x))
�−Eq(x)

�

f ′(r(x))r(x)− f (r(x))
�

.

Interestingly, this optimization problem is equivalent to Equation 2.2. Thus, it becomes clear how a
GAN can be formulated by alternating steps, minimizing the f-divergence between model and target
distribution and minimizing the Bregman divergence between true and estimated density ratio. Formally,
the corresponding adversarial objective is given by,

min
q(x)

max
r(x)

v (q(x), r(x)) = Ep(x)

�

f ′(r(x))
�−Eq(x)

�

f ′(r(x))r(x)− f (r(x))
�

.

Note that the same f needs to be used for both the Bregman and f-divergence. While the requirements
regarding f for both divergences are very similar, and thus all commonly used f-divergences can be
minimized, they can not be combined arbitrarily. Uehara et al. [2016] suggest using f (t) = 0.5t2 − 0.5
for the density ratio estimation, which is equivalent to Least Squares Importance Fitting (LSIF) [Yamada
et al., 2013]. Some authors claim that LSIF is a robust choice for density ratio estimation [Yamada et al.,
2013; Dawid et al., 2016]. However, the corresponding f-divergence is the Pearson χ2 divergence, which
is a suboptimal choice for typical GAN tasks, such as image generation [Huszár, 2015].

Poole et al. [2016] also note this connection between the density ratio and f-divergence. Based on the
fact that every f-divergence can be estimated using samples of one distribution and the density ratio
estimate, they derive alternative generator updates for the f -GAN.
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Yet, while providing interesting theoretical insights, the works of both, Poole et al. [2016] and Uehara
et al. [2016], lack a reasonable empirical evaluation and in particular a comparison to the original f -GAN
or other generative adversarial approaches.

2.4.3 GANs for Mixture Models

When working with generative adversarial approaches the model density is not required, or of interest.
One only aims at efficiently generating high-quality samples. In this work, on the other hand, we aim
at learning the density and use mixture models to get tractable densities. To the best of our knowledge,
there exist no studies which use a generative adversarial approach to learn mixture models.
In order to learn a GMM with a generative adversarial approach, one needs to apply the reparameteriza-
tion trick [Kingma and Welling, 2013] in order to allow back-propagation through the sampling process.
For the Gaussian components, reparameterization is straight forward. However, for the categorical mix-
ture distribution it is not and approximations, such as the recently proposed Gumble softmax [Jang et al.,
2017], need to be employed.

Chen et al. [2016] provide an alternative approach. The main idea of their approach, InfoGAN, is to
maximize the mutual information between a subset of the latent variables z and the observations x jointly
with the original generator objective. This extended objective allows them to learn disentangled latent
representations where single latent variables correspond to salient features of the data. For example,
they demonstrate how their approach learns latent variables corresponding to writing style, shape, and
digits when trained on the well known MNIST dataset.

The mutual information is defined as

I(x , z) =

∫∫

q(x , z) log
q(x , z)

q(x)q(z)
dzd x

which is equivalent to I(x , z) = H(x)−Eq(z) [H(x |z)] = H(z)−Eq(x) [H(z|x)]. The only density available
in the classical GAN setup is q(z), and thus Chen et al. [2016] rely on a variational approximation of
q(z|x) to compute a lower bound to the mutual information. However, when working with GMMs both
q(x) and q(x |z) are efficiently computable, and thus the mutual information can easily be obtained by a
sample based approximation.
Chen et al. [2016] used the original GAN objective [Goodfellow et al., 2014]. Yet, their idea can easily be
used to learn GMMs with arbitrary GAN objectives such as the f-GAN. However, the resulting approach
may not converge to the corresponding f-divergence only the individual components do.

Both methods to learn GMMs with GANs will serve as baselines to our approach.

2.5 Reinforcement Learning and Policy Search

Reinforcement Learning [Sutton and Barto, 2018] aims at learning optimal behavior by interaction with
an environment. The learned behavior is described using a policy π(a|s), i.e., a conditional distribution
over possible actions a given a state s. Which behavior is optimal is defined by a reward function r(s, a),
which is typically unknown and can only be sampled by interacting with the environment.

There are several characteristic issues for reinforcement learning problems which need to be addressed to
successfully learn good policies. Usually, evaluating the reward for a given policy consist of running the
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policy in the environment, which can be computationally very expansive for simulated environments.
For real-world scenarios, it is usually even more time consuming. Thus, in order to be applicable to
interesting problems reinforcement learning algorithms need to be very sample efficient.
Another inherent issue of reinforcement learning is known as the exploration-exploitation trade-off. It
describes the dilemma of choosing between exploiting the currently best, known behavior and exploring
the environment further. While further exploration might cause sub-optimal rewards, it is also the only
way to find novel, better solutions. Thus, too little exploration might lead to premature convergence
to spurious local optima, while uncontrolled exploration can cause oscillations and divergence in the
optimization process and, in the case of real world systems, even hazardous behavior.

One of the main classes of reinforcement learning approaches is policy search [Deisenroth et al., 2013].
Those approaches directly optimize a parametric policy π(a|s,θ ) to obtain maximal reward. One possible
solution to find optimal parameters θ is stochastic search. To this end a search distribution q(θ ) is defined
over the space of all parameters and subsequently optimized

max
q(θ )

∫

q(θ )R(θ )dθ .

It often makes sense to generalize a policy across multiple contexts to make use of similarities between
tasks. Consider, for example, a robot tasked with reaching a specific goal point. Learning a completely
different policy for each possible goal point is inefficient or even impossible if there are infinitely many
possible goal positions, which is the case for continuous context spaces. A better solution is to model
the policy as a conditional distribution dependent on the goal point. One way to solve these kinds of
problems is contextual policy search

max
q(θ |c)

∫

p(c)

∫

q(θ |c)R(θ , c)dθdc,

where p(c) denotes the distribution over contexts. Usually, this distribution is assumed to be unknown,
and only samples of it are available.

To solve these problems standard black-box stochastic search methods such as CMA-ES [Hansen et al.,
2003] can be employed. Yet, those are agnostic to the aforementioned issues with reinforcement learning
and specialized approaches have been derived to solve policy search by stochastic search [Abdolmaleki
et al., 2015]. Those approaches use information theoretic insides to make stochastic search more sample
efficient and account for the exploration-exploitation trade-off.

2.5.1 Information Theoretic Policy Search

Information theoretic insights have been used to make policy search in general and stochastic search in
particular more stable and sample efficient [Peters et al., 2010; Abdolmaleki et al., 2015].
Peters et al. [2010] introduced REPS, a policy search algorithm that constraints the change of the policy
during each update by bounding the KL between old and new policy. This constraint bounds the loss of
information during the update which helps the algorithm to converge faster and with fewer samples.
MORE [Abdolmaleki et al., 2015], a stochastic search algorithm, does not only constrain the change
during the update but also the amount the entropy in the search distribution can be reduced. Adding a
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constraint on the entropy loss prevents the search distribution from collapsing its variance which may
result in premature convergence to spurious local optima. MORE works by iterativly solving

max
q(θ )

∫

q(θ )R(θ )dθ (2.6)

s.t. KL (q(θ ) ‖ qold(θ ))≤ ε, H(q(θ ))≥ β ,

∫

q(θ )dθ = 1

where qold(θ ) denotes the search distribution prior to the update.
The first constraint is the aforementioned KL constraint, bounding the change during the update. The
second constraint bounds the loss in entropy, to this end β is set to be β = H(qold(θ )) − βloss. Both ε
and βloss are hyper-parameters of the algorithm. The third constraint is needed to ensure the new search
distribution is properly normalized.

The first step in solving the optimization stated in Equation 2.6 is minimizing the dual problem

g(η,ω) = ηε−ωβ + (η+ω) log

∫

qold(θ )
η
η+ω exp

�

R(θ )
η+ω

�

dθ

= ηε−ωβ + (η+ω) log

∫

exp
�

η log qold(θ ) + R(θ )
η+ω

�

dθ .

Here, η denotes the Lagrangian multiplier corresponding to the KL constraint and β the Lagrangian
multiplier corresponding to the entropy constraint. Given the optimal Lagrangian multipliers, the new
search distribution is given by

q(θ )∝ qold(θ )
η
η+ω exp

�

R(θ )
η+ω

�

= exp
�

η log qold(θ ) + R(θ )
η+ω

�

. (2.7)

Since the reward function R(θ ) is typically not known and only samples are available, Abdolmaleki
et al. [2015] propose approximating it with a local surrogate R(θ ) ≈ R̂(θ ) = r̂Tψcomp(θ ). The features
ψcomp(θ ) are chosen such that they are compatible to the search distribution [Kakade, 2002], i.e., of the
same form as the distributions sufficient statistics. For exponential family distributions, the parameters
of the surrogate r̂, together with the natural parameters of the old search distribution, Nold, can be used
to obtain the natural parameters of the new search distribution N by

N =
1

η+ω
(ηNold + r̂) .

If, for example, the multivariate Gaussian distribution N (µ,Σ) is considered, the natural parameters are
the precision matrix Q = Σ−1 and q = Σ−1µ. The corresponding compatible surrogate is a quadratic
function of the form

R̂(θ ) = −1
2
θ T R̂θ + r̂Tθ + r̂0.

Using the surrogate’s parameters the natural parameters of the Gaussian distribution can be updated
by

Q =
1

η+ω

�

ηQold + R̂
�

and q=
1

η+ω

�

ηqold + r̂
�

.
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Alternatively, Equation 2.6 can be solved using a sample based approach, similar to [Peters et al., 2010;
Daniel et al., 2016]. To this end, note that Equation 2.7 can be rewritten to

q(θ )∝ qold(θ )exp
�−ω log qold(θ ) + R(θ )

η+ω

�

.

It becomes clear, that the new policy can be obtained by fitting it to weighted samples of the old policy
using weighted maximum likelihood.

In the contextual case the expected KL and entropy are constrained instead, which yields

max
q(θ |c)

∫

p(c)

∫

q(θ |c)R(θ , c)dθdc (2.8)

s.t. Ep(c) [KL (q(θ |c) ‖ qold(θ |c))]≤ ε, Ep(c) [H(q(θ |c))]≥ β , ∀c :

∫

q(θ |c)dθ = 1.

The main problem with this formulation is the inner integral over the parameters. A sample based ap-
proximation is only reasonable if sufficiently many samples can be evaluated efficiently for each context,
which is usually not the case in a reinforcement learning setup. There exist multiple ways to handle this
problem.
For simple distributions, closed form solutions of the inner integral and updates based on reward
surrogates are still possible. Akrour et al. [2018] derived them for linear Gaussians of the form
q(θ |c) =N (Wθ +w,Σ).
An alternative is optimizing the joint q(θ , c) instead of the conditional, which allows working with a
single expectation over the joint instead of individual expectations over context and search distribution.
Approximating such an expectation requires fewer samples. Yet, when working with the joint one needs
to ensure that the updated joint still reproduces the original context distribution, i.e.,

∫

q(θ , c)dθ = p(c)
for all c. Adding these constraints results in an infinite number of constraints which are usually approx-
imated by average feature matching [Peters et al., 2010; Deisenroth et al., 2013; Abdolmaleki et al.,
2016].
Recently, Abdolmaleki et al. [2018] employed an actor-critic scheme to learn a global, efficiently evalu-
able approximation of the reward which they used to approximate the integral.

2.6 Variational Inference

For many interesting distributions p(x), inference in closed form is intractable. A common approach,
known as variational inference, is to approximate p(x) with a parametric distribution form a tractable
family q(x) by means of optimization. Arguably, the most common objective for variational inference
approaches is computing the I-projection of q(x) onto p(x). A well-known example is the mean field
approach [Opper and Saad, 2001].

All variational inference methods have in common that they assume access to the unnormalized density
of p(x), i.e., some function p̃(x) = cp(x) with a constant c. This assumption is fundamentally different
from the assumption we make for our approach, i.e., only samples of p(x) are available. Yet, a recent
variational inference approach, Variational Inference by Policy Search (VIPS) [Arenz et al., 2018], is
closely related to this work.

2.6.1 Variational Inference by Policy Search (VIPS)

VIPS [Arenz et al., 2018] aims at finding the I-projection of a model q(x) onto an intractable, true
distribution p(x), KL (q(x) ‖ p(x)) under the assumption of access to the unnormalized density of the
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target distribution p∗(x) = cp(x) with c > 0. For the minimization of the KL, p∗(x) can be used instead
of p(x) since

KL (q(x) ‖ p(x)) =

∫

q(x) log
q(x)
p(x)

d x =

∫

q(x) log
q(x)
p∗(x)

d x + log c.

For the model, Arenz et al. [2018] assume a latent variable model of the form q(x) =
∫

q(x |z)q(z)dz. By
introducing an auxiliary distribution q̃(z|x) the objective can be decomposed into an upper bound and
an expected KL term

∫

q(x) log
q(x)
p∗(x)

d x = U(q, q̃, p∗)−Eq(x) [KL (q(z|x) ‖ q̃(z|x))]
︸ ︷︷ ︸

≥0

.

where the upper bound is given by

Uvips(q, q̃, p∗) =
∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p∗(x)
− log q̃(z|x)

�

d xdz

=

∫∫

q(x |z)q(z) (− log p∗(x)− log q̃(z|x)) d xdz −H(q(z))−Eq(z) [H(q(x |z))] . (2.9)

Similar to Expectation Maximization (EM), this upper bound is minimized by iterating E- and M-steps.
During the E-step, q̃(z|x) is approximated with the model from the previous iteration by

q̃(z|x) = qold(x |z)qold(z)
qold(x)

.

The exact form of the M-step depends on the specific latent variable model used and Arenz et al. [2018]
derive it only for GMMs. They rewrite the minimization of the upper bound as an information theoretic
policy search problem

max
q(x|z),q(z)

∑

q(zi)

∫

q(x|zi)
︸ ︷︷ ︸

(hierachical) search distribution

reward
︷ ︸︸ ︷

(log p∗(x) + log q̃(zi|x)) dx+H(q(z)) +Eq(z) [H(q(x|z))]
︸ ︷︷ ︸

entropy terms

.

This objective can be decomposed into individual update steps for the mixture distribution q(z) and
the individual components q(x|zi). Opposed to the policy search methods discussed above, the entropy
terms do not enter the objective through additional constraints but as part of the original objective. By
adding KL constraints, each of the individual updates results in an instance of MORE, where ω, i.e., the
Lagrangian multiplier corresponding to the entropy constraint, is not optimized but a set to ω= 1.

A usual assumption for variational inference is that evaluating the normalized density p∗(x) is computa-
tionally expensive and thus the algorithm has to work with a limited amount of samples. VIPS addresses
this issue by employing importance sampling to reuse samples over multiple iterations.
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3 Expected Information Maximization

We now introduce Expected Information Maximization (EIM), i.e., our approach for finding the I-
projection between a model q(x) and a true distribution p(x)

min
q(x)

KL (q(x) ‖ p(x))

based solely on samples of p(x). To this end we first re-derive the upper bound used by VIPS for general
latent variable models of the form q(x) =

∫

q(x |z)q(z)dz. We reformulate this upper bound such that
the unknown part, i.e., p(x), only appears in a log density ratio term together with the model q(x),
which can be approximated using the density ratio estimation techniques introduced above. Finally, we
show how to interpret the obtained objective as an information theoretic policy search problem, which
can be efficiently optimized using the methods introduced in section 2.5.
Afterwards, we will repeat the derivations for conditional models q(x |y) and true distributions p(x |y).
This derivation consist of the same steps as the derivation for marginal distributions and will result in an
algorithm capable of finding the expected I-projection

min
q(x |y)
Ep(y) [KL (q(x |y) ‖ p(x |y))] .

For brevity, we will only state the key results of the derivations here and refer to appendix A.1 for more
details.

3.1 Upper Bound Objective

As already mentioned we assume a latent variable model of the form q(x) =
∫

q(x |z)q(z)dz. Additionally
we introduce an auxiliary distribution q̃(z|x). Note, that the derivations are valid for arbitrary q̃(z|x).
By using Bayes rule we get

KL (q(x) ‖ p(x)) =

∫

q(x) log
q(x)
p(x)

d x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q(z|x) + log q̃(z|x)− log q̃(z|x)

�

dzd x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q̃(z|x)

�

d xdz −
∫

q(x)

∫

q(z|x) log
q(z|x)
q̃(z|x)d xdz

=U(q, q̃, p)
︸ ︷︷ ︸

upper bound

−Eq(x) [KL (q(z|x) ‖ q̃(z|x))]
︸ ︷︷ ︸

≥0

. (3.1)

Since the expected KL is always non-negative, it can clearly be seen that U(q, q̃, p) is an upper bound
of the original objective KL (q(x) ‖ p(x)). This bound is equivalent to the bound used in VIPS [Arenz
et al., 2018], except that it depends on the density of p(x) and not the unnormalized density. The bound
is tight if the expected KL term vanishes which happens if and only if q(z|x) = q̃(z|x) for all x . This
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approach has strong similarities with EM as well as VIPS and similar to those approaches, EIM optimizes
its objective iteratively using alternating E-steps and M-steps.

In each iteration we denote the old model, i.e., the output of the previous iteration, by qold(x) =
∫

qold(x |z)qold(z)dz. During the E-step we tighten the bound by setting

q̃(z|x) = qold(x |z)qold(z)
qold(x)

. (3.2)

During the M-step the upper bound is minimized. To this end, Equation 3.2 is plugged into the upper
bound objective which simplifies to

U(q, q̃, p) =

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log

qold(x |z)qold(z)
qold(x)

�

d xdz

=

∫∫

q(x |z)q(z)
�

log
qold(x)
p(x)

+ log
q(x |z)

qold(x |z)
+ log

q(z)
qold(z)

�

d xdz

=

∫

q(z)

∫

q(x |z) log
qold(x)
p(x)

d xdz +Eq(z) [KL (q(x |z) ‖ qold(x |z))] + KL (q(z) ‖ qold(z)) .

(3.3)

We still cannot directly minimize this objective as it depends on p(x). Yet, we can employ density ratio
estimation to estimate log (qold(x)/p(x)).

3.2 Using Density Ratio Estimator for Upper Bound

As described in section 2.3.1 we train a logistic regressor to classify between samples from p(x) and
qold(x) and get

qold(x)
p(x)

= exp(−φ(x))⇔ log
qold(x)
p(x)

= −φ(x),

where φ(x) are the logits of the logistic regressor. Before each M-step the classifier needs to be retrained
to account for the update during the last M-step, which can be viewed as an additional part of the E-
step. By plugging the density ratio estimator into the upper bound we obtain a solvable optimization
problem

min
q(x |z),q(z)

−
∫

q(z)

∫

q(x |z)φ(x)d xdz +Eq(z) [KL (q(x |z) ‖ qold(x |z))] + KL (q(z) ‖ qold(z)) . (3.4)

As discussed in section 2.4.2 the density ratio estimation is closely related to the concept of a discrimi-
nator in a generative adversarial setup. The usage of density ratio estimation relates EIM to Generative
Adversarial Networks (GANs). Yet, there are also fundamental differences. We elaborate on the connec-
tions to GANs in section 5.3.

3.3 Efficient Solutions for the M-Step

The exact form of the optimization problem 3.4 depends on the form of the latent variable model. While
there exists a variety of black box approaches to solve the resulting optimization problem we want to
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point out similarities to the information theoretic policy search problems discussed in section 2.5. Those
similarities can be exploited to obtain efficient solutions to the M-step update. First, we reformulate the
problem as a maximization problem by inverting the sign and obtain

max
q(x |z),q(z)

∫∫

q(z)q(x |z)
︸ ︷︷ ︸

(hierarchical) search distribution

reward
︷︸︸︷

φ(x) d xdz −Eq(z) [KL (q(x |z) ‖ qold(x |z))]− KL (q(z) ‖ qold(z))
︸ ︷︷ ︸

KL terms

.

The first part is equal to the standard policy search problem, i.e., maximize the expected reward under
the search distribution, where the log density ratio acts as a reward. Similar to the information theoretic
policy search there are also KL terms between the distribution to optimize and the distribution prior to
the optimization. Yet, those enter the optimization problem through the objective, not by additional
constraints. Additionally, exploiting the hierarchical structure of the search distribution can further
simplify the M-step. In chapter 4 we demonstrate how those similarities and the model’s structure can
be used to obtain efficient updates for Gaussian mixture models.

3.4 Conditional Distributions

We repeat the derivations for conditional distributions p(x |y) and conditional latent variable models
q(x |y) = ∫ q(x |z, y)q(z|y)dz. We start by deriving an upper bound for the expected KL by introducing
an auxiliary distribution q̃(z|x , y)

Ep(y)KL (q(x |y) ‖ p(x |y)) = Ucond(q, q̃, p)
︸ ︷︷ ︸

upper bound

−Ep(y),q(x |y) [KL (q(z|x , y) ‖ q̃(z|x , y))]
︸ ︷︷ ︸

≥0

. (3.5)

The derivations closely follow the derivations for the marginal case and can be found in appendix A.2.
Again, we work with an EM-like procedure and tighten the bound during the E-step by setting q̃(z|x , y) =
qold(x |z, y)qold(z|y)/qold(x |y). Replacing the auxiliary distribution in Equation 3.5 by the E-step yields

Ucond(q, q̃, p) =

∫∫∫

p(y)q(z|y)q(x |z, y) log
qold(x |y)
p(x |y) d xdzd y

+Ep(y),q(z|y) [KL (q(x |z, y) ‖ qold(x |z, y))] +Ep(y) [KL (q(z|y) ‖ qold(z|y))] . (3.6)

In order to estimate the log-density ratio between qold(x |y) and p(x |y) we train a classifier on the joint
distributions qold(x , y) and p(x , y). The negative logits of such a classifier can be used to approximate
the log-density ratio since

−φ(x , y) = log
qold(x , y)
p(x , y)

= log
qold(x |y)p(y)
p(x |y)p(y) = log

qold(x |y)
p(x |y) .

Inserting φ(x , y) into the conditional upper bound yields the M-step for conditional distributions

min
q(x |z,y),q(z|y)

−
∫∫∫

p(y)q(z|y)q(x |z, y)φ(x , y)d xdzd y (3.7)

+Ep(y),q(z|y) [KL (q(x |z, y) ‖ qold(x |z, y))] +Ep(y) [KL (q(z|y) ‖ qold(z|y))] .

As we shall see in chapter 4 methods from information theoretic contextual policy search can be exploited
to efficiently solve this optimization problem.
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4 EIM for Mixture Models

We demonstrate how to use EIM for two specific latent variable models. First, we use EIM for Gaussian
mixture models (GMMs) and second, we use the conditional version of EIM to learn mixtures of experts.
We again refer to the appendix for detailed derivations of the duals and closed form updates.

4.1 Gaussian Mixture Models

Recall that GMMs are given by d components, each a Gaussian distribution q(x|zi) = N
�

µi,Σi

�

, and a
categorical mixture distribution q(z) = Cat(π).
We exploit the structure of the model and split the M-step into individual parts for the mixture distribu-
tion and the individual components. For the individual updates, we add the same information theoretic
constraints that were added in MORE [Abdolmaleki et al., 2015]. Due to the added constraints, the re-
sulting optimization problems are similar to the optimization problem solved by MORE in each iteration.
Those similarities allow us to derive efficient solutions and closed form distribution updates for the M-
step. Yet, the MORE constraints are not only added for convenience but have other beneficial properties.
We further justify these constrains in section 5.1.

We first present an overview in algorithm 2 before we state detailed explanations of the updates in the
following. Those update derivations closely resemble the updates proposed by Arenz et al. [2018] in
VIPS.

Algorithm 2: Expected Information Maximization for Gaussian Mixture Models.

EIM-for-GMMs({x( j)p } j=1···N , q(x));

Input: Data {x( j)p } j=1···N , Initial Model q(x) =
∑d

i=1 q(x|zi)q(zi) =
∑d

i=1πiN (x|µi,Σi)
for i in number of iterations do

E-Step:
qold(z) = q(z), qold(x|zi) = q(x|zi) for all components i
sample data from model {x( j)q } j=1···N ∼ qold(x)
retrain density ratio estimator φ(x) on {x( j)p } j=1···N and {x( j)q } j=1···N
M-Step Weights:
for i in number of components do

compute reward ri =
1
N

∑N
j=1φ

�

x( j)q

�

with samples {x( j)q } j=1···N ∼ qold(x|zi)

update q(z) using rewards ri
M-Step Components:
for i in number of components do

fit φ̂(x) surrogate to pairs
�

x( j)q ,φ
�

x( j)q

��

with samples {x( j)q } j=1···N ∼ qold(x|zi)

update q(x|zi) using surrogate φ̂(x)
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4.1.1 M-Step Mixture Distribution

First, consider the M-step to update the mixture distribution. Since the components are fixed, i.e.,
q(x|z) = qold(x|z), the expected KL in Equation 3.4 vanishes. Furthermore, the outer expectation over
q(z) can be expressed as a sum. Adding the MORE constraints yields

max
q(z)

d
∑

i=1

p(zi)Eq(x|zi) [φ(x)]− KL (q(z) ‖ qold(z))

s.t. KL (q(z) ‖ qold(z))≤ ε, H(q(z))≥ β ,
d
∑

i=1

q(zi) = 1.

We use a sample based approximation for the expectation over the log density ratio estimates and denote
it by φ(z) = Eq(x|z) [φ(x)]. This optimization problem differs from the MORE optimization problem only
by the additional KL term in the objective.

To solve the optimization we first compute the Lagrangian multipliers η for the KL constraint, and ω for
the entropy constraint, by optimizing the dual function. As the derivations in the appendix A.3 show,
combining the KL terms in the objective and constraint results in a dual that differs from the original
MORE dual only in a 1 being added to η, i.e.,

g(η,ω) = ηε−ωβ + (η+ 1+ω) log
d
∑

i=1

exp
�

(η+ 1) log qold(z) +φ(z)
η+ 1+ω

�

. (4.1)

Not only the dual but also the update equations differ from the original MORE update only by the 1
added to η. Thus, given η and ω, we can compute the parameters π of q(z) in closed form. Since the
reward for each zi can be expressed by a single value φ(zi) we do not need to fit a surrogate but can
directly work with r̂, a vector whose i-th entry is ri = φ(zi) and the new parameters are given by

π= softmax
�

(η+ 1) log (πold) + r̂
η+ 1+ω

�

,

where the log of the vector πold is taken element-wise.

4.1.2 M-Step Components

Consider the M-step to update a single component q(x|zi) = N
�

µi,Σi

�

. Due to the previous update of
the mixture distribution q(z) 6= qold(z) and thus the KL (q(z) ‖ qold(z)) does not vanish. Yet, we can still
neglect it since it is constant with respect to the optimization variable q(x|zi). Together, with adding the
MORE constraints we obtain

max
q(x|zi)

∫

q(x|zi)φ(x)dx− KL (q(x|zi) ‖ qold(x|zi))

s.t. KL (q(|x|zi) ‖ qold(x|zi))≤ ε, H(q(x|zi))≥ β ,

∫

q(x)dx= 1.
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We again solve the optimization problem using a MORE-like update. In order for that, we need to fit
a compatible surrogate to the log density ratios φ(x). The features compatible to a Gaussian yield a
quadratic function of the form

φ̂(x) = −1
2

xT R̂x+ r̂T x+ r0,

where R̂ is a symmetric matrix. This function is fitted to samples from q(x|zi) by minimizing

min
θ
Eq(x|zi)

�

�

φ(x)− φ̂(x)�2�

.

The dual problem is of the same analytical form as Equation 4.1, except that the sum over z becomes an
integral over x,

g(η,ω) = ηε−ωβ + (η+ 1+ω) log

∫

exp
�

(η+ 1) log qold(x|zi) +φ(x)
η+ 1+ω

�

dx. (4.2)

Yet, given the compatible surrogate, this integral can be solved in closed form for Gaussian distributions
as demonstrated in the appendix A.3.2. This dual allows us to efficiently compute the optimal Lagrangian
multipliers. Similar to the dual, we can reuse the MORE closed form update equations to obtain the new
distribution. The natural parameters of the new distribution, i.e q= Σ−1µ and Q = Σ−1 are given by

q=
(η+ 1)qold + r̂

η+ 1+ω
and Q =

(η+ 1)Qold + R̂
η+ 1+ω

.

Note that since R̂ and Qold are symmetric, Q is symmetric as well. Yet, it might not be positive definite
and we need to check for this case, which is rare in practice. One possible solution to handle it is
increasing η until Q becomes positive definite.

4.2 Mixtures of Experts

For conditional distributions, we consider mixtures of experts with d Gaussian components and a softmax
gating. For both, the gating and the components, we derive the M-step for distributions that depend
linearly and nonlinearly on the conditioning variable. In the case of the gating, the linear and nonlinear
cases are very similar, as closed form updates are infeasible for both. Yet, deriving closed form updates
for the components is possible in the linear case. Hence, we will consider the linear and nonlinear cases
separately as closed form updates are no longer possible for the latter.

We again decompose the M-step into independent updates for the gating and the individual components.
Following the same argumentation as for GMMs, we add the MORE constraints to the individual updates
and derive efficient methods for them by exploiting similarities to information theoretic policy search.

4.2.1 M-Step Gating

First, consider the linear case q(z|y) = softmax(Vy + v). Since we update the gating first, q(zi|y) =
qold(zi|y) for all i, thus the corresponding expected KL in Equation 3.7 vanishes. Furthermore, the
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integral over z becomes a sum as the gating distribution is discrete. Thus, adding the MORE constraints
yields

max
q(z|y)

∫

p(y)
d
∑

i=1

q(zi|y)Eq(x|zi ,y) [φ(x,y)] dy−Ep(y) [KL (q(z|y) ‖ qold(z|y))]

s.t. Ep(y) [KL (q(z|y) ‖ qold(z|y))]≤ ε, Ep(y) [H(q(z|y))]≥ β , ∀y :
d
∑

i=1

q(zi|y) = 1.

In practice it is sufficient to approximate the expectation over the log density ratio with a single sample
from q(x|zi,y) and we denote

φ(y, z) = Eq(x|zi ,y) [φ(x,y)] .

Combining the KL terms from the objective and the constraints yields the dual

g(η,ω) = ηε−ωβ + (η+ 1+ω)

∫

p(y) log
d
∑

i=1

exp
�

(η+ 1) log qold(zi|y) +φ(y, zi)
η+ 1+ω

�

dy. (4.3)

Deriving closed form updates would be possible for the linear case. However, the features compatible
with the softmax are linear and we need to fit a global surrogate for each component. It is not feasible to
linearly approximate the potentially highly nonlinear log density ratio over the whole context space. Thus
we use a sample based approach, similar to [Peters et al., 2010; Daniel et al., 2016]. The unnormalized
probability values for a given y can be obtained by

q(z|y)∝ exp
�

(η+ 1) log qold(z|y) +φ(y, z)
η+ 1+ω

�

and subsequently normalized to obtain the probabilities q(z|y). Ultimately, the model of the gating
distribution is re-fitted to the new values q(z|y). Even for linear models, this regression is not realizable
in closed form, and numerical optimization has to be employed.

In the nonlinear case q(z|y) = softmax (ψs(y)) the same sample based procedure can be applied. Only
the final step of fitting the model to the new targets needs to be adapted to the nonlinear model structure,
which, for most classes of models will again result in a numerical optimization.

4.2.2 M-Step Linear Components

Lets consider the update of the i-th component in the linear case q(x|zi,y) = N (Wiy+wi,Σi). The ex-
pected KL, Ep(y) [KL (q(zi|y) ‖ qold(zi|y))], is constant with respect to the optimization variable q(x|zi,y),
thus the objective can be simplified to

max
q(x|zi ,y)

∫

p(y)q(zi|y)
∫

q(x|zi,y)φ(x,y)dxdy−
∫

p(y)q(zi|y)KL (q(x|zi,y) ‖ qold(x|zi,y)) dy.

Opposed to the marginal case, the probability of the component q(zi|y) does not vanish in the conditional
case. Intuitively, if a component is not responsible for a certain part of the context space, errors in that
part should not be penalized. The same intuition applies to the MORE constraints. If the component
is not responsible for a certain part of the context space, changes in that part should not be penalized.
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In order to account for the responsibilities we take the expectation over p̃(y|zi) = p(y)q(zi|y)/q(zi), not
p(y). To this end, we multiply the objective by the constant 1/q(zi). Ultimately, we obtain

max
q(x|zi ,y)

∫

p̃(y|zi)

∫

q(x|zi,y)φ(x,y)dxdy−Ep̃(y|zi) [KL (q(x|zi,y) ‖ qold(x|zi,y))]

s.t. Ep̃(y|zi) [KL (q(x|zi,y) ‖ qold(x|zi,y))]≤ ε, Ep̃(y|zi) [H(q(x|zi,y))]≥ β , ∀y :

∫

q(x|zi,y)dx= 1.

The dual is similar to the dual for the gating update, i.e., Equation 4.3 and is given by

g(η,ω) = ηε−ωβ + (η+ 1+ω)

∫

p̃(y|zi) log

�∫

exp
�

(η+ 1) log qold(x|zi,y) +φ(x,y)
η+ 1+ω

�

dx

�

dy.

(4.4)

To get closed form updates for the Gaussian components we need to fit a quadratic function locally. This
is much more feasible than fitting a linear function globally, which would be required for the gating
update. Thus, we can again work with MORE-like updates. The quadratic surrogate is of the form

φ(x,y)≈ φ̂(x,y) = −1
2

xT R̂x xx+ xT R̂x yy− 1
2

yT R̂y yy+ r̂T
x x+ r̂T

y y+ r̂0.

When fitting the surrogate, we once more need to account for the relevance of each context y , thus we
minimize

Eq(x|zi ,y)p̃(y|zi)

�

�

φ(x,y)− φ̂(x,y)
�2�

.

With such surrogates the update equations can be given in closed form

Q =

�

(η+ 1)Qold + R̂x x

η+ 1+ω

�

, L=

�

(η+ 1)Lold + R̂x y

η+ 1+ω

�

, l=
�

(η+ 1)lold + r̂x

η+ 1+ω

�

,

where Q denotes the precision matrix Σ−1 and L and l denote Σ−1W and Σ−1w respectively. The deriva-
tions for those updates are based on [Akrour et al., 2018] and can be found together with the dual in
appendix A.4.2.

4.2.3 M-Step Nonlinear Components

In order to realize nonlinear components q(x|zi,y) =N
�

ψµ,i(y),ψΣ,i(y)
�

we note that the dual in Equa-
tion 4.4 can be reformulated to

g(η,ω)

=ηε−ωβ + (η+ 1+ω)

∫

p̃(y|zi) log

�∫

qold(x|zi)exp
�−ω log qold(x|zi,y) +φ(x,y)

η+ 1+ω

�

dx

�

dy,

which allows sample based approximations of both integrals. Analogously, the update equation can be
rewritten to

q(x|zi,y)∝ qold(x|zi,y)exp
�−ω log qold(x|zi,y) +φ(x,y)

η+ 1+ω

�

.

Thus, it becomes clear how the model can be updated by a weighted fit to the samples of the old
distribution. In order to account for the fixed context distribution p(y) during the update, we need to
normalize the weights such that the weights for all samples from one context sum to 1.
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4.3 Practical Aspects

Here we want to elaborate on several practical aspects of the introduced method. Namely, the density
ratio estimation which plays an important role in our approach, as well as, the weighted expectation
during the conditional M-step and how to efficiently implement our approach.

4.3.1 Density Ratio Estimation

The two main design choices for the density ratio estimator are its parametric family and the objective
used to train it. In all our experiments we realize the density ratio estimator as a neural network based
logistic regressor.

Besides being easy to scale, neural networks have the appealing property that they are efficiently adapt-
able to the new model distribution after each M-step. Since the updates during the M-step are bounded
the change in the density ratio estimate is small and the network can be adapted using a small num-
ber of epochs. Other reasonable approaches, such as Gaussian processes [Rasmussen, 2003] cannot be
retrained this easily.

While the density ratio estimation under Bregman divergences [Sugiyama et al., 2012b] provides a vari-
ety of possible objectives, preliminary experiments showed that the binary cross entropy works best. In
particular, Least Square Importance Fitting (LSIF)[Yamada et al., 2013], which is recommended by many
studies [Uehara et al., 2016; Dawid et al., 2016], caused numerical instabilities and bad performance.
The network output is the log density ratio φ(x) and computing the loss for LSIF includes computing
the squared density ratio, i.e., r(x)2 = exp(φ(x))2, which can yield exploding gradients. Passing φ(x)
through a sigmoid, whose output is always between 0 and 1 and whose gradient saturates if the absolute
value of φ(x) is large, is numerically much more stable. Similar concerns are expressed by Poole et al.
[2016]. Uehara et al. [2016], who recommend LSIF, need to clip the values heuristically in order for the
training of their b-GAN to succeed.

Also note that the original density ratio estimate to be computed, r(x) = q(x)/p(x) can be extended
with an arbitrary conditional distribution pθ (θ |x)

r(x) =
q(x)
p(x)

=
q(x)pθ (θ |x)
p(x)pθ (θ |x)

=
q(x ,θ )
p(x ,θ )

.

This insight can be used to provide additional information to the density ratio estimator that may allow
for a better estimate and more efficient training.

4.3.2 Computing Expectations over p̃(y|z)

For mixtures of experts we need to take expectations over p̃ (y|z) during the component update. Yet, we
have no samples of p̃(y|z) but only samples of p(y). In order to compute the expectations importance
sampling needs to be employed, the weights are given by

p̃(y|zi)
p(y)

=
q(zi|y)
q(zi)

,

where q(zi) is obtained by q(zi) = Ep(y) [q(zi|y)].
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4.3.3 Efficient Implementation

Exploiting parallel computations allows an efficient implementation of the approach. In particular, the
components updates are independent of one another and can be performed simultaneously. Additionally,
when working with neural networks specialized frameworks such as Tensorflow [Abadi et al., 2016]
allow for efficient computation using GPUs and automated gradient computation.
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5 Qualitative Comparison

In the following, we elaborate on the similarities, differences, and connections of our approach to the
previously introduced related work.

5.1 Reinforcement Learning

We exploit information theoretic policy search to realize efficient updates during the M-step for both
Gaussian mixture models and mixtures of experts. Those methods have been designed to tackle problems
typical to reinforcement learning and we elaborate on the extent to which those are relevant for our
approach.

Sample efficiency is a relevant aspect of most machine learning methods. Yet, it is of particular impor-
tance in reinforcement learning and especially in stochastic search, as the evaluation of the reward for a
single sample of the search distribution is computationally expensive. In our approach, obtaining the re-
ward for a sample corresponds to evaluating the density ratio estimator which can be very fast. Realizing
the density ratio estimator as a neural network allows evaluating it for thousands of samples efficiently
and in parallel. Hence, there are effectively no problems regarding sample efficiency during the M-step.
Thus, we can work directly with the sample based version of the dual in section 4.2.3, which is usually
infeasible in the normal stochastic search setting. Note, however, that the amount of samples available
from the true distribution is still an important issue for training the density ratio estimator during the
E-step.

Another major issue reinforcement learning methods have to deal with is the exploration-exploitation
trade-off. Our approach, on the other hand, assumes access to all data that will ever be available from
the first iteration. Thus no exploration is needed or, in fact, possible. Yet, the mechanisms limiting
the exploitation are crucial for EIM since the updates of the distribution depend on the density ratio
estimator, whose estimates are usually far from perfect. The estimates are worse in regions where the
model has little density since there are less training samples. Thus, staying close to the old distribution
is important. Additionally, bounding the updates allows retraining the density ratio estimator after
the update with little effort. When working with closed form updates and reward surrogates, the KL
constraint is also necessary to define a trust region in which the surrogate is assumed to be reliable.

Constraining the loss in entropy is necessary for the same reason it is necessary in the normal stochastic
search case, i.e., to prevent premature convergence to spurious local optima.

5.2 Expectation Maximization

Both EM and EIM do not optimize their objective directly but work by optimizing a bound to the objective
instead.

It is interesting to compare our upper bound to the lower bound objective optimized by EM. As men-
tioned, maximizing the likelihood is equivalent to minimizing the M-projection, i.e., KL (p(x) ‖ q(x)),
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where, in relation to our objective, the model and true distribution have switched places in the
non-symmetric KL objective. Like our approach, EM introduces an auxiliary distribution q̃(z|x) and
bounds the objective from below by subtracting the KL between auxiliary distribution and model, i.e.,
KL (q̃(z|x) ‖ q(z|x)). In contrast, we obtain our upper bound by adding KL (q(z|x) ‖ q̃(z|x)) to the objec-
tive. Again, the distributions have exchanged places within the KL.

5.3 Generative Adversarial Networks

To the best of our knowledge, generative adversarial approaches, such as the f -GAN [Nowozin et al.,
2016] are currently the only other approaches capable of computing the I-projection between a target
and a model distribution solely based on samples. Besides the shared objective of modeling distribu-
tions over data, further similarities are rooted in the connections between density ratio estimation and
discriminators discussed in section 2.4.2. Yet, there are also important differences.

A key benefit of GANs is that they do not require the density of the model to be tractable, which enables
the use of powerful probabilistic models and allows modeling complex, high dimensional distributions,
e.g., over images. However, using probabilistic models with intractable densities is clearly only rea-
sonable if the density is not of interest. In the context of interest to us, i.e., autonomous systems and
robotics, this case is rare. Here probabilistic models are often employed to exploit the additional infor-
mation they provide, e.g., in the form of uncertainty. Because they do not rely on the density or structure
of the model, GANs are agnostic to it during training. EIM, on the other hand, requires the density to be
tractable, which allows us to exploit the model structure during training, resulting in specialized update
rules that are arguably more effective.

Another major difference is that our approach is not adversarial in the sense that the objective is not
a min-max game. Instead, the density ratio estimator can be viewed to support learning the model by
providing good estimates about the density ratio estimate, yielding more effective updates and removing
a major source of instability in GAN approaches. Additionally, in our approach, the density ratio between
the distribution prior to the update, qold(x) and the target distribution p(x) is estimated. Thus, the log
density ratio φ(x) does not depend on the optimization variable during the M-step, i.e., q(x), which is
accounted for by the additional KL terms in the objective. For GANs the discriminator depends on the
current model q(x) and needs to be fixed artificially during the generator update in order to obtain a
tractable optimization problem.

5.4 Variational Inference

There exist approaches utilizing variational inference to fit probabilistic models to data, e.g., Variational
Bayes EM [Bishop, 2006] and Variational Autoencoders [Kingma and Welling, 2013]. Based on a lower
bound objective, those methods compute the I-projection between a variational distribution and the true,
intractable, posterior over parameters θ given data x . Yet, p(θ |x) is proportional to the likelihood of
the data given the parameters p(x |θ ) and a prior over the parameters p(θ ), i.e., p(θ |x)∝ p(x |θ )p(θ ).
Thus, parameters obtained from the variational distribution, e.g., by sampling or maximum a-posteriori,
will yield a distribution over the data that is close to the maximum likelihood solution.

Our approach, on the other hand, directly computes the I-projection between the model and the true
distribution over the data.
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5.5 VIPS

Both VIPS [Arenz et al., 2018] and EIM work with the same upper bound to their original objective,
i.e., finding the I-projection. To further emphasize the similarities consider our upper bound, stated in
Equation 3.3. Since we assume only samples of p(x) are available we can not directly work with this
bound and need a density ratio estimator to make it computable. Under the assumption of VIPS, i.e.,
access to the unnormalized density p∗(x) = cp(x) we can make the bound computable by noting

∫

q(z)

∫

q(x |z) log
qold(x)
p(x)

d xdz +Eq(z) [KL (q(x |z) ‖ qold(x |z))] + KL (q(z) ‖ qold(z))

=

∫

q(z)

∫

q(x |z) log
qold(x)
p∗(x)

d xdz − log c +Eq(z) [KL (q(x |z) ‖ qold(x |z))] + KL (q(z) ‖ qold(z)) .

where the constant log c can be neglected during optimization. Plugging the E-step into the VIPS upper
bound stated in Equation 2.9 yields the same result. Thus, it becomes clear that VIPS and EIM optimize
the same upper bound objective under different assumptions, i.e., access to the unnormalized density
for VIPS and only access to samples for EIM.

This equivalence has several interesting implications. First, it shows how the M-step in VIPS can be
realized by adding a 1 to the Lagrangian multiplier corresponding to the KL, η, instead of setting the
Lagrangian multiplier corresponding to the entropy constraint, ω, to 1. Second, if the M-step is derived
for a particular latent variable model, it can be used for both VIPS and EIM. Third, it allows us to use
our derivations of the conditional upper bound and mixtures of experts also for VIPS.

Yet, from a practical perspective, there are several differences between VIPS and EIM. As stated in sec-
tion 5.1 sample efficiency is not an issue for EIM during the M-Step. For VIPS, on the other hand, it
is an issue, since evaluating p∗(x) is usually costly. Arenz et al. [2018] addressed this issue by reusing
samples.
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6 Quantitative Evaluation

To the best of our knowledge, Generative Adversarial Networks (GANs) are the only other existing
method to find the I-projection solely based on samples. Naturally, we compare to them and analyze
the influence of the differences between EIM and GANs. In a second experiment, we show EIM is more
robust with regards to spurious local optima than EM. We also show several experiments on real world
data, demonstrating the I-projections benefits and EIMs capability of finding good solutions. Finally, we
provide a proof of concept for learning nonlinear components with context dependent covariances.

In all experiments, we realized the density ratio estimator as fully connected neural networks which we
trained using ADAM [Kingma and Ba, 2014]. In most experiments we used dropout [Srivastava et al.,
2014] and early stopping during the training of the density ratio estimator. A full overview of all used
hyperparameters can be found in Appendix B.

6.1 Comparison to Generative Adversarial Approaches

We compare EIM to several generative adversarial approaches, the original GAN [Goodfellow et al.,
2014], the I-projection version of the f-GAN [Nowozin et al., 2016], the Wasserstein GAN (WGAN)
[Arjovsky et al., 2017], and the Wasserstein GAN with gradient penalty (WGAN-GP) [Gulrajani et al.,
2017]. We measure performance using the I-projection and evaluate the approaches on fitting models
to randomly generated Gaussians and GMMs of varying dimensions and numbers of components. In all
experiments, the models are rich enough to perfectly fit the true data distribution and thus all approaches
should find the same minimum, despite optimizing different objectives.

In order to allow fitting GMMs with GANs we employed both methods introduced in section 2.4.3,
i.e., reparamertization with the Gumbel softmax [Jang et al., 2017] and training the weights with an
additional mutual information term. Results can be found in Figure 6.1.

In section 5.3 we identified three main differences between GANs and our approach. GANs have an ad-
versarial objective, are agnostic to the model structure, and the discriminator is working with the current
model while EIM optimizes a non-adversarial objective, exploits the model structure, and the density ra-
tio estimator is working with the model from the previous iteration. To investigate the influences of
those differences, we introduce two modified versions of our approach. First, unstructured EIM (EIM-
US) does not exploit the model structure but realizes the M-step by propagating gradients back through
the sampling process, similar to the GAN approaches. Second, EIM-KL does not have the KL term in
the objective, which effectively removes the auxiliary distribution and the density ratio estimator is now
working directly with the current model. We also investigate a combination of the two, EIM-US-KL. The
results of the comparison can be found in Figure 6.2.

6.2 Comparing Robustness to EM

EM is known to be prone to spurious local optima. In order to show that EIM suffers less from this prob-
lem we performed a simple experiment, fitting a simple one dimensional conditional distribution with
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Figure 6.1.: Average I-Projection achieved for EIM, GAN, f-GAN, WGAN and WGAN-GP. EIM outperforms
all adversarial approaches, especially for high dimensions and numbers of components. Note
that we displayed the same results for our approach in (b) and (c) in order to compare them
to the generative adversarial approaches with different training methods for the weight dis-
tribution.

p(x) = Uniform(−1,1) and p(y|x) = sin(2.5πx) + ε with ε ∼N (µ = 0,σ = 0.1), starting from random
initialization. Figure 6.3 shows that, while EM achieves higher log-likelihood if the global optimum is
reached it often fails to do so. EIM, on the other hand, converges to the global optimum more often
and thus ultimately achieves a higher average log-likelihood than EM, despite optimizing a different
objective.

6.3 Line Reaching with Planar Robot

To further illustrate the benefits of the I-Projection we extended the introductory example of the planar
reaching task and collected expert data from the robot tasked with reaching a point on a line.

We fitted GMMs with an increasing number of components using EIM, EIM with the x-coordinate of the
robot end-effector provided as additional information to the density ratio estimator, and EM. Even for a
large number of components, we see effects similar to the introductory example, i.e., the M-Projection
solution, provided by EM, fails to reach the line while EIM manages to do so. However, for small numbers
of components, parts of the line are ignored by EIM, while more and more parts of it get covered as we
increase the number of components. For EIM with additional information, these effects are amplified.
See Figure 6.4, for average distance between end-effector and the line as well as samples from both EM
and EIM. Figure 6.5 shows histograms visualizing how well the samples cover the line. This example
also illustrates that EIM is able to infer the underlying task, i.e., reaching the line, while EM does not
manage this due to the averaging effects of the M-projection.

6.4 Inverse Kinematics of Real World Robot

We evaluated EIM for linear mixtures of experts on the task of learning the inverse kinematics (IK) of
7-link KUKA Iiwa robot. To this end, we collected training data by evaluating the forward kinematics
for randomly chosen joint configurations. The input of the IK model is the end-effector position (3D
cart. coordinates) while the output is given by the joint configuration. In order to get a good inverse
kinematic model, each of the components needs to focus on a small part of the context space. Thus, the
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Figure 6.2.: Average I-Projection achieved for EIM, the modified EIM versions, and VIPS. (a) Fitting Gaus-
sian distributions. Especially for lower dimensions structured EIM with the additional KL term
works better than the other versions. Yet, for a single Gaussian there is no decomposition
of the model and in general not much structure to exploit by the structured EIM version.
(b)-(d) Fitting GMMs. When fitting GMMs exploiting the model structure becomes more im-
portant and thus the normal EIM version outperforms the unstructured one. Interestingly,
omitting the KL term does not seem to matter for the unstructured case. We also included
results from VIPS. Clearly, this comparison is not a fair as VIPS has access to the log density of
the target distribution and does not rely on density ratio estimation. Yet, the differences in
performance indicate that there is still room for improvement regarding the density ratio es-
timation. In the Gaussian case, there are no local optima and VIPS always perfectly matches
the target distribution, achieving average values of smaller than 10−20, which we did not
display for better visibility of the other results.
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d Figure 6.3.: Log-likelihood results for 20 runs of EM and EIM each.
Bars indicate the mean. While EM achieves better results
when it converges to the global optima it often fails to
do so which is not the case for EIM. Thus ultimately our
approach achieves the higher average likelihood.

models should evenly distribute the components over the context space and allow each component to
focus on a small part of it. More formally, the models should have a high entropy in the marginal weight
distribution, i.e H(q(z)) = H

�

Ep(y) [q(z|y)]
�

and a low expected entropy q(z|y), i.e., Ep(y) [H(q(z|y))].
Figure 6.6 shows average RMSE in end-effector position and the aforementioned entropy values for both,
EIM and EM. It shows that EIM can significantly outperform the EM model that does not perform well
due to averaging over multiple modes. Still, further improving the performance of EIM is needed in
order to yield useful inverse kinematics models. Yet, EIM is the only method we are aware of that can
deal with such multi-modal data.

6.5 Vehicle Trajectory Prediction

Additionally, we evaluated our approach on traffic data from the Next Generation Simulation program1,
in particular, the traffic data recorded on Lankershim Boulevard. Based on a single x-y coordinate of
a vehicle EM and EIM had to predict the x-y coordinates at the next 5 time steps, with 2.5 seconds

1 https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
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of components ignores modes, not considering the whole line, it learns models that actu-
ally achieve the underlying task, i.e., reach the line. Providing additional information to the
density ratio estimator further decreases the average distance to the line. EM, on the other
hand, averages over the modes, and thus fails to reach the line even for large numbers of
components.
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Figure 6.5.: Histograms over the y -position of the end-effector, i.e., which points on the line were
reached, in samples generated with EIM, EIM with additional features, EM as well as the
test data. This figure again illustrates how parts of the line are ignored by EIM for low num-
bers of components. Yet, the distribution of the test data is better recovered with increasing
numbers of components while the solutions for EIM and EIM with additional features stay
close to the line for all numbers of components, as shown in Figure 6.4.

between time steps. As the data is highly multi-modal, with vehicles driving at different speeds, stopping
at red lights, changing lanes, and taking turns at intersections, accurate predictions of single trajectories
are not possible based on the given features. We instead focus on the plausibility of the produced
trajectories. Samples displayed together with the results in Figure 6.7, show that the data produced by
EM is highly implausible with vehicles driving off the road, in between lanes and on the median strip.
To formally compare the plausibility of the trajectories we used a kernel density estimator on all points
of all trajectories in the test set and assessed whether a sample is plausible, i.e on the road, based on
its density estimate, If no car has been seen in the position of a given sample, the position is likely to
be off the road. We counted the number of off-road samples for EM and EIM with different numbers of
components.

6.6 Nonlinear Components

In order to provide a proof of concept for learning nonlinear components we fitted a single univari-
ate Gaussian q(x |y) = N

�

µ=ψµ(y),σ =ψσ(y)
�

to several simple target distributions. Figure 6.8
displayes results and shows that components can be fitted for highly nonlinear functions and learn vari-

36



20 40 60

0.05

0.1

0.15

0.2

0.25

0.3

EIM
EM

(a) RMSE in endeffector position

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

H(p(z))
Ep(x) [H(q(z|x))]

(b) Entropy during training for EIM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

10 Components
20 Components
30 Components
40 Components
50 Components
60 Components
70 Components

(c) Entropy during training for EM

Figure 6.6.: (a) RMSE in end-effector position of the learned inverse kinematics model. (b) and (c)
Ep(x) [H(p(z|x))] and H(p(z)) = H

�
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for our approach and EM. Note that
we normalized the entropy and number of training iterations to get comparable plots for
different numbers of components and both algorithms. While both approaches keep a high
entropy in z, i.e., use all components, only our approach manages to lower the entropy of
p(z|x), i.e., allows the components to focus on individual parts of the state space.
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Figure 6.7.: (a) Fraction of off-road samples for EIM and EM for different numbers of components. It can
clearly be seen that EIM produces much more plausible data. (b) Vehicle position in the true
data. Yellow areas are defined as road, red areas as off-road. (c) and (d). Samples from our
approach and EM.

ances depending on the context. They also show that in the case of multi-modal distributions modes
that can not be represented are ignored. Figure 6.9 demonstrates how the weighting of the samples
successively draws the model distribution towards the target.
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Figure 6.8.: For all experiment we sampled the contexts from p(x) = Uniform(−1,1). We evaluated for
several target distributions p(x |y). (a) p(x |y) = N (µ= sin(2.5πy),σ = 0.1), (b) p(x |y) =
0.5N (µ= x sin(2.5πy) + 0.7,σ = 0.1) + 0.5N (µ= −x sin(2.5πy)− 0.7,σ = 0.1), (c)
p(x |y) = N
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µ= 0,σ = (x + 1)2 + 0.05
�

. The top row displays those distributions while
the bottom row displays the learned models. We can see that the approach for nonlinear
components successfully works with highly nonlinear functions, context dependent variance
and, like expected, ignores modes it cannot represent.
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Figure 6.9.: Current model, target distribution and samples for different iterations. The color of each
sample indicates its weight for the weighted maximum likelihood fit performed to update
the model during the M-step. Samples close to the target distribution get higher weights,
drawing the model distribution towards the target.
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7 Conclusion

We introduced Expected Information Maximization (EIM), a novel approach to compute the I-projection
of a target distribution onto a family of parametric models based solely on samples of the target distribu-
tion. We derived a general, EM-like procedure for marginal as well as conditional latent variable models
and presented efficient implementations of that procedure for Gaussian mixture models and mixtures
of experts. We demonstrated the usefulness of the I-projection objective and our models capability of
finding good solutions in our experiments. In our analysis, we showed that our approach is related to
Generative Adversarial Networks (GANs), yet aims at problems where a tractable model is desired or
necessary. In those cases exploiting the model structure yields significant benefits over GANs.

7.1 Future Work

The introduced work opens various pathways for future research and exploring them all lies beyond the
scope of this work.

7.1.1 Improvements to the Approach

We evaluated the M-step for nonlinear components only for simple, low dimensional target distribu-
tions. For higher dimensional distributions, working with solutions based on the joint distribution, as
introduced in section 2.5.1, might be necessary. In general, many ideas developed in the context of
information theoretic policy search can be used in our approach. For example, constraining the KL also
during the weighted maximum likelihood fit [Abdolmaleki et al., 2017, 2018].

As shown by the VIPS experiments in section 6.1, using the true density ratio yields significantly better
performance than working with density ratio estimates, even for relatively simple target distributions.
Clearly, the true density ratio will always work better than an estimate. Yet, this comparison also shows
that there is a margin for improvement in the design of the density ratio estimator. Contrary to Uehara
et al. [2016] we are free in the choice of the density ratio estimator loss function as our approach is not
adversarial. Additionally, all introduced and considered density ratio estimation techniques assume both
densities to be unknown and work solely based on samples. In our case the model’s density would be
available. Recently, Fu et al. [2018] introduced a method capable of exploiting the knowledge about one
of the two distributions during density ratio estimation.

7.1.2 M-Step for Different Latent Variable Models

We exploited similarities to information theoretic policy search to realize the M-steps in all considered
cases. Yet, the M-step can also be realized by directly minimizing the upper bound, however this might
not yield optimal performance as shown in our experiments. Additionally, solutions based on information
theoretic policy search are applicable in most scenarios.
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While Gaussian mixture models and mixtures of experts are arguably among the most popular latent
variable models, they are not the only ones of use. In the case of marginal mixtures, the dual derived for
the component update, i.e., Equation 4.2, is valid not only for Gaussians but can be used, together with
MORE or REPS like updates, to learn mixtures of arbitrary exponential family distributions.

For more complex and conditional models, modern deep reinforcement learning algorithms such as
TRPO [Schulman et al., 2015] and PPO [Schulman et al., 2017] provide off the shelf solutions. Those
allow for additional KL constraints and with slight modifications constraining the entropy is also possible.
Yet, similar to our M-steps for nonlinear components and gating, exploiting the methods introduced in
section 2.5.1 might yield additional performance and efficiency.

Ultimately, the upper bound objectives derived are not limited to discrete latent variables and ways
to efficiently perform the M-step could be derived for models with continuous latent variables such as
hidden Markov models.

7.1.3 EIM for High Dimensional Data

Nowadays, generative models, in particular, Generative Adversarial Networks, are often used to model
distributions over extremely high dimensional data, such as images. Scaling to such high dimensional
data is not possible with multivariate Gaussian distributions with full covariance as the number of en-
tries in the covariance matrix grows quadratically with the number of dimensions. Thus in order to
employ EIM for such tasks, either, simplified covariance models, such as diagonal or isotropic covariance
matrices, or a completely different family of distributions needs to be used.

A recent study [Richardson and Weiss, 2018] showed how mixtures of factor analyzers [Ghahramani
et al., 1996] can be used to obtain results, comparable to those of GANs, on modeling generative dis-
tributions over images using the EM algorithm. Yet, they reported the resulting images to be blurred.
Arguably, this blurriness is an artifact of the averaging behavior of the maximum likelihood objective
optimized by EM.

7.1.4 Reusing Results for VIPS

As discussed in section 5.5 VIPS and EIM optimize the same upper bound objective under different
assumptions regarding the availability of information about the target distribution p(x). Thus, the con-
ditional upper bound and our derivations for mixtures of experts can easily be reused for VIPS.

On the other hand, Arenz et al. [2018] propose using a set of heuristics to adapt the number of compo-
nents of the mixtures, automatically. Slightly modifying this set of heuristics would allow adapting the
number of components for EIM.
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A Derivations

In the following, we give full, detailed derivations for the equations stated above.

A.1 Upper Bound

Derivations of the upper bound stated in Equation 3.1. We assume latent variable model q(x) =
∫

q(x |z)q(z)dz and use the identities q(x |z)q(z) = q(z|x)q(x) and log q(x) = log q(x |z)q(z) −
log q(z|x).

KL (q(x) ‖ p(x)) =

∫

q(x) log
q(x)
p(x)

d x =

∫∫

q(x |z)q(z) log
q(x)
p(x)

dzd x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q(z|x)

�

dzd x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q(z|x) + log q̃(z|x)− log q̃(z|x)

�

dzd x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q̃(z|x)

�

dzd x −
∫∫

q(x |z)q(z) (log q(z|x)− log q̃(z|x)) dzd x

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log q̃(z|x)

�

dzd x −
∫

q(x)

∫

q(z|x) log
q(z|x)
q̃(z|x)dzd x

=U(q, q̃, p)−Eq(x) [KL (q(z|x) ‖ q̃(z|x))] .

After plugging the E-Step, i.e., q̃(z|x) = qold(x |z)qold(z)/qold(x), into the objective it simplifies to

U(q, q̃, p)

=

∫∫

q(x |z)q(z)
�

log
q(x |z)q(z)

p(x)
− log

qold(x |z)qold(z)
qold(x)

�

dzd x

=

∫∫

q(x |z)q(z) (log q(x |z) + log q(z)− log p(x)− log qold(x |z)− log qold(z) + log qold(x)) dzd x

=

∫∫

q(x |z)q(z)
�

log
qold(x)
p(x)

+ log
q(x |z)

qold(x |z)
+ log

q(z)
qold(z)

�

dzd x

=

∫

q(z)

�∫

q(x |z)
�

log
qold(x)
p(x)

+ log
q(x |z)

qold(x |z)
�

d x + log
q(z)

qold(z)

�

dz

=

∫

q(z)

∫

q(x |z) log
qold(x)
p(x)

d xdz +

∫

q(z)

∫

q(x |z) log
q(x |z)

qold(x |z)
d xdz +

∫

q(z) log
q(z)

qold(z)
dz

=

∫∫

q(x |z)q(z) log
qold(x)
p(x)

dzd x +Eq(z) [KL (q(x |z) ‖ qold(x |z))] + KL (q(z) ‖ qold(z)) ,

which concludes the derivation of Equation 3.3.
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A.2 Conditional Upper Bound

By introducing an auxiliary distribution q̃(z|x , y) the upper bound to the expected KL for conditional
latent variable models q(x |y) = ∫ q(x |z, y)q(z|y)dz, stated in Equation 3.6 can be derived by

Ep(y)KL (q(x |y) ‖ p(x |y)) =
∫∫

p(y)q(x |y) log
q(x |y)
p(x |y)d xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
�

log
q(x |z, y)q(z|y)

p(x |y) − log q(z|x , y)
�

dzd xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)

·
�

log
q(x |z, y)q(z|y)

p(x |y) − log q(z|x , y) + log q̃(z|x , y)− log q̃(z|x , y)
�

dzd xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
�

log
q(x |z, y)q(z|y)

p(x |y) − log q̃(z|x , y)
�

dzd xd y

−
∫

p(y)

∫∫

q(x |z, y)q(z, y) (log q(z|x , y)− log q̃(z|x , y)) dzd xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
�

log
q(x |z, y)q(z|y)

p(x |y) − log q̃(z|x , y)
�

dzd xd y

−
∫∫

p(y)q(x |y)
∫

q(z|x , y) log
q(z|x , y)
q̃(z|x , y)

dzd xd y

=U(q, q̃, p)−Ep(y),q(x |y) [KL (q(z|x , y) ‖ q̃(z|x , y))] .

During the E-step the bound is tightened by setting q̃(z|x , y) = qold(x |z, y)qold(z|y)/qold(x |y).
U(q, q̃, p)

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
�

log
q(x |z, y)q(z|y)

p(x |y) − log
qold(x |z, y)qold(z|y)

qold(x |y)
�

dzd xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
· (log q(x |z, y) + log q(z|y)− log p(x |y)− log qold(x |z, y)− log qold(z|y) + log qold(x |y)) dzd xd y

=

∫

p(y)

∫∫

q(x |z, y)q(z|y)
�

log
qold(x |y)
p(x |y) + log

q(x |z, y)
qold(x |z, y)

+ log
q(z|y)

qold(z|y)
�

dzd xd y

=

∫

p(y)

∫

q(z|y)
�∫

q(x |z, y)
�

log
qold(x |y)
p(x |y) + log

q(x |z, y)
qold(x |z, y)

�

d x + log
q(z|y)

qold(z|y)

�

dzd y

=

∫

p(y)

∫

q(z|y)
∫

q(x |z, y) log
qold(x |y)
p(x |y) d xdzd y

+

∫

p(y)

∫

q(z|y)
∫

q(x |z, y) log
q(x |z, y)

qold(x |z, y)
d xdzd y +

∫

p(y)

∫

q(z|y) log
q(z|y)

qold(z|y)
dzd y

=

∫∫∫

p(y)q(z|y)q(x |z, y) log
qold(x |y)
p(x |y) d xdzd y

+Ep(y),q(z|y) [KL (q(x |z, y) ‖ qold(x |z, y))] +Ep(y) [KL (q(z|y) ‖ qold(z|y))] ,
which concludes the derivation of Equation 3.7.
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A.3 M-Step for Gaussian Mixture Models

We derive the dual for optimization problems of the form

max
q(x)

∫

q(x)φ(x)d x − KL (q(x) ‖ qold(x))

s.t. KL (q(x) ‖ qold(x))≤ ε, H(q(x))≥ β ,

∫

q(x)d x = 1.

The derivations can be applied to obtain both, the dual to update the components q(x|zi) and the mix-
ture distribution q(z). We begin by considering the corresponding Lagrangian. We use the Lagrangian
multipliers η,ω, and λ for the KL, entropy and normalization constraint respectively.

L(q(x),η,ω,λ)

=

∫

q(x)φ(x)d x − KL (q(x) ‖ qold(x)) +η (ε− KL (q(x) ‖ qold(x)))

+ω (H(q(x))− β) +λ
�

1−
∫

q(x)d x

�

(A.1)

=ηε−ωβ +λ+
∫

q(x)φ(x)d x − (η+ 1)KL (q(x) ‖ qold(x)) +ωH(q(x))−λ
∫

q(x)d x

=ηε−ωβ +λ+
∫

q(x) (φ(x)− (η+ 1) (log q(x)− log qold(x))−ω log q(x)−λ) d x

=ηε−ωβ +λ+
∫

q(x) (φ(x)− (η+ 1+ω) log q(x) + (η+ 1) log qold(x))−λ) d x .

We take the derivative of the Lagrangian w.r.t q(x)

∂L
∂ q(x)

=

∫

∂

∂ q(x)
q(x) (φ(x)− (η+ 1+ω) log q(x) + (η+ 1) log qold(x))−λ) d x

=

∫

�

q(x)
−(η+ 1+ω)

q(x)
+φ(x)− (η+ 1+ω) log q(x) + (η+ 1) log qold(x))−λ

�

d x

=

∫

−(η+ 1+ω+λ) +φ(x)− (η+ 1+ω) log q(x) + (η+ 1) log qold(x))d x .

For the optimal q(x) this derivative needs to be zero which is the case if the integral is zero for all x .
Thus,

− (η+ 1+ω+λ) +φ(x)− (η+ 1+ω) log q(x) + (η+ 1) log qold(x) = 0

⇔(η+ 1+ω) log q(x) = −(η+ 1+ω+λ) +φ(x) + (η+ 1) log qold(x). (A.2)

It follows that the new, optimal q(x) is given by

q(x) = exp
�

−η+ 1+ω+λ
η+ 1+ω

�

exp
�

φ(x)
η+ 1+ω

�

qold(x)
η+1
η+1+ω

∝ exp
�

φ(x)
η+ 1+ω

�

qold(x)

η+ 1
η+ 1+ω = exp

�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

. (A.3)
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Not surprisingly this update rule for q(x) is very similar to the MORE update rule and differs only by the
1 that is added to η. This update rule still depends on η and ω which can be obtained by minimizing
the dual. In order to obtain the dual from the Lagrangian, we substitute the (η+1+ω) log q(x) term by
Equation A.2

L(q(x),η,ω,λ) = ηε−ωβ +λ

+

∫

q(x) (φ(x) +η+ 1+ω+λ−φ(x)− (η+ 1) log qold(x) + (η+ 1) log qold(x))−λ) d x

=ηε−ωβ +λ+ (η+ 1+ω)

∫

q(x)d x = ηε−ωβ +λ+η+ 1+ω, (A.4)

since
∫

q(x)d x = 1 as the third constraints ensures that q(x) is a properly normalized distribution. The
proper normalization also implies log

∫

q(x)d x = 0 and thus

0= log

�∫

exp
�

−η+ 1+ω+λ
η+ 1+ω

�

exp
�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

d x

�

= log

�

exp
�

−η+ 1+ω+λ
η+ 1+ω

�

∫

exp
�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

d x

�

= −η+ 1+ω+λ
η+ 1+ω

+ log

∫

exp
�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

d x

⇔λ+η+ 1+ω= (η+ 1+ω) log

∫

exp
�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

d x . (A.5)

By plugging Equation A.5 into Equation A.4 we ultimately obtain the dual

g(η,ω) = ηε−ωβ + (η+ 1+ω) log

∫

exp
�

(η+ 1) log qold(x) +φ(x)
η+ 1+ω

�

d x . (A.6)

Minimizing the dual is a convex problem and the gradients can directly be read of Equation A.1. They
are given by

∂ g(η,ω)
∂ η

= ε− KL (q(x) ‖ qold(x)) and
∂ g(η,ω)
∂ω

= H(q(x))− β .

Those gradients allow us to efficiently optimize the dual using gradient based optimizers.

A.3.1 M-Step for Categorical Mixture Distributions

For the discrete categorical distribution, the integral in Equation A.6 simplifies to a sum. Thus, closed
form computation is straight forward and can be numerically stabilized by the log-sum-exp trick.

A.3.2 M-Step for Gaussian Components

We derive the closed form update and dual for Gaussian components. In the following, we will work with
the natural parametrization of the Gaussian and denote its dimensionality with k. The old distribution
is given by

qold(x) =N
�

qold = Σ
−1
oldµold,Qold = Σ

−1
old

�

=(2π)−
k
2 exp

�

−1
2

xT Qoldx+ qT
oldx− 1

2
qT

oldQ−1
oldqold +

1
2

logdet (Qold)
�

.
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The compatible reward surrogate is a quadratic function given by

φ(x)≈ φ̂(x) = −1
2

xT R̂x+ r̂T x+ r̂0.

We insert both, the reward and the density, into the general update given in Equation A.3 and obtain

q(x)

∝exp
�

η+ 1
η+ 1+ω

�

−1
2

xT Qoldx+ qT
oldx− 1

2
qT

oldQ−1
oldqold +

1
2

logdet (Qold)−
k
2

log(2π)
�

+
1

η+ 1+ω

�

−1
2

xT R̂x+ r̂T x+ r̂0

��

=exp

�

−1
2

xT

�

(η+ 1)Qold + R̂
η+ 1+ω

�

x+
�(η+ 1)qold + r̂

η+ 1+ω

�T

x

�

· exp
�

η+ 1
η+ 1+ω

�

−1
2

qT
oldQ−1

oldqold +
1
2

logdet (Qold)−
k
2

log(2π)
�

+
r̂0

η+ 1+ω

�

(A.7)

=exp
�

−1
2

xT Qx+ qT x+ const
�

.

Where

Q =
(η+ 1)Qold + R̂
η+ 1+ω

and q=
(η+ 1)qold + r̂

η+ 1+ω

denote the natural parameters of the new distribution.

However, to find the optimal parameters we still need to optimize the dual. The required computations
could be done based on samples, however, we can also solve the integral in the dual in closed form and
obtain an analytical solution dependent only on the natural parameters of the old and new distribution.
We start by plugging Equation A.7 into the dual Equation A.6 yields

g(η,ω) =ηε−ωβ + (η+ 1+ω) log

∫

exp
�

−1
2

xT Qx+ qT x
�

(A.8)

· exp
�

η+ 1
η+ 1+ω

�

−1
2

qT
oldQ−1

oldqold +
1
2

log det (Qold)−
k
2

log(2π)
�

+
r̂0

η+ 1+ω

�

dx

=ηε−ωβ + (η+ 1)
�

−1
2

qT
oldQ−1

oldqold +
1
2

logdet (Qold)−
k
2

log(2π)
�

+ r̂0

+ (η+ 1+ω) log

∫

exp
�

−1
2

xT Qx+ qT x
�

dx. (A.9)

We consider only the integral part
∫

exp
�

−1
2

xT Qx+ qT x
�

dx=

∫

exp
�

−1
2

xT Qx+ qT x− 1
2

qT Q−1q+
1
2

qT Q−1q+
1
2

log det (Q)− 1
2

logdet (Q)− k
2

log(2π) +
k
2

log(2π)
�

dx

=exp
�

1
2

qT Q−1q− 1
2

logdet (Q) +
k
2

log(2π)
�

·
∫

exp
�

−1
2

xT Qx+ qT x− 1
2

qT Q−1q+
1
2

logdet (Q)− k
2

log(2π)
�

dx (A.10)

=exp
�

1
2

qT Q−1q− 1
2

logdet (Q) +
k
2

log(2π)
�

.
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The integral Equation A.10 is again the definition of the Gaussian density with natural parameters and
hence equals to 1. Ultimately, inserting the resulting term back into Equation A.9 gives us a closed form
solution that depends only on the natural parameters of the old and new distribution and it does not
require computing any integrals

g(η,ω) =ηε−ωβ + (η+ 1)
�

−1
2

qT
oldQ−1

oldqold +
1
2

logdet (Qold)−
k
2

log(2π)
�

+ r̂0

+ (η+ 1+ω)
�

1
2

qT Q−1q− 1
2

log det (Q) +
k
2

log(2π)
�

.

Note that we can neglect r̂0 as it is constant.

A.4 M-Step for Mixtures of Experts

We derive the dual for optimization problems of the form

max
q(x |y)

∫

p(y)

∫

q(x |y)φ(x , y)d x − KL (q(x |y) ‖ qold(x |y))

s.t. Ep(y) [KL (q(x |y) ‖ qold(x |y))]≤ ε, Ep(y) [H(q(x |y))]≥ β , ∀y :

∫

q(x |y)d x = 1.

The derivations can be applied to obtain both, the dual to update the components q(x|zi,y) and the
gating distribution q(z|y). We begin by considering the corresponding Lagrangian. We use the La-
grangian multipliers η,ω and λ(y) for the expected KL, expected entropy and normalization constraints
respectively.

L(q(x , y),η,ω,λ(y))

=

∫

p(y)

∫

q(x |y)φ(x , y)d x − KL (q(x |y) ‖ qold(x |y)) +η
�

ε−
∫

p(y)KL (q(x |y) ‖ qold(x |y)) d y

�

+ω

�∫

p(y)H(q(x |y))d y − β
�

+

∫

λ(y)

�

1−
∫

q(x |y)d x

�

d y (A.11)

=ηε−ωβ +
∫

λ(y)d y +

∫

p(y)

∫

q(x |y)φ(x , y)d xd y − (η+ 1)

∫

p(y)KL (q(x |y) ‖ qold(x |y)) d y

+ω

∫

p(y)H(q(x |y))d y −
∫

λ(y)

∫

q(x |y)d xd y

=ηε−ωβ +
∫

λ(y)d y −
∫∫

q(x |y)λ(y)d xd y

+

∫

p(y)

∫

q(x |y) (φ(x , y)− (η+ 1) (log q(x |y)− log qold(x |y))−ω log(q(x |y))) d xd y

=ηε−ωβ +
∫

λ(y)d y

+

∫∫

q(x |y) (p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y))−λ(y)) d xd y.
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We take the derivative of the Lagrangian w.r.t q(x |y)

∂L
∂ q(x |y)
=

∫∫

∂

∂ q(x |y)q(x |y) (p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y))−λ(y)) d xd y

=

∫∫ −p(y)(η+ 1+ω)
q(x |y) q(x |y)

+ p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y))−λ(y)d xd y

=

∫∫

p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y)− (η+ 1+ω))−λ(y)d xd y.

For the optimal q(x |y) this derivative needs to be zero which is the case if the integral is zero for all x
and y . Thus,

p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y)− (η+ 1+ω))−λ(y) = 0

⇔p(y)(η+ 1+ω) log q(x |y) = p(y) (φ(x , y) + (η+ 1) log qold(x |y)− (η+ 1+ω))−λ(y)
= p(y)φ(x , y) + p(y)(η+ 1) log qold(x |y)− p(y)(η+ 1+ω)−λ(y). (A.12)

It follows that the new, optimal q(x) is given by

q(x |y) = exp
�

− p(y)(η+ 1+ω) +λ(y)
η+ 1+ω

�

exp
�

p(y)φ(x , y)
p(y)(η+ 1+ω)

�

qold(x |y)
p(y)(η+1)

p(y)(η+1+ω)

∝ exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

. (A.13)

This update rule still depends on η and ω which can be obtained by minimizing the dual. In order to
obtain the dual from the Lagrangian, we substitute the p(y)(η+1+ω) log q(x) term by Equation A.12

=ηε−ωβ +
∫

λ(y)d y

+

∫∫

q(x |y) (p(y) (φ(x , y)− (η+ 1+ω) log q(x |y) + (η+ 1) log qold(x |y))−λ(y)) d xd y

=ηε−ωβ +
∫

λ(y)d y

+

∫∫

q(x |y) (p(y)φ(x , y)− p(y)(η+ 1+ω) log q(x |y) + p(y)(η+ 1) log qold(x |y)−λ(y)) d xd y

=ηε−ωβ +
∫

λ(y)d y +

∫∫

q(x |y)(p(y)φ(x , y)− p(y)φ(x , y)− p(y)(η+ 1) log qold(x |y)
+ p(y)(η+ 1+ω) +λ(y) + p(y)(η+ 1) log qold(x |y)−λ(y))d xd y

=ηε−ωβ +
∫

λ(y)d y + (η+ 1+ω)

∫

p(y)

∫

q(x |y)d xd y

=ηε−ωβ +
∫

p(y)(η+ 1+ω) +λ(y)d y, (A.14)
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since
∫

q(x |y)d x = 1 as the third constraint ensures that q(x |y) is properly normalized for all y . The
proper normalization also implies log

∫

q(x |y)d x = 0 for all y and thus

0= log

�∫

exp
�

− p(y)(η+ 1+ω) +λ(y)
η+ 1+ω

�

exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

d x

�

= log

�

exp
�

− p(y)(η+ 1+ω) +λ(y)
η+ 1+ω

�

∫

exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

d x

�

= − p(y)(η+ 1+ω) +λ(y)
η+ 1+ω

+ log

∫

exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

d x

⇔p(y)(η+ 1+ω) +λ(y) = (η+ 1+ω) log

∫

exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

d x . (A.15)

By plugging Equation A.15 into Equation A.14 we ultimately obtain the dual

g(η,ω) = ηε−ωβ + (η+ 1+ω)

∫

p(y) log

∫

exp
�

(η+ 1) log qold(x |y) +φ(x , y)
η+ 1+ω

�

d xd y. (A.16)

Minimizing the dual is a convex problem and the gradients can directly be read of Equation A.11. They
are given by

∂ g(η,ω)
∂ η

= ε−
∫

p(y)KL (q(x |y) ‖ qold(x |y)) d y and
∂ g(η,ω)
∂ω

=

∫

p(y)H(q(x |y))d y − β ,

(A.17)

which again allows efficient optimization using gradient based optimizers.

A.4.1 M-Step for Softmax Gating distribution

The gradients of the dual stated in Equation A.17 depend on the updated model. When working with the
MORE-like closed form updates this is efficient, however, when working with the sample based update
it would mean fitting a model using softmax regression in each iteration. This is neither fast nor precise.
Hence, we derive gradients of the reformulated dual

g(η,ω) = ηε−ωβ + (η+ 1+ω)

∫

p(y) log
d
∑

i=1

exp
�

(η+ 1) log qold(zi|y) +φ(y, zi)
η+ 1+ω

�

dy.

To this end, we define auxiliary functions

t1(η,ω, i,y) =
(η+ 1) log qold(zi|y) +φ(y, zi)

η+ 1+ω

t2(η,ω) =

∫

p(y) log
d
∑

i=1

exp
�

(η+ 1) log qold(zi|y) +φ(y, zi)
η+ 1+ω

�

dy.
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Their gradients are given by
∂ t1(η,ω, i,y)

∂ η
=

log p̃(zi|y)(η+ 1+ω)− (η+ 1) log p̃(zi|y)−φ(y, zi)

(η+ 1+ω)2
=
ω log p̃(zi|y)−φ(y, zi)

(η+ 1+ω)2

∂ t1(η,ω, i,y)
∂ω

= −(η+ 1) log p̃(zi|y) +φ(y, zi)

(η+ 1+ω)2

∂ t2(η,ω)
∂ η

=

∫

p(y)
1

∑d
i=1 exp t1(η,ω, i,y)

d
∑

i=1

∂ t1(η,ω, i,y)
∂ η

exp(t1(η,ω, i,y))dy

∂ t2(η,ω)
∂ω

=

∫

p(y)
1

∑d
i=1 exp t1(η,ω, i,y)

d
∑

i=1

∂ t1(η,ω, i,y)
∂ω

exp(t1(η,ω, i,y))dy.

Using those, the gradient of the dual w.r.t. the Lagrangian multipliers is given by
∂ g(η,ω)
∂ η

= ε+ t2(η,ω) + (η+ω+ 1)
∂ t2(η,ω)
∂ η

∂ g(η,ω)
∂ω

= −β + t2(η,ω) + (η+ω+ 1)
∂ t2(η,ω)
∂ω

.

A.4.2 M-Step for Linear Components

We derive the closed form update and dual for Linear components q(x|y) = N (Wx+w,Σ). We denote
the dimensionality of x by kx and the dimensionality of y by ky . In the following we work with the
natural parametrization of the Gaussian. We denote the precision matrix by Q = Σ−1 and use the
auxiliary parameters L= Σ−1W and l= Σ−1w. The old distribution is given by

qold(x|y) =N (Loldy+ lold,Qold)

=exp
�

−1
2

xT Qoldx+ (Loldy+ lold)
T x− 1

2
(Loldy+ lold)

T Q−1
old (Loldy+ lold) +

1
2

logdet (Qold)−
k
2

log(2π)
�

=exp
�

−1
2

xT Qoldx+ xT Loldy+ lT
oldx− dold(y)

�

,

where dold(y) summarizes all parts that either depend only on y or are constant. The compatible reward
surrogate is a quadratic function of the form

φ(x,y)≈ φ̂(x,y) = −1
2

xT R̂x xx+ xT R̂x yy− 1
2

yT R̂y yy+ r̂T
x x+ r̂T

y y+ r̂0

= −1
2

xT R̂x xx+ xT R̂x yy+ r̂T
x x+ r̂(y),

where r̂(y) summarizes all parts that either depend only on y or are constant. Plugging both the old
distribution and reward surrogate into Equation A.13 yields

q(x|y)∝exp
�

η+ 1
η+ 1+ω

�

−1
2

xT Qoldx+ xT Loldy+ lT
oldx− dold(y)

�

+
1

η+ 1+ω

�

−1
2

xT R̂x xx+ xT R̂x yy+ r̂T
x x+ r̂(y)

��

=exp
�

−1
2

xT

�

(η+ 1)Qold + R̂x x

η+ 1+ω

�

x+ xT

�

(η+ 1)Lold + R̂x y

η+ 1+ω

�

y+
�

(η+ 1)lold + r̂x

η+ 1+ω

�T

x

+
(η+ 1)dold(y) + r̂(y)

η+ 1+ω

�

=exp
�

−1
2

xT Qx+ xT Ly+ lT x+
(η+ 1)dold(y) + r̂(y)

η+ 1+ω

�

. (A.18)
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Hence, the new precision matrix and auxiliary parameters are given by

Q =

�

(η+ 1)Qold + R̂x x

η+ 1+ω

�

, L=

�

(η+ 1)Lold + R̂x y

η+ 1+ω

�

, l=
�

(η+ 1)lold + r̂x

η+ 1+ω

�

.

To get the optimal values for η and ω we need to minimize the dual. To simplify this optimization, we
solve the inner integral of Equation A.16 analytically. We start by plugging in Equation A.18

g(η,ω)

=ηε−ωβ + (η+ 1+ω)

∫

p(y) log

∫

exp
�

−1
2

xT Qx+ xT Ly+ lT x+
(η+ 1)dold(y) + r̂(y)

η+ 1+ω

�

dxdy

=ηε−ωβ +
∫

p(y)

�

(η+ 1)dold(y) + r̂(y) + (η+ 1+ω) log

∫

exp
�

−1
2

xT Qx+ xT Ly+ lT x
�

dx

�

dy.

We consider only the inner integral

log

∫

exp
�

−1
2

xT Qx+ xT Ly+ lT x
�

dx

= log

∫

exp
�

−1
2

xT Qx+ xT Ly+ lT x− 1
2
(Ly+ l)T Q−1 (Ly+ l) +

1
2

logdet (Q)− k
2

log(2π)

+
1
2
(Ly+ l)T Q−1 (Ly+ l)− 1

2
log det (Q) +

k
2

log(2π)
�

dx

=− d(y) + log

∫

exp
�

−1
2

xT Qx+ xT Ly+ lT x− 1
2
(Ly+ l)T Q−1 (Ly+ l) +

1
2

logdet (Q)− k
2

log(2π)
�

=− d(y).

The log integral vanishes since it is equal to the density of the linear Gaussian model using the natural
parameterization and hence integrates to 1. The dual is thus given by

g(η,ω) = ηε−ωβ +
∫

p(y) ((η+ 1)dold(y) + r̂(y)− (η+ 1+ω)d(y)) dy

∝ ηε−ωβ +
∫

p(y) ((η+ 1)dold(y)− (η+ 1+ω)d(y)) dy.

Similar to [Akrour et al., 2018], under the assumption that p(y) is Gaussian distributed, we could solve
the remaining integral in closed form. Yet, we refrain from making the Gaussian assumption and work
with a sample based approximation instead.

A.4.3 M-Step for Nonlinear Components

We derive gradients to optimize the dual efficiently

g(η,ω) = ηε−ωβ + (η+ 1+ω)

∫

p(y)qold(x|y)exp
�

(−ω log qold(x|y) +φ(x,y
η+ 1+ω

�

dxdy.
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Note that we omit the dependency on zi for brevity. We define auxiliary functions

t1(η,ω,x,y) =
−ω log qold(x|y) +φ(x,y)

η+ 1+ω

t2(η,ω) =

∫

p(y) log

∫

qold(x|y)exp
�−ω log qold(x|y) +φ(x,y)

η+ 1+ω

�

dxdy.

Their gradients are given by

∂ t1(η,ω),x,y
∂ η

=
ω log qold(x|y)−φ(x,y)

(η+ 1+ω)2

∂ t1(η,ω, ,x,y)
∂ω

=
− log qold(x|y)(η+ 1+ω) +ω log qold(x|y)−φ(x,y)

(η+ 1+ω)2

=
− log qold(x|y)(η+ 1)−φ(x,y)

(η+ 1+ω)2

∂ t2(η,ω)
∂ η

=

∫

p(y)
1

∫

exp t1(η,ω,x,y)dx

∫

∂ t1(η,ω,x,y)
∂ η

exp t1(η,ω,x,y)dxdy

∂ t2(η,ω)
∂ω

=

∫

p(y)
1

∫

exp t1(η,ω,x,y)dx

∫

∂ t1(η,ω,x,y)
∂ω

exp t1(η,ω,x,y)dxdy.

Using those, the gradient of the dual w.r.t. the Lagrangian multipliers is given by

∂ g(η,ω)
∂ η

= ε+ t2(η,ω) + (η+ω+ 1)
∂ t2(η,ω)
∂ η

∂ g(η,ω)
∂ω

= −β + t2(η,ω) + (η+ω+ 1)
∂ t2(η,ω)
∂ω

.
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B Hyperparameters

Parameter 6.1 6.2 6.3 6.4 6.5

EIM

ε components 0.005 0.005 0.005 0.005 0.005

ε weights 0.005 0.005 0.005 0.005 0.005

βloss components 0.05 0.05 0.05 0.01 0.01

βloss weights 0.05 0.05 0.05 0.1 0.01

Density Ratio Estimator

Hidden Layers [50, 50,50] [150,150, 150] [100,100] [400,400, 400] [150, 150,150]

Dropout Probability 0.1 0.1 0.0 0.1 0.1

Early Stopping × Ø Ø Ø Ø

Data

Train Samples 10,000 5,000 10, 000 10, 000 8, 000

Test Samples 5,000 5,000 5, 000 5, 000 3, 430

Validation Samples - 5,000 5, 000 5, 000 3, 430

Table B.1.: Hyperparamters used for experiments described in sections 6.1 through 6.5

Parameter Value Parameter Value

ε components 0.01 Density Ratio Estimator

ε weights 0.01 Hidden Layers [150, 150,150

βloss components 0.05 Dropout Probability 0.1

βloss weights 0.05 Early Stopping Ø
Train Samples 5, 000 Parameter Network

Test Samples 2, 000 Hidden Layers [50, 50]

Validation Samples 5, 000 L2-regularization 0.001

Table B.2.: Hyperparamters used for experiments in section 6.6
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