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Abstract

Robots have made significant progress in handling rigid objects, but manipulating soft

materials like dough and fabric presents unique challenges due to their constantly changing

shapes. Enabling robots to form target shapes out of dough effectively requires planning

frameworks that can handle the nearly infinite state representations of such complex soft

objects. Such frameworks must accurately capture the complex dynamics of materials

like dough. In our work, we develop a dynamics model that predicts how dough changes

shape when grasped by a 2-finger gripper. To train this model, we introduce a method

for transforming raw camera data into precise 3D point cloud representations of dough

shapes. We also provide a dataset illustrating how various dough shapes deform under

different grasping actions. For this dataset, we investigate the effect of volumetric point

clouds versus shell point clouds, which typically only capture the outer layer of objects.

A crucial aspect of our approach involves using autoencoder neural networks designed

to extract essential geometric features and encode them into lower-dimensional vector

representations. Based on these learned features, our dynamics model can predict the

subsequent states of the dough. We not only analyze single grasps but also assess how well

our model predicts changes over a series of multiple grasps. We compare the performance

of three different autoencoder architectures, PointNet, PointNet++, and Point Transformer,

which are capable of directly processing 3D point clouds, and their impact on the learned

dynamics model. Our experiments reveal a solid performance of both PointNet++ and

Point Transformer models. The presented dynamics models can make decent predictions

for subsequent dough manipulation steps. However, our results indicate that there is

still room for improvement. This research aims to gain new insights into the intricacies

of learning complex soft body dynamics to create accurate planning frameworks that

ultimately enable robots to handle soft dough-like materials with high precision.
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Zusammenfassung

Roboter haben im Umgang mit festen Körpern erhebliche Fortschritte gemacht, aber

die Handhabung weicher Materialien wie Knete oder Stoffen stellt aufgrund ihrer sich

ständig ändernden Formen eine besondere Herausforderung dar. Um es Robotern zu

ermöglichen, effektiv Zielformen aus Knete zu formen, sind Planungssysteme erforderlich,

die mit den nahezu unendlichen Freiheitsgraden solcher komplexen weichen Objekte

umgehen können. Solche Systeme müssen die komplexe Dynamik von Materialien wie

Knete genau erfassen können. In unserer Arbeit entwickeln wir ein Dynamikmodell,

das vorhersagt, wie sich die Knete verändert, wenn sie von einem Zweifingergreifer ver-

formt wird. Wir stellen eine Methode vor, wie aus Aufnahmen von Tiefenkameras präzise

3D-Punktwolkendarstellungen der verschiedenen Knetformen erzeugt werden können.

Außerdem stellen wir einen Datensatz zur Verfügung, der zeigt, wie sich verschiedene

Knetformen bei unterschiedlichen Greifvorgängen eines Roboters verformen, und wen-

den diesen für das Training unseres Modells an. Dabei untersuchen, wir welche Effekte

volumetrische Punktwolken und welche Effekte Punktwolkenhüllen, die nur die äußere

Schicht der Objekten darstellen, auf unser Modell haben. Ein entscheidender Aspekt un-

seres Ansatzes ist die Verwendung neuronaler Netze, die in der Lage sind, die wesentlichen

geometrischen Merkmale der Punktwolken zu extrahieren und in Vektordarstellungen

zu kodieren. Auf Grundlage dieser gelernten Merkmale kann unser Dynamikmodell die

nächsten Zustände der Knete vorhersagen. Wir analysieren nicht nur einzelne Greifbewe-

gungen, sondern untersuchen auch, wie gut unser Modell Veränderungen über eine Serie

von mehreren Greifbewegungen vorhersagen kann. Wir vergleichen drei verschiedene

Autoencoder-Architekturen – PointNet, PointNet++ und Point Transformer – die in der

Lage sind, 3D-Punktwolken direkt zu verarbeiten, und ihre Auswirkungen auf das gel-

ernte Dynamikmodell. Unsere Experimente demonstrieren eine gute Performanz der

beiden PointNet++ und Point Transformer Modellen. Die vorgestellten Dynamikmodelle

können solide Vorhersagen für resultierende Knetformen nach mehreren aufeinander

folgende Greifbewegungen treffen. Unsere Ergebnisse weisen jedoch darauf hin, dass

für noch präzisere Dynamikmodelle weitere Forschung nötig ist. Diese Forschung zielt
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darauf ab, neue Einblicke in das Lernen weicher Materialien zu gewinnen, um genaue Pla-

nungssysteme zu schaffen, die es Robotern letztendlich ermöglichen, weiche Materialien

wie beispielsweise Knete mit hoher Präzision zu handhaben.
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1. Introduction

Robot automation has seen rapid improvements across various industries in recent years.

However, this success is mainly limited to domains involving rigid body objects. Enabling

robots to handle and process soft body materials has applications in many daily tasks,

such as cooking/baking with dough or dealing with soft fabrics like clothes or ropes

when doing laundry. It can also be found in the medical domain when operating on soft

tissue or in big industrial manufacturing processes that involve materials with dough-like,

foam-like, or even rubber-like properties. Especially in the industry, robotic automation of

soft body manipulation tasks could significantly improve safety standards, for example,

when dealing with dangerously hot materials or in the medical field when conducting

operations on a microscopic scale. In addition, robotic automation could help us with

our day-to-day chores by completing tasks like laundry and cooking. This research field

experienced increasing interest in recent years mainly due to the success of works such as

RoboCraft [1], RoboCook [2], or SculptBot [3].

A prevalent task in soft body manipulation is enabling a robot to deform soft materials

like dough or foam into complex target shapes. This task can require multiple consecutive

manipulation actions to reach the soft body’s desired state. For such operations a model-

based planning framework is essential. In our work, we are interested in learning a

dynamics model that can predict the resulting shape given the grasping action of a 2-

finger parallel gripper and the initial state of a dough object. We provide a dataset and

additionally present our methodology and insights into developing such a high-quality

dataset. The dataset provides a collection of samples of how different shapes of dough

deform under various grasping actions of a 2-finger parallel gripper. Acquiring precise state

representations of soft objects like dough is a challenging task. The nearly infinite degrees

of freedom of soft bodies make it hard to model their state representations. Moreover,

because of their complex dynamics, conventional particle simulators can only approximate

the system’s real-world physics, leading to significant deviations between simulation and

real-world behavior, especially in long-horizon planning tasks [4]. Additionally, these

methods always assume a complete state observation, which is usually hard to obtain in
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real-world applications, especially if systems only rely on observed visual sensory data,

for example. Our approach presents a procedure for transforming raw RGB-D data of the

observed dough shapes into accurate 3D point clouds. Our primary interest lies in training

a dynamics model with such a simple state representation format and still being able

to make complex predictions of the outcomes of the resulting state of the dough. A key

component of the dynamics model is an autoencoder deep neural network architecture. We

use our provided dataset to train three different autoencoder networks, which can extract

the spatial features of the complex dough shapes by learning a latent embedding of the

dough’s states. Due to point clouds’ unordered data structure, conventional convolutional

feature learning networks struggle to handle the 3D point cloud format. Therefore, we

propose using a particular form of deep neural network architecture, PointNet [5], for the

autoencoders to directly process 3D point clouds. To be more precise, we look closer at a

PointNet-based, a PointNet++-based [6], and a Point Transformer [7] architecture for

the autoencoders. We then integrate the autoencoders into the latent dynamics model,

which uses their learned state embeddings to infer the complex dynamics of a soft object

like dough and ultimately can make an assumption about the future state of the dough

object. Finally, we compare the performance of the three resulting dynamics models. Not

only are we interested in predicting the resulting shape from a single grasp action, but we

also conduct long-horizon prediction tests over a sequence of multiple grasp actions.

1.1. Contributions

In this thesis, we aim to learn a latent dynamics model that can predict how a soft object

like dough deforms under the grasping action of a parallel 2-finger robot gripper only

based on observed RGB-D data. To train our dynamics model, we collect data on various

dough shapes (see Figure 5.5) and their behavior under a sequence of different 2-finger

grasp actions. This dataset forms the backbone of our research. The model receives inputs

in the form of a 3D point cloud representation of the dough’s observed shape Pt (right

before the start of the next manipulation action) at time t and the grasp action of the

robot gripper. We define the grasp action applied to the dough’s initial shape at time t
as At. At consists of the robot state at the start of the grasp action and the robot state

during the grasp action, where the robot fingers reach their closest point before beginning

to open again. For more details on the action input, see Section 4.3.2. Given the initial

dough state Pt and grasp action At, the dynamics model learns to predict the resulting

point cloud of the next dough shape P̂t+1 at time t+ 1.
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Figure 1.1.: Schematic representation of the latent dynamics model with a prediction
sample (top-down view on the dough). The dynamics model gets the 3D point
cloud representation of a dough shape Pt (blue point cloud) and the robot
action At (fingers are visualized as vertical purple lines, and the grasp trajec-
tory is visualized as an orange horizontal line connecting the two fingers).
The encoder network extracts the essential features and outputs the latent
representation ZPt

of the inputted point cloud Pt. Additionally, a multi-layer
perceptron (Action-MLP) transforms the action input At into the latent repre-
sentation ZAt

. Another bigger multi-layer perceptron (Global-MLP) processes
both ZPt

and ZAt
and learns how to predict the effect of the robot action on

the point cloud shape. The output of the Global-MLP is a latent representa-
tion of the resulting point cloud shape ZGL, which is the output of the latent
dynamics model. The decoder decodes the latent space vector ZGL back to
a 3D point cloud P̂t+1 (red point cloud).

A schematic view of the latent dynamics model with one prediction example can be viewed

in Figure 1.1. Our experiments show that our dataset can be utilized to learn accurate 3D

representations of various complex dough shapes, and the presented dynamics models

can make solid assumptions about subsequent dough states.
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2. Motivation

2.1. Learning soft body manipulation

We are particularly interested in predicting manipulations for (Play-Doh) dough. Studies

on 3D objects with high plasticity, like dough, are a relatively new research field with

already promising conducted works [1, 2, 3, 8]. Still, related work of RoboCraft has

shown that their learned dynamics model can generalize to predict manipulations of

memory foam with decent success despite initially being trained with dough. Learning the

dynamics of dough is only the first step in learning how to predict manipulations of other

elasto-plastic objects, such as dough for cooking/baking or various types of clay or foam

in manufacturing processes. While our work involves learning the dynamics of dough, our

primary focus lies on gaining critical insights and techniques in soft body manipulation in

general.

Our work aims to provide a dataset of various dough manipulation actions. This dataset is

unique because it introducesmany new and different shapesmade of dough. Additionally, it

contains not only isolated manipulation samples but also a set of consecutive manipulation

actions performed on the dough. With these sequences of subsequent doughmanipulations,

we are able to conduct long-horizon prediction tests for our model to further assess its

performance. We hope this dataset can be used to train different kinds of dynamics models

in the future that use 3D point clouds as input. For future works, our goal is to integrate

the learned dynamics model into a planning framework that enables robots to plan their

actions to achieve a target dough shape.
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2.2. Challenges of soft body manipulation

While robot interaction with rigid bodies primarily focuses on controlling their position

and orientation, manipulating deformable objects like dough adds the challenge of man-

aging the objects’ changing shape [9]. Moreover, the shape does not only change once

per interaction. When under stress, these materials continuously change their shape.

The nearly infinite Degrees of Freedom (DoF) of elasto-plastic objects present a complex

challenge in modeling their dynamics and finding adequate object state estimations [1].

As a direct result of the complex state estimation, the task of robot action selection to

manipulate and interact with the dough also becomes inevitably more difficult [10]. Addi-

tionally, partial observability becomes a significant problem due to the object’s nonexistent

inherent shapes. While it is easy to make assumptions about the shape and state of a

rigid body with a limited number of viewing angles or even one viewing angle, this is not

possible for a deformable object that constantly changes its shape in new and possibly

never-before-seen constellations. A constant view from all angles is necessary to estimate

the object’s current shape. Even with a view from multiple perspectives, we are confronted

with the challenge of self-occlusion caused by a concave shape of the object itself or

caused by the robot gripper when directly interacting with the dough. There are efforts to

make it easier to model the dynamics of complex scenes and objects with particle-based

simulators [11]. However, these kinds of simulators often rely on approximation methods

and focus on visual realism but differ from the real-world non-linear properties [10] of the

object, making them impractical for long-term predictions [4]. Our initial goal is not only

to predict the resulting shape of different grasping actions (with a parallel gripper) on

more complex dough shapes but also to provide the basis and first steps for a model-based

planning framework similar to RoboCraft or SculptBot that enables a robot to manipulate

the dough over multiple steps into a given target shape. Therefore, we take on a real2sim

approach to learn an accurate dynamics model of a complex, non-rigid object like dough

for this task.

2.3. Real2sim approach

Training robots in the real world is time-consuming and expensive. Imagine having to

wait for a robot to undergo thousands or maybe tens of thousands of trials of action state

exploration to learn how to form dough into a specific target shape. Not only do you have
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to wait, but you also have to make sure to take the dough and form it back to its initial

shape after each trial.

Therefore, the only feasible alternative would be to train the robots in simulation. Robots

can be safely trained in simulation before being deployed in the real world. Additionally,

they can explore more diverse states and can be tested in different scenarios that can

be dynamically changed and augmented. This process of transferring learned skills or

knowledge from simulation to the real world is what we understand under sim2real.

However, no simulation can capture the real world in all its detail, richness of information,

and diversity. Simulation is only an approximation of reality, sometimes only a simple one.

This can lead to big discrepancies between the simulations and the real world (especially

in long-horizon prediction and planning) since the simulations cannot capture complex

real-world dynamics. It is important to note that while valuable for training, simulators

have limitations. They frequently fail to capture the many fine-grained details of the

robot and its environment [12]. In our specific case, this is mainly due to camera noise

and the dough’s complex non-linear behavior. The consequence of these discrepancies

is that successful robots in simulation often fail when deployed in the real world [13].

This phenomenon is often called the sim2real gap in literature [12, 14]. To diminish this

gap, we use an alternative approach that reverses the concept of sim2real. This approach,

known as real2sim, offers a promising path forward in robot training [15]. We aim to

capture real-world RGB-D data and transform the captured scene into a 3D point cloud

representation. These point clouds are used to train a latent dynamics model that can

capture the complex dynamics of dough and, given a particular robot grasping action,

predict the resulting shape.

2.4. Related work

Our work follows in the footsteps of a few stand-out research projects, Robocraft [1]

and SculptBot [3], for soft body manipulation of 3D elasto-plastic objects. Similar to our

work, RoboCraft and SculptBot focus on learning a dynamics model that can predict the

next state of the elasto-plastic object given a grasping action of a 2-finger parallel gripper

that deforms the object solely based on raw visual observation of the scene. Naturally,

partial obstruction makes it hard to obtain a complete representation of the recorded

object only based on raw sensory data. In the works of RoboCraft and its follow-up work

RoboCook [2], researchers present a method for constructing a particle graph out of raw

RGB-D data and use it to learn a graph neural network dynamics model. Their approach
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is unique because it is not reliant on observing the exact particle-to-particle state of the

elasto-plastic object. RoboCraft provides a pipeline for transforming raw RGB-D data into

point clouds, allowing the dough object to be extracted from the rest of the scene. They

use this 3D point cloud representation of the dough to construct a particle graph to train

their dynamics model. In total, they collect 6000 frames of recorded data in 50 episodes.

Each episode records three consecutive grasping actions on the dough with the robot.

With this data, RoboCraft’s dynamics model can learn the dynamics of the dough and,

given the dough’s current state and a grasping action, predict its next state. Our approach

is similar to RoboCraft’s approach in extracting the 3D point cloud of the elasto-plastic

object, but because we are only interested in the state of the dough right before and

after a grasping action, we do not have to deal with heavy self-occlusion caused by the

gripper fingers like it is the case for RoboCraft. However, that means our dataset needs to

contain many more grasping actions (one sample equals one grasping action). Therefore,

we conduct 103 episodes in total with three to five consecutive grasping actions on the

dough. This leads to a dataset with many diverse dough manipulation samples that our

and future models can be trained with. In our work, we are also interested in learning a

dynamics model that can directly process a 3D point cloud without constructing a particle

graph. Instead, we present a method of learning a latent dynamics model that learns with

3D point cloud representations of the dough’s state, similar to SculptBot.

Learning representations of 3D data usually requires a lot of data, which can be time-

consuming. To work around this challenge, SculptBot proposes to use a pre-trained model,

Point-BERT [16], to learn 3D representations for their dynamics model. Point-BERT is

trained on ShapeNet [17], a large dataset containing many different 3D shapes. However,

SculptBot as well as RoboCraft, use a mold to reset the dough shape before manipulating

it again. RoboCraft uses a square shape, and Sculptbot uses a cylinder shape as an initial

shape for the dough. This resetting method is more convenient and much faster than

reshaping the dough by hand, which is our approach to resetting the dough. Resetting

the dough by hand allows us to create many different and more complex initial shapes

(see Figure 5.5).

Both RoboCraft and ScultpBot focus on learning one fairly sophisticated dynamics model

and employing it in a planning framework to sculpt target dough shapes with impressive

results. In contrast, our work utilizes a relatively simple approach for the dynamics

model. We employ a multi-layer perceptron that learns to predict the resulting shape

in a lower-dimensional latent space on a learned latent representation (for more details

see Section 3.2) of the initial dough shape. We set the focus on learning 3D point cloud

representations with three different promising network architectures (PointNet 3.2.1,

PointNet++ 3.2.2, Point Transformer 3.2.3). Similar to SculptBot’s utilized Point-BERT
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feature learner, Point Transformer is also based on self-attention mechanisms. However,

in contrast to SculptBot, we train this network directly on our own provided dataset. We

are interested in the networks’ capabilities of learning point cloud representations and

compare their effects when employed in the dynamics model.
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3. Foundations

3.1. 3D data representation

To represent the captured RGB-D data, we use point clouds. They are a widely used format

for 3D scanning and modeling due to their capability of capturing complex real-world

3D objects with a relatively high precision [18]. Another commonly used format for

representing 3D data is meshes, which represent 3D data by vertices, edges, and faces.

Compared to point clouds, a mesh-based representation makes assumptions of surfaces

and can mitigate noise this way. These assumptions can be beneficial to close holes in

the shape, caused by occlusion. This leads to better connectivity of the segments of the

whole geometric shape, allowing for a more precise representation of the 3D object [19].

However, mesh interpolation can lead to an oversimplification of the geometric shape,

and meshes sometimes incorrectly connect segments or close gaps. Point Clouds are

better suited for representing the raw 3D data because they avoid modifying the data by

interpolation [19]. Point clouds are also comparably much simpler data structures than

object meshes. Object meshes are reliant on connectivity information and represent 3D

data by vertices, edges, and faces. In contrast, a point cloud is defined as a discrete set

of points in Euclidean space. Each point consists of its three cartesian coordinates (x, y,

z), which define its position in a 3D coordinate system. Point clouds provide a simple

representation of 3D objects, but unlike meshes or graphs, they lack information about

how individual points connect to their neighbors [18]. Instead, the Euclidean distance

metric can be used to determine neighboring points that form meaningful subsets this

way. In addition to their coordinates, points may contain more features like RGB color

values or normals. A known characteristic of point clouds is their unstructured nature.

Point clouds are sets of unordered points in contrast to the ordered structure of pixels in

2D images. Hence, they are permutation invariant. That means the resulting point cloud

will always look the same regardless of the permutation of the points. Due to the high

success of deep convolutional neural networks (CNNs) in 2D image processing [20], it
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is a common approach to translate these types of neural network architectures from 2D

deep learning to 3D deep learning [21, 22, 23]. However, CNNs work on structured data.

Therefore, a common approach is to structure point clouds by transforming them into 3D

voxel representations. Nevertheless, there are significant drawbacks to 3D voxelization.

Space in voxel grids is represented as a 3-dimensional array, which makes them really

memory inefficient and leads to a cubical increase of memory and computational time

with an increasing number of voxels [24, 21]. Because point clouds result from 3D scans

of depth cameras in this research, they only contain the outer layer of an object. Inside the

3D-scanned object representation, there are no points. That means besides the already

high memory requirements of voxel grids, there is an additional factor of data sparsity.

Voxel grid representation of sparse point clouds is inefficient since this process transforms

the whole object into voxels regardless of sparse point density or even completely empty

areas. This relatively inefficient transformation from point clouds to 3D voxels limits the

resolution of voxel grids, which inevitably leads to information loss. While there have been

efforts to break this stereotype of high computational cost and memory inefficiency [22],

we want to create a representation of the dough with a high precision while also keeping

a high information density to be able to learn complex shapes and small details of various

kinds of dough shapes. Another advantage of using point clouds to represent geometric

data is that it is straightforward to perform simple transformations on them like rotations or

translation [8]. Such transformations can be applied to each point separately to transform

the whole point cloud without changing its global shape or the relationships between

neighboring points. This feature of point clouds is particularly useful for augmenting the

dataset later by applying rotations to the point cloud samples, thus increasing its size.

Recent works of PointNet and PointNet++ have shown remarkable results in performing

deep learning directly on 3D point cloud input data. Thus, we keep point clouds as a

representation format for the 3D data instead of 3D voxels. Directly using point clouds is

a much more straightforward and practical approach since it spares us one additional data

processing step, making the data processing pipeline from RGB-D image to final input for

the neural network more transparent and faster.

3.2. Deep Learning for 3D point clouds

We need neural network architectures that can handle point clouds as inputs in order to

learn a visual representation model of the different dough shapes. As mentioned, we focus

on PointNet and its follow-up work, PointNet++. These two relatively simple network

architectures are often used to classify 3D objects and segment unstructured 3D point
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clouds in whole scenes or parts of them. Additionally, we explore Point Transformer, a

network based on self-attention mechanisms. For our work, we are only interested in

the network capabilities to identify and extract detailed local features of complex 3D

objects, such as different dough shapes. In the following sections, we briefly explain the

architectures of PointNet, PointNet++, and Point Transformer, focusing mainly on their

feature extraction modules.

3.2.1. PointNet

The intuitive idea of PointNet is to learn a compact set of important points that still

captures the shape and most essential features of the initial point cloud [5]. PointNet

achieves this by first applying feature transformations to the three coordinates of each

input point with multi-layered perceptrons (MLP). Each point is transformed from a

3-dimensional vector into a much higher-dimensional feature vector. In the next and most

crucial step, a symmetrical function (max pooling) aggregates the learned point features

into a single global feature vector. This feature vector encodes the most essential key

features of the input point cloud. Because every point is processed the same way and

because of this function’s symmetry, the order of the points in the point cloud does not

matter.

PointNet is an easily applicable but promising approach to understanding and processing

3D point clouds. Still, while it shows remarkable results, it struggles to capture more

minor and more detailed features of complex 3D shapes [6]. Because of this loss of

finer geometric details, we also utilize PointNets follow-up work, PointNet++, which can

perform a more fine-grained feature extraction than its predecessor.

3.2.2. PointNet++

While the methods used in PointNet++ are fundamentally different from conventional

CNNs for 2D image learning, they build upon the same intuitive idea of hierarchical

local feature learning. First, small local features and patterns are learned by applying

mini-PointNets on a regional scale. Then, these learned local features are combined and

processed into larger units in later layers fromwhich another mini-PointNet can learn more

complex features. PointNet++ contains multiple set abstraction layers that progressively

capture more abstract point cloud features. Each layer processes input points to less and

less outputted elements. A set abstraction layer consists of the following three layers:
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• Sampling layer: In CNNs, a filter (kernel) slides over the ordered 2D input array

and progressively captures local features, but this is impossible on unordered 3D

point clouds. Instead, this layer utilizes iterative furthest point sampling (FPS) to

determine points that will later be the center of local feature regions (centroids).

These local feature regions will be necessary in the next steps for hierarchical feature

learning.

• Grouping layer: In this layer, a ball-query algorithm with a certain radius is applied

to each previously sampled point to determine their local neighborhood points. This

way, the input point cloud is segmented into many local point neighborhoods, and

due to FPS, they evenly cover the whole point cloud.

• PointNet layer: This layer utilizes the same architecture as PointNet to encode

the inputted local point neighborhood into a feature vector. PointNet’s ability to

flexibly handle point clouds of any given input size is handy since the local point

neighborhoods can contain a variable number of points.

The set abstraction layer outputs fewer points than the number of points of the input point

cloud. Additionally, each point is enriched with a local feature vector produced by the

PointNet layer to summarize the local context. The outputted points of the set abstraction

layer can again be used as inputs for the next set abstraction layer to progressively capture

more abstract point cloud features. Similar to PointNet, in its final set abstraction layer,

PointNet++ applies a max pooling function to aggregate the features of all remaining

points to get a global feature vector representation of the whole point cloud. The crucial

difference is that PointNet++ has learned smaller local features, enabling it to capture

more complex shapes in greater detail than PointNet.

3.2.3. Point Transformer

Inspired by the success of transformer and self-attention networks in 2D image learning,

Point Transformer [7] is an approach to learning features of 3D point clouds by attention

mechanisms and hierarchical processing. This architecture allows Point Transformer to

learn local and global point cloud features. The feature encoder in Point Transformer

networks consists of five stages. Each stage operates on point sets that are progressively

downsampled, and the feature dimension increases in every stage. Each stage consists of

a point transformer block and the transition down block.

• Point transformer block: The point transformer block performs self-attention in

the local regions of the input point cloud. It gets a set of points with their 3D
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coordinates and features as input. The transformer block consists of multiple layers,

including a self-attention layer. Additionally, a multi-layer perceptron creates a

position encoding to capture spatial relationships between points. This encoding

is integrated into the self-attention layer, allowing the self-attention mechanism to

consider the points’ features and their positional information.

• Transition down block: The transition down block is important to reduce the

number of features. It gets a set of points P1 with their 3D coordinates and their

features as input. First, the number of points is reduced by applying FPS. We call

this downsampled point set P2. FPS ensures that the downsampled point set P2
maintains a good coverage of the original set of points P1. Then, a kNN search is

applied to each point of P2 to find its nearest neighbors in the original point set. For

each point in P2, max pooling is applied to its neighborhood to aggregate the point

features of all points within this neighborhood. These point neighborhoods contain

not only the local points from the downsampled point set P2 but also points from

the original point set P1. This way, information from the previous higher-resolution

point set P1 can be aggregated to the lower-resolution point set. This way, the

transition down block effectively reduces the number of points while simultaneously

still encoding all the features of the global point cloud. A point transformer block

then processes the output of the transition down block again in the next stage.

After the last transition down block, the resulting feature vector is processed by a MLP

before applying global average pooling to aggregate the features of all remaining points

to a global feature vector.

3.3. Autoencoders

An important type of deep neural network architecture utilized in our work is the autoen-

coder (AE). These networks learn to compress an input into a compact latent representation

while simultaneously learning how to decode this latent representation back to the original

input. AEs consist of an encoder and a decoder. In our setting, the encoder receives a

3D point cloud as input and learns how to transform it into a lower-dimensional space

representation. This representation space is often called latent space, and the compressed

form of the original point cloud in this space is called latent vector Z or sometimes, in

literature, the bottleneck size. By learning to compress a high-dimensional input like a

point cloud into its low-dimensional representation, the encoder learns how to extract

the most important features of the point cloud. The decoder of the AE learns how to
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reconstruct the original point cloud from the latent vector. AEs are trained by minimizing

the error between the input point clouds P and the decoded output point clouds P̂ . This

approach makes it very convenient to train AEs because they are not reliant on labeled

data. Furthermore, AEs ability to reconstruct a latent space vector back to a point cloud is

essential because we are interested in learning a generative dynamics model. By generative

model, we mean a model that can output point clouds. These point clouds represent

the dough’s shape after it has been modified by the robot’s grasping action. An essential

challenge in AE architecture is finding the right latent space size. If the latent size is

too small, the decoder might be unable to capture all the different features of a complex

point cloud shape. Due to this extreme compression, some critical features could be lost.

Otherwise, a large latent space might lead to weaker feature extraction because the model

is not forced to focus only on the most important key features of the point cloud.
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4. Method

Our method consists of three modules. Module 4.1 is the vision system. It describes our

pipeline for recording the raw RGB-D and transforming the data into meaningful 3D point

clouds. In the next module 4.2, we describe how we use this point cloud data to train

different architecture variants of autoencoders to learn 3D data representations of the

dough shapes. Finally, in module 4.3, we elaborate on how we integrate the pre-trained

autoencoders of module 4.2 to train a dynamics system that, given the robot’s grasping

action and initial dough state, learns to predict the resulting shape.

4.1. Vision system

4.1.1. Sensing visual data with a multi-camera setup

Camera calibration

We use 4 Intel® RealSense™ D435i [25] cameras in stationary positions around the dough

to record the RGB-D data. Additionally, we use two Intel® RealSense™ cameras D405

cameras as wrist cameras for the robot arm, which capture RGB-D data of the dough from

above. The ideal depth sensing range for the D405 camera model is between 7cm and

50cm, making it suitable as a wrist camera that is relatively close to the dough right before

and during the dough manipulation. These two wrist cameras aim to provide a closer

viewing angle and a unique perspective on the dough during manipulation, reducing

the heavy self-occlusion caused by the robot gripper and the dough itself. We set static

and wrist cameras to their highest RGB-D resolution (1280 × 720) to capture the data

in the highest quality possible. Since we are using stationary cameras and constantly

moving wrist cameras, we are opposed to the two following pose estimation problems.

The first one is the eye-on-base pose estimation for the static cameras. And the second
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one is the eye-in-hand pose estimation for the two wrist cameras. For our experiments,

we use the easy-handeye calibration tool [26], an automated hardware-independent pose

estimation tool for ROS1 that relies on ArUco markers [27]. Square fiducial markers like

ArUco make it easy to extract the camera poses if the camera’s intrinsics are correctly

calibrated. We place the marker on the robot’s flat workspace for the dynamic pose

estimation of the wrist cameras. For the static pose estimation, we use a reusable adhesive

putty to fix an ArUco marker on the robot hand. We ensure that the ArUco marker is

always near the dough’s manipulation center. During the hand-eye calibration, maximizing

the rotation while minimizing the translation between poses is crucial [26]. With our

hardware configuration, we found that 12 samples are the best number of samples for the

pose estimation calculator. Before conducting the data collection, the calibration results

are visually inspected in RViz [28] by closely examining the alignment of all partial point

clouds. This is a solid initial guess for the camera poses. The calibration results in an error

of estimated 5 to 8 millimeters (except for one static camera that had a poor calibration;

for more details, see Chapter 7), which is close to the best achievable result according to

the authors of easy-handeye [26]. The merged point cloud using the hand-eye calibration

results can be viewed in Figure 4.1a. We use the estimated extrinsic matrices for each

camera to merge all six point clouds.

Calibration fine-tuning

Nevertheless, the calibration results still need to be more precise for high-quality point

clouds. In Figure 4.1a, on the top left of the dough is a visible hole resulting from the

inaccurate calibration. The diameter of the 3D-printed fingers we use for manipulation is

18 millimeters, but changes in the shape of the dough caused by a grasping action can still

be nuanced within a range of a few millimeters. Additionally, we argue that the calibration

error accumulates over six separate cameras.

To further fine-tune the calibrations, we use the iterative closest point (ICP) algorithm [29]

to perform point cloud registration on our merged point clouds. ICP needs a relatively

"accurate" first guess to avoid getting stuck in possible local minima. Therefore, the initial

calibration results from the previous hand-eye calibration are helpful. For this calibration,

we record an asymmetrical 3D object (Figure A.1) before the data collection. Because the

position of this object is unknown to us in real life, we use the best calibration result of

one static camera as the reference position of the 3D object. Fine-tuning each camera pose

with this reference point cloud significantly improves the calibration quality. To view the

results of the ICP fine-tuning, see Figure 4.1b. After applying the calibration correction,
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the hole in the top left of the dough is closed, and the overall shape appears more clearly.

We recognize the limitation that this approach does not provide a direct calculation of the

estimation error for the reference camera. Using the object’s actual pose instead of only

an estimation would result in a more accurate ICP calibration for all cameras.

Camera synchronization

While it is possible to hardware-synchronize multiple Intel® RealSense™ D435i cameras

by connecting them with a sync cable [30], the Intel® RealSense™ D405 cameras do not

have this option. However, we argue that synchronizing the cameras is not necessary if

their publishing rate is high enough. We set each camera to 15Hz (i.e., an image every

66.7 millisecond) for the recording. This constraint means that two recorded frames from

two cameras can be at max 66.7 milliseconds apart. However, after the recording, we

match each frame from one camera with the closest corresponding frame from the other

cameras. This matching process results in a time difference of only 66.7/2 milliseconds

between frames. This significant time window could still be problematic, especially for fast

movements. The used cameras also allow for a recording at 30Hz [25], effectively cutting

the time window for asynchronous frames in half, but this would also double the storage

consumption. We are only interested in specific key frames of the recordings. Particularly

important are the moments before and after the manipulation, when the robot’s grasping

action ends. This consideration means that we do not have to deal with fast movements,

so recording at 15 Hz is accurate enough even without a hardware-synchronized camera

setup.
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4.1.2. Finding key frames

We want to predict the dough’s resulting shape, given the robot’s grasping action and the

dough’s initial state. This focus means we only need specific key frames during the dough

manipulation. For the robot state, we are interested in the state right before the start

of the manipulation. To find this specific starting time frame, we search for the moment

when the velocity of the parallel gripper equals zero and its acceleration is nonzero (this

is the last frame before the fingers start to move). The next robot state we want to collect

is right at the end of a grasping action when the two fingers are closest together and

are about to open again. We determine this state by searching for the shortest distance

between the fingers right after the start of a grasping action. Because we want to avoid as

much obstruction as possible, we do not use this grasping action ending frame as the time

frame for the dough shape. We aim to take frames with as little obstruction as possible

caused by the gripper fingers. To do that, we move the robot arm a few centimeters above

the dough so that each camera can see the dough clearly without any obstruction. We

also ensure that the distance between the dough and the two wrist cameras on the robot

is still within their range to capture the dough. However, this method has the flaw that it

captures the dough in a state where the grasping action has ended, and the fingers are

pulled apart again. Additional deformations of the dough can occur during the process of

opening the gripper, caused by its sticky properties. The dough can stick to the fingers and

stretch or tear as the gripper opens, potentially altering its shape. Despite being aware of

the potential problem, we prioritize a clear, unobstructed view of the dough. The impact

of these deformations on the dough is mostly minor.

4.1.3. From RGB-D to 3D point cloud

The Intel® RealSense™ cameras have a built-in tool for directly transforming the recorded

color and depth images into colored 3D point clouds. A frame-by-frame recording of

such point clouds would become memory-intensive compared to recording color and

depth images separately. Colored point clouds have to store the (x, y, z) coordinates

and the RGB values of each point, resulting in six stored values for each recorded point.

In contrast, a color image stores only three RGB values per pixel, and a depth image

stores only one depth value, resulting in a total of four stored values for each recorded

pixel. Thus, recording color and depth image data is more memory efficient than directly

recording colored point cloud data. We do not use any compression formats because

we want to maintain the high image quality of the RGB-D data. Instead, we record the

data in the RAW image format [31]. A RAW image comes directly from the camera’s
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(a) Merged raw point cloud (b) ICP fine-tuning (c) Bounding box cropping

(d) HSV color filtering (e) Outlier removal (f) Downsampling to 1024
points

Figure 4.1.: Data processing pipeline of the whole vision system (Part 1: RGB-D to filtered
point cloud). (a) Original point cloud after using the hand-eye calibration
results to merge all partial point clouds. (b) The point cloud after fine-tuning
the calibration using ICP. (c) The point cloud after applying position-cropping
to remove more of the surrounding scene. (d) The point cloud after applying
a HSV color filter. (e) The point cloud after applying outlier removal to filter
out noise of the depth cameras. (f) The point cloud after applying FPS to
evenly downsample to 1024 points. These point clouds create the foundation
for the point cloud shell dataset.
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(g) Added lower plane (blue)
to original point cloud
(red)

(h) Poisson surface recon-
structed mesh

(i) Volumetric point cloud af-
ter SDF sampling

(j) Shape refinement (k) Downsampling to 1024
points

Figure 4.1.: Data processing pipeline of the whole vision system (Part 2: point cloud
volumetrization). (g) Using the 2D projection of the point cloud as floor
(blue) for the rest of the point cloud (red). (h) Creating a watertight mesh
with Poisson surface reconstruction. (i) Sample points inside the mesh with
SDF. (j) Remove over smoothed points to fit the original shape. (k) Evenly
downsample the volumetrized point cloud to 1024 points. These point clouds
create the foundation for the volumetric point cloud dataset.
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image sensor and is not preprocessed or compressed in any form. Besides the high image

resolution, the RAW format provides flexibility for the data processing later. We use each

camera’s intrinsic matrix to transform the RGB image data and the depth image data into

partial, colored 3D point clouds. This matrix contains camera properties like focal length,

principal point, and skew. These properties define the camera’s internal geometry and

are used to convert the RGB image data and the depth image data into colored 3D point

clouds. The camera intrinsic matrices for the applied cameras can easily be obtained by

a built-in function of the ROS1 wrapper for Intel® RealSense™ cameras [32]. However,

each partial point cloud is located in the local coordinate frame of the camera it was

recorded with. Thus, we apply the camera extrinsic matrix to each partial point cloud to

merge all six point clouds into one full point cloud. These extrinsic matrices are obtained

in Section 4.1.1, where we estimate each camera’s pose with respect to the robot base.

Figure 4.1a shows the point cloud after merging all partial point clouds using the extrinsic

matrices.

4.1.4. Point cloud pre-processing

Extracting the dough object

Because the exact location of the dough manipulation platform is known, we perform

a bounding box cropping using its coordinates. This process significantly reduces the

memory size of the point clouds and makes further pre-processing much faster. The

cropped point cloud can be viewed in Figure 4.1c.

After cropping the bounding box, we apply a color-based filter to extract the green dough

from its surroundings. The color segmentation is done in the HSV color space, better

suited for this task than the RGB color space [33]. Another commonly used color space

for color segmentation is the L*a*b* color space that SculptBot utilizes. However, studies

show that the HSV color space yields even better results [34]. The results of the color

filtering can be viewed in Figure 4.1d. The surface properties of the dough’s manipulation

platform and lighting are crucial for good color segmentation. A dark color for the

platform results in a worse segmentation quality for the green dough. A smooth, reflective

surface, often resulting from 3D-printed objects, also results in worse color segmentation.

Additionally, a smooth surface can introduce noise to the depth images of the applied

cameras. Therefore, we use white adhesive tape to create a matte, non-reflective, and

bright surface for the dough manipulation platform (see Figure 5.2). The robot arm

and the dough’s self-occluding properties can create shadows on the dough. While only
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minimal, the shadows can still introduce noise, especially on the outer edges of the dough,

so besides the natural room lighting, we use an additional static light source to create

a more even scene lighting (see Figure 5.3a. We recommend using even more lighting

sources. For example, in the direction of each camera, one lighting source.

Filtering the point cloud

Due to noise from the depth cameras, we still have to deal with many outlier points, which

we remove using Open3D’s statistical outlier removal algorithm [35]. Figure 4.1e shows

the point cloud after applying statistical outlier removal. This algorithm removes points

further away from their neighbors than the average neighbor-to-neighbor distance for the

point cloud. It is essential to ensure that this filter is not set too strictly. Otherwise, it is

common to lose important points of the dough shape, especially at the outer edges of the

lower parts of the dough close to the manipulation platform.

We then downsample the point clouds to 1024 points using farthest point downsam-

pling [36] (FPS). These filtered and downsampled point cloud shells, only containing the

surface layer of the dough’s shape, create the first initial dataset. Because two cameras

(the wrist cameras) capture the dough from above, the recorded point clouds often have

a higher point density at the top and a much lower point density at the lower parts of

the dough closer to the manipulation platform. This downsampling method ensures

an even distribution of points in the downsampled point clouds. Figure 4.1f shows the

downsampled point cloud.

After downsampling, we remove the color of the point clouds. PointNet and PointNet++

can handle 3D data with additional features like RGB values, but this would lead to higher

computational complexity. For our research, we are only interested in predicting the

dough’s resulting shapes, not its colors. The colored point clouds are only necessary for

the object extraction of the dough.

Obtaining a watertight mesh

Because of the multiple viewing angles we capture during the recording with the six-

camera setup, we can avoid severe self-occlusion caused by the concavity of more complex

shapes. However, the more cameras we use, the more apparent the inaccuracy of the

camera calibration becomes. This issue results in point clouds with many separate lay-

ers that do not perfectly fit together, making the surface of the 3D point clouds of the
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dough shapes uneven and noisy. Therefore, we create a second dataset from volumetric

point clouds with a smoother outer surface. In addition to point cloud shells, we are

also interested in the effects of volumetric point clouds on the dynamics model, which

include points located within the shapes. To reduce this noise and to smooth the surface

of the multiple point cloud layers, we apply Poisson surface reconstruction [37] and

alpha surface reconstruction [38]. Poisson surface reconstruction is especially robust to

noisy data, like the multiple point cloud layers of our point clouds, and creates smooth

surfaces that perfectly fit the smooth and unstructured surface of the dough. We use

RoboCraft’s [1] implementation for the Poisson surface reconstruction algorithm and the

alpha reconstruction algorithm. However, the point clouds are missing the dough’s lower

surface, which is connected to the manipulation platform. With such a big hole in the point

clouds, both surface reconstruction algorithms struggle to reconstruct a mesh of more

complex shapes accurately. Alpha surface reconstruction struggles to create a watertight

mesh (visualized in Figure 4.3c), and Poisson reconstruction tends to "over smooth" the

shapes, losing many details of the shapes in the process (visualized in Figure 4.3b). The

solution to this problem is to estimate the lower surface of the shapes by simply projecting

all points of a point cloud onto the 2D plane (XY-plane) like a shadow where the dough is

connected to the manipulation platform (visualized in Figure 4.2). We argue that this

approach is sound because the concave properties of the dough shapes only unfold in the

x and y directions, hardly in the z-direction. However, this assumption is not completely

true and shapes can be "rugged" and can have concave properties from above to some

extend. Figure 4.1g shows the point cloud (red) with the newly added lower plane (blue).

After estimating the dough’s lower surface, we can finally apply Poisson- and alpha surface

reconstruction. While only an approximation, this lower surface significantly improves the

quality of the reconstructed and watertight mesh. Each point cloud has to be individually

downsampled to 700− 1024 to get optimal results for the mesh reconstruction. Using a

higher number of points generally results in higher computational complexity but does

not necessarily lead to a better mesh. By default, we use a point size of 1024 with decent

results, but sometimes, a lower point size of 700 can also be beneficial if a point cloud is

extra noisy to create a smoother surface. We mainly apply Poisson surface reconstruction

to the dataset, which can create meshes that are not too smooth and keep the details of

the initial shape after enclosing the point cloud shell with the approximated lower surface.

Figure 4.1h shows a watertight mesh obtained with Poisson surface reconstruction. The

over smoothing effect of Poisson surface reconstruction is still visible in the bottom right

and left of the dough, but it is mostly minor. However, for some shapes where Poisson

surface reconstruction still loses too much detail, we apply alpha surface reconstruction.

Because the point clouds no longer contain big holes, alpha surface reconstruction can
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also produce accurate and watertight meshes in some particular cases. Overall, we found

that Poisson surface reconstruction is still superior to alpha surface reconstruction for

most point clouds. Additionally, Poisson surface reconstruction creates rounder meshes

that fit the overall structure of the dough shapes much better.
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(a) Original point cloud (b) 2D projection of the point cloud

Figure 4.2.: Sampling process of the bottom surface of the point cloud. The point cloud
(a) is projected on the XY-plane (b). This projection serves as an estimation
for the bottom surface of the dough. The original point cloud (a) and the lower
surface estimation of the dough (b) can be merged to create an enclosed
point cloud shell.

Creating volumetric point cloud shapes

In the next step, we use the obtained watertight meshes of the point clouds to sample the

points inside the shapes, giving the point clouds volume. We randomly sample 100.000

points inside the bounding box containing the dough and then use the signed distance

function (SDF) to remove all points outside the reconstructed watertight mesh of our

shapes. We sample such a high number of points to create a dataset with dense point

cloud values to be later able to downsample the point clouds to a flexible number of points.

After this step, the resulting 3D point clouds not only have volume but also have a smooth

surface, as can be viewed in Figure 4.1i. However, in some instances, Poisson surface

reconstruction still tends to over smooth the original shape significantly (see Figure 4.4b).

To mitigate this effect, we use a heuristic approach involving the lower plane we obtained

at step 4.1g. We remove all points with x and y coordinates that lie outside this plane that

represent the base shape of the dough. We argue that this approach is viable because, as

seen in Figure 5.5, the dough shapes we use can be projected on a 2D plane (XY-plane)

and still keep their original shape. We are aware of this approach’s limitations, but we

argue it is still viable because the results of the Poisson surface reconstruction are mostly

accurate. We only apply this method in severe cases (like in Figure 4.4b) to remove local

parts that the Poisson algorithm struggled with. The results of this point cloud refinement

can be viewed in Figure 4.4d.
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(a) Original empty point cloud shell

(b) Poisson on open point cloud shell (c) Poisson on enclosed point cloud shell
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(d) Alpha on open point cloud shell (e) Alpha on enclosed point cloud shell

Figure 4.3.: Surface reconstruction comparison between open point cloud shell and en-
closed point cloud shell with the reconstructed lower plane. (b) Poisson
surface reconstruction massively oversmooths the mesh of the open point
cloud shell, thus losing much detail. (c) Alpha surface reconstruction cap-
tures the base shape of the open point cloud shell well but is not able to
reconstruct the lower floor resulting in an open mesh. (d) After enclosing the
point cloud shell by adding the lower plane Poisson accurately reconstructs a
watertight mesh of the dough shape. (e) Alpha surface reconstruction nearly
constructs a perfect mesh but it is not watertight, because of a small hole
on the back side of the mesh.
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We use FPS to downsample the point clouds to 1024 points while ensuring an even

distribution of points. The more points a point cloud contains, the more accurately it can

represent the actual dough shape, but this comes with a higher computational cost during

the training process of our dynamics model. This point cloud size is also commonly used in

PointNet and PointNet++. Furthermore, point clouds containing 1024 provide sufficient

detail to represent the dough shapes accurately. The final volumetrized point cloud can

be viewed in Figure 4.1k. At this point, we want to mention that we not only provide the

volumetrized point clouds with 1024 points 4.1k but also the dense volumetrized point

clouds (see Figure 4.1j) in a dataset. This could particularly be useful for future work that

wants to learn 3D point cloud shapes with a much higher resolution than 1024 points.

(a) Original point cloud shell
with lower plane added

(b) Poisson mesh reconstruc-
tion over smoothing effect

(c) Resulting SDF sampled
point cloud

(d) Refining the volumetric
point cloud based on the
lower plane of the dough

Figure 4.4.: Volumetric point cloud refinement process. This figure visualizes how our
refinement method can improve the original shape of a point cloud that has
been over-smoothed by Poisson surface reconstruction.
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4.2. Learning dough representations

4.2.1. Autoencoders

To make meaningful predictions of how the dough is deformed by the robot first it is

essential to bring it into a form that is suitable for deep learning. In this research, we

propose to use three different autoencoder network architectures that learn the key

features of the input point cloud P by converting it into a lower dimensional latent vector

ZP . The encoder network performs this task. We compare different encoder networks and

their ability to learn point cloud features. The decoder network for all three autoencoders

remains the same. We implement a simple MLP structure for the decoder architecture

utilizing linear layers with ReLU activation functions. We compare a simple PointNet

architecture 3.2.1, a PointNet++ architecture 3.2.2, and a Point Transformer 3.2.3

architecture for the decoder. Furthermore, we compare the different autoencoders’ abilities

to extract point cloud features and reconstruct the original point cloud from them. We

are also interested in the effects of the different learned point cloud representations on

the dynamics model.

See Appendix A.2.1 for more specific autoencoder network details.

4.2.2. Loss Metrics

Previous studies [1, 2, 3, 8] have successfully employed two prominent loss functions for

comparing output point clouds with ground truth point clouds. These loss functions have

proven to be highly effective in assessing the similarity of point clouds. The first is the

Chamfer distance (CD), and the second is the earth mover’s distance (EMD). EMD loss is

more sensitive to more fine-grained details. Additionally, EMD does not tend to create

blurred details like the CD loss when comparing point clouds, especially on point clouds

with varying density [8, 39]. However, CD is much less computationally expensive than

EMD, and our dataset only contains evenly sampled point clouds. While EMD loss would

be better overall since it clearly outperforms the CD loss in terms of point cloud quality [8],

we still argue that CD loss is better suited for the model training because it is significantly

less computationally expensive. This decision is due to hardware limitations, and it is still

possible to get good results with CD loss [8]. During training, we found that a large batch

size is recommended on average (see Section 5.4). Small batch sizes result in unstable

training due to high fluctuations in the loss. Due to this batch size constraint and the much

slower training progress, we choose the CD loss. In [8], EMD and CD loss are used to
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learn surface shapes only, whereas one of our datasets is volumetric. We are interested in

whether the CD loss is suitable for learning volumetric point clouds. Figure 4.5 illustrates

this process. The predicted point cloud P̂ (red) is evaluated against the ground truth point

cloud P (blue) using the Chamfer distance. However, we would also like to mention that

there are efforts to combine CD and EMD that not only outperform both loss metrics but

are also more computationally efficient than EMD [1, 8]. The potential impact of using

better loss functions is undoubtedly an exciting topic for future work.

4.3. Learning dough dynamics

This section explains the building blocks of the generative prediction model. A schematic

visualization of the dynamics model and one prediction example of manipulating dough

in the shape of an "H" can be viewed in Figure 1.1. Our dynamics model predicts and

outputs the resulting dough shape P̂t+1 (in Figure 1.1 illustrated in red), given the dough’s

initial shape Pt and the robot’s grasping action At (in Figure 1.1 illustrated in blue). A

fundamental architecture for the dynamics model is the encoder network and the decoder

network of the previously mentioned autoencoder deep neural networks 4.2. The main

idea of this model is to first transform the initial input point cloud Pt into the lower

dimensional latent representation ZPt
of shape (1, n) by employing one of the encoders.

This representation contains only the most essential features of the initial point cloud

structure. Additionally, a multi-layer perceptron (in Figure 1.1 the "Action-MLP") learns

to translate the input grasping action into a latent representation ZAt
. Another bigger

MLP (in Figure 1.1 the "Global-MLP") takes the latent representations of both the robot

action and the initial point cloud as input and processes them into a global latent vector

ZGl of shape (1, n) (the same shape as the latent representation of the input point cloud).

Intuitively explained, the dynamics model is trained to learn the effect of the robot’s action

on the initial point cloud shape in the latent space and creates a latent representation of

the resulting manipulated point cloud. The decoder network then translates this latent

space encoding of the predicted point cloud ZGl back into a 3D point cloud P̂t+1.

For the training of the dynamics model we are interested in the effects of freezing the

layers of the integrated encoder and decoder modules vs. fine tuning their layers (see

Section 5.4). Appendix A.2.3 contains more specific network details like layer sizes.
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Figure 4.5.: Training of the autoencoder with Chamfer distance (CD). The encoder re-
ceives a 3D point cloud P (blue) as input and compresses it into a lower-
dimensional representation ZP . ZP is a latent vector of shape (1, n), with n
being the latent space size (in our case 256). The decoder reconstructs the
point cloud (red) from the latent vector. The reconstructed point cloud P̂ is
compared to the original point cloud P in geometrical space using CD.
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4.3.1. Loss Metrics

To compare the output point cloud generated by the dynamics model to the ground truth

point cloud, we use the Chamfer distance for the same reasons previously explained in

Section 4.3. A schematic visualization of the training of the dynamics model with CD can

be viewed in Figure 4.6a.

Additionally, we utilize maximum likelihood estimation (MLE) as an alternative method to

assess the dynamics model’s predictive capability. MLE allows us to directly compare the

predicted latent vector with the latent vector obtained from encoding the ground truth

point cloud using the encoder network. We are particularly interested in examining the

effects of predictions in geometric space using Chamfer distance versus assessing them in

latent space based on learned point cloud representations. A schematic visualization of

the training of the dynamics model with MLE can be viewed in Figure 4.6.

4.3.2. Action input

We define the action input At for the dynamics model (the robot’s grasp action) similar to

SculptBot. It consists of three components: the x, y, and z coordinates of the end-effector

position, the rotation matrix to express the end-effector orientation, and the distance

between the two fingertips. The robot end-effector is the center between the robot’s

fingertips. We define the robot base as the base coordinate frame. Because the position

and rotation of the end-effector stay the same during a grasp action, we can represent

the movement of the fingers with just the distance between the fingertips before and

after a manipulation action. To obtain these transformational values, we record the

robot state during the data collection and apply forward kinematics to them. Forward

kinematics is a technique that computes the position and orientation of the end-effector

based on the robot’s joint angles. To further reduce redundant features of this grasp action

representation, we only take the first two columns of the rotation matrix. Dropping the

last column gives us a 6D representation for the rotation matrix that is continuous [40].

Not only does this representation of a 3D rotation reduce the size of the action input

vector, but it is also proven that this representation is better suited for learning with deep

neural networks [40]. It is possible to further reduce the size of the grasp action by using

4D or even 3D representations for the rotation, like quaternions or Euler-angles. However,

such rotation representations are discontinuous and can lead to significant errors in deep

neural network learning [40]. In the end, we are able to represent a complete grasp action

as an 11D vector. The first three elements are the end-effector’s x, y, and z coordinates.
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(a) Training the dynamics model with Chamfer distance (CD). The dynamics model outputs the
latent representation of the predicted point cloud shape ZGL. The decoder decodes the latent
space vector ZGL to a 3D point cloud P̂t+1 (red point cloud). Then, the predicted point cloud
P̂t+1 is compared to the ground truth point cloud Pt+1 (blue point cloud) in geometrical space
using CD.

37



Dynamics - 

Model

Encoder

Action-
MLP

Global-
MLP

Pt

At

Z

Z

ZGl

MLE-Loss

Pt+1

Pt

At

Encoder ZPt+1

(b) Training the dynamics model with maximum likelihood estimation (MLE). The dynamics
model outputs the latent representation of the predicted point cloud shape ZGL. The encoder
encodes the ground truth point cloud into latent spaceZPt+1

. These two latent representations,
ZGL andZPt+1

, are then compared usingMLE to evaluate themodel’s performance in capturing
the underlying data distribution.

Figure 4.6.: Schematic comparison of training the dynamics model using maximum
likelihood estimation.
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Elements four to nine are the first two columns of the rotation matrix. The tenth element

is the finger distance before the grasp action, and finally, the eleventh element is the finger

distance during the grasp action when the fingers are fully closed.
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5. Experiments

5.1. Physical setup

For our experiments and data collection, we manipulate green Play-Doh using a physical

7-axis Franka Emika Panda robot arm with a 2-finger parallel gripper. Play-Doh is a soft

and bendable modeling compound that can easily be shaped into various forms. The dough

used for the data collection weighs about 168 grams (the contents of two conventional

Play-Doh buckets). For a detailed look at the physical setup, see Figure 5.3. The fingers

are 3D printed in black and shaped like a cylinder. We use RoboCraft’s finger mesh [1].

Figure 5.1 shows the gripper fingers in more detail.

(a) Fingers opened (b) Fingers fully closed

Figure 5.1.: 3D printed robot fingers to manipulate the dough.
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The whole workspace is located on a table 90cm×80cm table surface. The robot base is at

the edge of this workspace. At the center of this workspace is the location of the 3D printed

manipulation platform. The platform is a 15cm×15cm square and 3mm in height. At the

center of this platform, a small, cross-shaped plastic rod sticks out (see Figure 5.2). This

3D-printed mount is designed to securely hold the dough during manipulation, ensuring

consistent positioning and reducing the risk of the dough being pushed off the platform

during a grasp action. During manipulation by the gripper, the dough is placed on top of

this plastic rod to hold it in place. To enable better color filtering in the data processing

pipeline, we cover the entire workspace, including the manipulation platform, with white

A4 paper and white adhesive tape.

(a) 3D printed dough mount with a plastic rod
in the center

(b) Dough mount covered with white adhesive
tape for better color contrast

Figure 5.2.: 3D printed doughmount to loosely fix the dough in place duringmanipulation.

In each of the four corners of the workspace, we position a static Intel® RealSense™ D435i

camera [25]. The optimal range of the D435i cameras lies within 30cm to 3m [25]. We

ensure each camera is within a 40cm range from the manipulation platform. All four

cameras are positioned to allow the dough to be captured evenly from all angles. For the

wrist cameras, we use two Intel® RealSense™ D405 cameras attached to a 3D-printed

mount at the end-effector link of the panda hand. This way, one camera is on each side of
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the hand (see Figure 5.3b). We make sure to create even illumination in the room but to

reduce the effects of shadows caused by the robot arm when it hovers above the dough,

we additionally position a stationary light source behind the robot arm (see Figure 5.3a).

Because of limited bandwidth on one computer, we use two computers for the data

recording. We connect three cameras to each computer by cable of 5m. See Appendix A.1

for a more detailed computer setup and synchronization description.

While using cables with a short length as possible to reduce noise caused by the data

transfer is usually recommended, we do not find a significant quality difference in the

recorded depth images between a 1m cable and a 5m cable. The longer cables are necessary

to connect every camera to the computers because of the distance between the robot’s

workstation and the position of the two computers.

(a) front view (b) side view

Figure 5.3.: Hardware setup for data collection. Numbers 1-6 mark the cameras. 1-4
are the static cameras, and 5/6 are the two wrist cameras attached to the
Franka Emika Panda robot. We position a static light source behind the robot
to mitigate the effect of its shadow. The dough mount is a small quadratic
15cm × 15cm platform in black, but during the recording, we put adhesive
tape on it for better color filtering.
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5.2. Data collection

There is a tradeoff with the size of the dough. If the dough is too small compared to the

size of the gripper fingers, it is difficult to manipulate the dough meaningfully. If the

dough is too big, the robot gripper cannot grab around the dough because the dough is

wider than the maximum distance between the two fingers. During data collection, it

is essential to replace the dough every three to four hours with fresh dough because it

loses moisture, changing its texture and firmness. Automated robot movement is not used

during the data collection. Instead, the robot is set to interaction mode and guided by

hand. Manual guidance of the robot means that not only the end-effector pose but also the

grasp action of the robot fingers is controlled by a human hand. We make sure to close the

fingers at a constant speed. While it is more time-consuming, we argue that by doing the

manipulation actions of the dough guided by hand, we can create more meaningful and

diverse shapes. Automated manipulations would create a lot of redundant manipulations

and changes in the shape of the dough that are hardly visible. The robot gripper is freely

movable around all axes between each grasp action. During a grasp action, the robot’s

joints are locked, only allowing the fingers to close and open. In addition, push-down

manipulations could be performed to grasp actions by pushing the tip of the fingers down

into the dough, further enriching our dataset with more diverse interactions with the

dough. However, in this research, such push-down manipulations are not implemented

because the dough is only loosely attached to its mount. Due to the dough’s stickiness,

the dough may stick to the gripper’s fingers when pulling the gripper up after such a

push-down manipulation.

Similar to SculptBot, we define a grasp trajectory as three to five consecutive grasping

actions to the dough. The general idea behind stopping earlier than after five grasping

actions is that the dough is frequently deformed into the same generic, meaningless shape

after three grasp actions. Figure 5.4 illustrates an example of manipulating such a generic

shape. The changes in the dough’s shape are hardly visible after applying an additional

grasp action to it.
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(a) Dough at state Pt (b) Dough at state Pt+1

Figure 5.4.: This figure shows the dough after applying a grasp action without resetting
the shape. The dough has a generic and undefined shape. The changes in
the shape after additional grasp actions are hardly visible.

We want to set the focus on a dataset with more meaningful shapes and manipulations.

Each grasp trajectory is recorded separately, and after it has ended, the dough shape is

reset. For each recording, the resolution of all cameras is set to 1280× 720, and the frame

rate is set to 15 fps. Depending on the complexity of the initial dough shape, we conduct

eight to twelve grasp trajectories for each shape. The idea is that more complex shapes

offer more diverse manipulations and resulting shapes, so we can naturally perform more

grasp trajectories. The initial shapes are created by hand without any pre-made tools or

molds compared to the works of SculptBot or RoboCraft. During the forming process of the

shapes, we ensure that there are no wrinkles in the dough. This process is time-consuming

but, in contrast to other related studies [1, 3], enables us to create multiple diverse and

complex starting shapes (see Figure 5.5). During each grasp trajectory, we ensure that

all parts of the dough stay inside the 15cm× 15cm square of the manipulation platform

because we use these measurements later for the bounding box cropping in the data

processing pipeline (Section 4.1). After the data collection and processing, our complete

dataset contains 103 grasp trajectories of various shapes.
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(a) Disc (b) Square (c) Rectangle (d) Triangle (e) Cylinder

(f) C (g) F (h) H (i) S (j) Fish

(k) Bridge (l) Cone (m) Special

Figure 5.5.: Initial dough shapes. More complex shapes like (h) or (m) allow for more
diverse manipulations; thus we conduct more grasp trajectories than for
simpler shapes like (b) or (e)

In total, 438 different manipulation samples. Not only can this dataset be used to train

a dynamics model to predict the state of the dough after one grasp action, but also to

predict the dough after a sequence of three to five grasping actions.
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5.3. Data augmentation

During the training of the models, we propose two augmentation strategies to increase the

size of the dataset. First is to apply different rotations to the dough and the action input

about the z-axis. As a rotation center, we use the center of the manipulation platform

where the dough is mounted. This augmentation strategy is viable because we can assume

that the dough always stays fixed on the dough mount. Similar to SculptBot, we augment

the samples by applying random rotations in intervals of 6◦. Applying this rotation

augmentation effectively increases the size of the dataset by a factor of 60. The second

augmentation strategy is to mirror dough and action input against a plane that contains the

z-axis. We mirror against the YZ-plane. The mirroring augmentation effectively doubles

the size of the dataset. This way, we can increase the original size of the dataset, which is

438 samples, to 52560 samples. Before training, we normalize the point clouds and the

action input into a unit sphere [5].

5.4. Model training

We use the Adam optimizer for model training and set the test size to 0.1 and the training

size to 0.9. Before we train our dynamics model, we perform a parameter grid search to

find the best architecture configuration and training configuration for each autoencoder

model (PointNet, PointNet++, Point Transformer). Generally, a greater batch size for

training results in less significant loss fluctuations and faster and better learning, so we

keep the batch size as high as possible. For the normal PointNet autoencoder, we use a

batch size of 1024 samples. Because PointNet++ and Point Transformer models are more

computationally expensive the highest possible batch size for training is only 128. While

significantly smaller, this size is still adequate and does not lead to unstable learning. In

the grid search, we search for each autoencoder model’s most optimal learning rate (0.001,
0.0005, 0.0001) and latent space size (128, 256, 512). Due to time constraints, we limit

the grid search to one random seed for the weight initialization and stop non-promising

parameter configurations earlier. See Appendix A.2 for more details on the grid search.

After obtaining the most optimal autoencoder configuration, we want to find the best

configuration to train the dynamics model optimally. We propose three strategies.

A. Initialize an untrained autoencoder network and dynamics model and train the dy-

namics model on the dataset from scratch.
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B. Pre-train the autoencoder network and integrate the pre-trained autoencoder into the

dynamics model. Freeze all encoder and decoder layers to update only the dynamics

models Global-MLP and Action-MLP.

C. Pre-train the autoencoder network and integrate the pre-trained autoencoder into the

dynamics model. However, do not freeze the encoder and decoder layers to enable

further fine-tuning of these autoencoder layers during the training of the dynamics

model.

For autoencoder pre-training, we train each autoencoder model only on the input point

clouds before a grasp action. We perform three random weight initializations and take the

model with the lowest loss for each autoencoder model. Besides training the dynamics

model using CD loss, we are also interested in whether MLE loss yields better results, so

we additionally train strategy B with the MLE loss.
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6. Results

6.1. Representation model

6.1.1. Grid search

For the training of the autoencoders, a better CD loss on the test set overall also means

a better reconstruction quality of the point clouds (see Figure 6.1). While a higher

learning rate of 0.001 initially leads to much faster learning, the decrease in the test-loss

plateaus later in the training, and models trained with a learning rate of 0.0001 eventually

outperform the models with the higher learning rate. Overall, the model performances

between all three latent sizes (128, 256, 512) are only marginal regarding CD-loss. In

direct comparison, latent size 128 performs the worst for all three models. A latent size

of 512 performs nearly identical to a latent size of 256 for the PointNet++ and Point

Transformer models. However, a latent size of 256 for the PointNet model outperforms a

latent size of 512 in the later stages of the training. Therefore, and for better comparability,

we take a latent size of 256 as the latent size for all three autoencoders.
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(a) Ground truth (b) CD-loss: 0.002389 after
5000 epochs of training

(c) CD-loss: 0.002271 after
25000 epochs of training

Figure 6.1.: Comparison between the PointNet autoencoder during training (b) and fully
trained (c)

6.1.2. Autoencoder results

The results of thoroughly training each autoencoder architecture are shown in Table 6.1.

In terms of loss, the PointNet autoencoder performs the best. The second best model is

the PointNet++ autoencoder, and the worst performance in terms of loss is the Point

Transformer autoencoder. However, the variation in loss values across all models is minimal,

with only marginal differences observed between the different architectures.

Model Epoch Batch size Test loss

PointNet 25000 1024 0.0022714

PointNet++ 5700 128 0.0022724

Point Transformer 4400 128 0.0023225

Table 6.1.: This table shows the number of epochs to thoroughly train each autoencoder
architecture on the volumetric point cloud dataset and the achieved test loss.

Table 6.2 shows a side-by-side comparison of a collection of reconstructed point clouds of

all three autoencoder architectures. All three models demonstrate high reconstruction

quality for the volumetric point clouds. However, despite exhibiting the lowest loss, the
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PointNet reconstruction performsmarginally inferior to PointNet++ and Point Transformer.

The reconstructed point clouds show a loss of detail, particularly for concave shapes.

PointNet++ shows the best reconstruction quality.

Ground truth PointNet PointNet++ Point Transformer
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Ground truth PointNet PointNet++ Point Transformer

Table 6.2.: Comparison of the reconstruction quality of autoencoders using PointNet,
PointNet++, and Point Transformer architectures on the volumetric point cloud
dataset (on the test set).

Table 6.3 illustrates the reconstruction quality of the two best-performing models (Point-

Net++ and Point Transformer) on the point cloud shell dataset. Edges are better visible for

the point cloud shells. This property makes a qualitative assessment of the reconstruction

quality more straightforward. PointNet++ and Point Transformer exhibit high recon-

struction quality for the point cloud shells. Although the difference is subtle, PointNet++

marginally outperforms Point Transformer regarding reconstruction quality.
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Ground truth PointNet++ Point Transformer
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Ground truth PointNet++ Point Transformer

Table 6.3.: Comparison of the reconstruction quality between PointNet++ and Point
Transformer on the point cloud shell dataset (on the test set).

Regarding the CD loss assessment, PointNet++marginally outperforms Point Transformer,

similar to the performance on the volumetric dataset. However, the number of training

steps required to train both models fully increases for the point cloud shell dataset (see

Table 6.4).

Model Epoch Batch size Test loss

PointNet++ 6200 128 0.0022063

Point Transformer 5800 128 0.0023537

Table 6.4.: This table shows the number of epochs to fully train the PointNet++ and Point
Transformer autoencoder models and the achieved test loss on the point
cloud shell dataset.

Table 6.5 shows a side-by-side comparison of the in terms of reconstruction quality best-

performing model, PointNet++, between the volumetric point cloud dataset and the
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point cloud shell dataset. The qualitative assessment of the point cloud shells is more

straightforward, and these representations contain more detail. However, this perception is

primarily due to the limited viewing angle in the 2D images. To fully comprehend the shape

of the volumetric point clouds, rotation in 3D space is necessary. After extensive evaluation

of the point clouds using a 3D image viewer, it becomes apparent that PointNet++

performs marginally better on the point cloud shells than Point Transformer.
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Ground truth (vol-

umetric)

PointNet++ (volu-

metric)

PointNet++

(shell)

Ground truth

(shell)

Table 6.5.: Comparison of the reconstruction quality between the point cloud shell
dataset and the volumetric dataset with PointNet++. This table shows point
clouds that are better represented as point cloud shells than volumetric point
clouds (on the test set).
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6.2. Dynamics models

6.2.1. Grid search

Initializing the dynamics model with an untrained autoencoder (training strategy A)

overall results in significantly higher test loss and poor reconstruction and prediction

quality of the dynamics model for all three autoencoder architectures. Integrating a

pre-trained autoencoder in the dynamics model significantly improves the test loss as

well as the reconstruction quality, however (training strategies B and C. Fine-tuning the

autoencoder (strategy C) initially improves performance but leads to overfitting after a

certain point in the training process for dynamics models with integrated PointNet++

and Point Transformer autoencoders. In contrast, freezing the autoencoder’s encoder and

decoder layers during the dynamics model training (strategy B) results in slower learning

but eventually yields better test loss. The PointNet dynamics model does not seem to

overfit with strategy C and overall performs best in terms of loss and point cloud quality

with this strategy.

6.2.2. Dynamics model results

Table 6.6 demonstrates the predictive ability of the dynamics model with integrated

pre-trained PointNet, PointNet++, and Point Transformer models using MLE loss on

the volumetric point cloud dataset. Overall, all models often fail to predict the next

dough state. The models are unable to predict the impact of the grasp action, and the

outputted shapes often exhibit a significant loss of detail. Qualitative assessment indicates

that PointNet++ performs the best among the other tested models. Despite the Point

Transformer autoencoder’s high reconstruction quality, this architecture performsmarkedly

worse than the other two models in predicting dough state transitions.
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Initial state
Ground truth

next state
PointNet PointNet++

Point Trans-

former
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Initial state
Ground truth

next state
PointNet PointNet++

Point Trans-

former

Table 6.6.: Comparison of the prediction quality between PointNet, PointNet++ and Point
Transformer dynamics model on the volumetric point cloud dataset trained
with MLE loss (on the test set).

In contrast to the MLE-trained dynamics models, training with CD loss significantly

improves the model’s ability to predict subsequent dough states given a grasp action. We

find that lower test loss also means a better prediction of the model, similar to the finding

of better reconstruction quality for lower loss demonstrated in Figure 6.1. Table 6.7 shows

all three dynamics model variants trained with CD loss on the volumetric point cloud

dataset. Noticeably, each model can more accurately reconstruct the original dough shape

when trained with CD loss. While the models still occasionally struggle to predict minor

impacts of grasp actions accurately, they more frequently capture the overall changes in

dough shapes. The models demonstrate better performance in handling grasp actions

with subtle effects on the dough’s shape than actions that substantially alter its global

structure. All models demonstrate similar predictive abilities. However, the dynamics

model with integrated PointNet autoencoder performs notably worse than the other two
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models. The predicted point clouds lack detail and sharpness, similar to the results of the

reconstructed point clouds of the PointNet autoencoder.

Initial state
Ground truth

next state
PointNet PointNet++

Point Trans-

former
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Initial state
Ground truth

next state
PointNet PointNet++

Point Trans-

former

Table 6.7.: Comparison of the prediction quality between PointNet, PointNet++, and Point
Transformer dynamics model on the volumetric point cloud dataset trained
with CD loss (on the test set).

Table 6.8 compares three dynamic model architectures regarding their test loss. The

PointNet++ dynamics model marginally outperforms the other two models.
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Model Epoch Batch size Loss

PointNet 11700 1024 0.0027121

PointNet++ 11500 128 0.0026270

Point Transformer 5400 128 0.0026466

Table 6.8.: Training epochs and test loss for dynamics models on volumetric point cloud
dataset.

For a better qualitative assessment, we look closer at the PointNet++ and Point Trans-

former dynamics models performances on the point cloud shell dataset (illustrated in

Table 6.9). While subtle variances in the predicted dough states exist, neither model has a

clear performance advantage. However, overall, the performance of both models seems to

slightly increase on the point cloud shell dataset compared to the volumetric point cloud

dataset.

Initial state
Ground truth next

state
PointNet++ Point Transformer
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Initial state
Ground truth next

state
PointNet++ Point Transformer
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Initial state
Ground truth next

state
PointNet++ Point Transformer

Table 6.9.: Comparison of the prediction quality between PointNet++ and Point Trans-
former dynamics model on the point cloud shell dataset trained with CD loss
(on the test set).

6.2.3. Long-horizon prediction

The qualitative assessment of the dynamics model is complemented by a comparison of

their predictive abilities in long-horizon prediction tasks. Table 6.10, Table 6.11, and

Table 6.12 present a comparison of the two best-performing models, PointNet++ and Point

Transformer, based on three recorded grasp trajectories from the provided dataset. This

analysis involves evaluating the model outputs across multiple grasp actions. Table 6.10
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illustrates long-horizon predictions over five grasp actions applied to an H-shape. Table 6.11

showcases long-horizon predictions over five grasp actions on a more complex fish-shape.

Finally, Table 6.12 showcases long-horizon predictions over five grasp actions on a C-shape.

In all three scenarios, both models perform similarly well. It is apparent that both models

struggle with the initial state predictions of the C-shape but perform accurately on the

fish-shape and the H-shape. Similar to the single prediction results, subtle variances in

the predicted subsequent dough states exist, but neither model has a clear performance

advantage. Both models can make accurate predictions of up to three subsequent grasp

actions. However, after each prediction, the dough’s resulting shape loses a little detail.

This effect influences the next state prediction and, over the course of multiple grasp

actions, leads to a loss of accuracy. The models are still able to predict the subsequent

shape after five grasp inputs with a decent resemblance to the ground truth point cloud

states.

It is important to note that the initial starting shapes of this experiment could have been

included in the training set for the dynamics models. The models potentially have already

been trained with the first grasp action.

Dough
states

P0 P1 P2 P3 P4 P5

Ground
truth

Point-
Net++

Point-
Trans-
former

Table 6.10.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a H-shape (first manipulation sample was part of train set).
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Dough
states

P0 P1 P2 P3 P4 P5

Ground
truth

Point-
Net++

Point-
Trans-
former

Table 6.11.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a fish-shape (first manipulation sample was part of train set).
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Dough
states

P0 P1 P2 P3 P4

Ground
truth

Point-
Net++

Point-
Trans-
former

Table 6.12.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a C-shape (first manipulation sample was part of train set).

To further assess the model’s long-horizon predictive abilities, we conduct a long-horizon

prediction sequence with the same starting shapes, but we apply random grasp actions to

these shapes. This means the models have never seen the effect of the given grasp action

on the initial dough shape. Because these manipulation scenarios have never existed, there

is no ground truth dough state to compare the model predictions against. We argue this is

still a valid approach to showcase the performance of our dynamics model because the

grasp actions are fairly simple, and a human examiner can assess whether the subsequent

state predictions are meaningful to some extent. Table 6.13, Table 6.14 and Table 6.15

showcase the long-horizon predictions over five consecutive grasps on the previously

presented shapes (H-shape, fish-shape, C-shape). While a fair direct comparison of the

two models without ground truth states is not possible, it is still apparent that both models

can make meaningful predictions about the dough while preserving the most important

features of the initial shapes. After five subsequent state predictions for the H-shape and

the fish-shape, the final shapes have a close resemblance between both models. However,

for the C-shape, the predictions of Point Transformer and PointNet++ begin to differ

after the first two state predictions, resulting in slightly different shapes in the end. It is

important to note that while both models fail to make accurate predictions for the first
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grasp action, the predictions for all other consecutive shapes are still meaningful.

Dough
states

P0 P1 P2 P3 P4 P5

Point-
Net++

Point-
Trans-
former

Table 6.13.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a H-shape (prediction with never-before-seen action states on
the initial shape).

Dough
states

P0 P1 P2 P3 P4 P5

Point-
Net++

Point-
Trans-
former

Table 6.14.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a fish-shape (prediction with never-before-seen action states on
the initial shape).
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Dough
states

P0 P1 P2 P3 P4 P5

Point-
Net++

Point-
Trans-
former

Table 6.15.: Long-horizon prediction comparison between PointNet++ and Point Trans-
former with a C-shape (prediction with never-before-seen action states on
the initial shape).

68



7. Conclusion

Our work presents a pipeline to represent different dough shapes as quality 3D point clouds

based solely on visual sensory data. We compare a volumetric point cloud representation

with the conventional point cloud shell representation. Using this pipeline, we record how

the grasping actions of a 2-finger parallel gripper deform the dough shapes and create a

dataset with the collected data. To demonstrate the quality of the provided dataset, we

employ three different autoencoder architectures (PointNet 3.2.1, PointNet++ 3.2.2, Point

Transformer 3.2.3) to learn 3D representations of the dough shapes. All three models

can accurately extract essential point cloud features and learn complex dough-shape

representations. A lower CD loss generally correlates with better point cloud reconstruction

during model training, so the best training strategy is to train the models until the loss no

longer significantly decreases. However, it’s not always true that a model with lower loss

than another model has better point cloud reconstruction quality. For example, while the

PointNet autoencoder achieved the best loss by a small margin, the qualitative assessment

shows that both PointNet++ and Point Transformer can reconstruct point clouds in more

detail, especially in concave areas. PointNet requires substantially more data to perform

on par with PointNet++ and Point Transformer, as demonstrated in Table 6.1. In our

qualitative assessment, PointNet++ slightly outperforms Point Transformer in terms of

point cloud reconstruction quality. When comparing the learned representations of the

volumetric dataset to the point cloud shell dataset, we found that the volumetric approach

doesn’t perform better. It might even perform slightly worse. Overall, a point cloud shell

representation seems visually better suited to represent the dough shapes because it’s

easier to see details in the dough surface due to the edges.

Next, we demonstrate how our volumetric point cloud dataset can be used to train a

dynamics model that predicts subsequent dough states given the initial state and a grasping

action. The dynamics model makes these predictions based on learned 3D point cloud

representations from the three employed networks. We found that training the dynamics

model with CD loss leads to much more accurate predictions than using MLE loss across

all models. The qualitative assessment shows that all three variants of the dynamics
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model can reasonably predict the dough’s next state. However, all models often struggle

to capture the full impact of a single grasping action, especially for more complex shapes.

Predicted dough states can lose some of the shape’s original details. The results indicate

that better feature representation translates to more accurate predictions of the next

dough state. The dynamics model using PointNet performs notably worse in terms of point

cloud quality than those using PointNet++ and Point Transformer. When comparing

PointNet++ and Point Transformer dynamics models, they produce visually slightly

different predictions, but neither consistently outperforms the other. PointNet++ and

Point Transformer perform similarly well on the point cloud shell dataset. The point cloud

shells make it easier to see finer details, making the predictions on this dataset seem more

meaningful and accurate.

Regarding long-horizon prediction over multiple grasping actions, similar to the single

grasp prediction results, PointNet++ and Point Transformer produce visually slightly

different predictions, but neither consistently outperforms the other. Both models can

make accurate predictions for up to three consecutive grasp actions. The state predictions

after five consecutive grasp actions are still reasonable and closely resemble the ground

truth state. However, the original shapes begin to lose more detail. A potential reason for

both models performing worse on the C-shape (see Table 6.12) could be a flawed latent

representation of the initial shape. In Table 6.3, we can see that Point Transformer and

PointNet++ autoencoders cannot perfectly reconstruct the C-shape. To some extent, the

reconstructed point cloud loses a little detail compared to the ground truth C-shape. In

comparison, the H-shape and the fish-shape are reconstructed more accurately. The slightly

less accurate latent representation of the C-shape could lead to the worse performance of

both models on the C-shape compared to the H-shape and the fish-shape.

Our experiments demonstrate that the provided dataset can be effectively used to learn 3D

representations of complex dough shapes and train dynamics models to make reasonable

predictions about the dough’s next state. However, a volumetric point cloud representa-

tion might not be advantageous. It could even slightly negatively impact the prediction

quality of the dynamics models compared to a point cloud shell representation with the

same number of points for the representation. All three models we presented, PointNet,

PointNet++, and Point Transformer, perform similarly well on the dataset. However, a

dynamics model using PointNet++ or Point Transformer point cloud representations is the

most promising. These two models can even make meaningful long-horizon predictions

for a dough’s state to some extent.
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7.1. Discussion & Limitations

7.1.1. Camera noise

One of the critical limitations of our work is the quality of the depth images perceived by

the cameras. Except for the usual noise of the cameras, we experienced an issue with the

cameras having problems assigning the correct depth value around edges if there is an

object (the robot finger) in front of another object (the green dough). What frequently

happens is that some pixels that belong to the dough are assigned the same depth values

as the values of the robot finger closer to the camera. Not only does this introduce a lot

of noise and inaccuracies in the recorded data, but it also complicates filtering the point

clouds in the pre-processing pipeline. Our primary filtering method is applying the HSV

color filter to the green color. However, with the noisy depth images, significant parts of

the robot fingers now contain green points at their edges. Our applied filters are not able

to remove these outlier points altogether. We can choose to leave them in the dataset or

apply more aggressive outlier removal filters. However, this method would also remove

many details about the dough point cloud object, especially in parts with sparse point

density. Figures 7.1 and 7.2 illustrate this noise issue. We compare a frame where the

gripper fingers obstruct parts of the dough (top row) versus a frame where the robot

gripper hovers over the dough so as not to cause any obstruction with the fingers (bottom

row).

(a) Original point cloud (b) HSV color filtering (c) Outlier removal

Figure 7.1.: Top-down perspective: Comparison of point clouds with gripper finger ob-
struction (top row) and without obstruction (bottom row)
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(a) Original point cloud (b) HSV color filtering (c) Outlier removal

Figure 7.2.: Side-angle perspective: Comparison of point clouds with gripper finger ob-
struction (top row) and without obstruction (bottom row)

Our initial plan was to learn a dynamics model that can predict the deformation of dough

frame by frame. However, due to depth camera noise we experienced if the robot fingers

are touching the dough during manipulation we decided to only take the frames before

and after each manipulation and we decided to completely remove the gripper out of

the view of the cameras so that there is no obstruction caused by the gripper at all (see

Figures 7.1 and 7.2). However this leads to another issue that is that during a grasping

action of the robot if the robot fingers are fully closed and are about to open again it can

occur that the fingers are tearing and scretching the dough when pulled out again due to

it’s stickiness.

A possible solution to the noisy depth image quality could be to remove the points of the

fingers with a different method. By using forward kinematics and the known object mesh

of the 3D printed fingers we could specifically remove the points of the robot fingers in

the point cloud. This would be similar to RoboCraft’s approach by refining the point cloud

with physics and shape prior using robot fingers’ SDF [1].

7.1.2. Malfunctioning camera

Besides the cameras’ general noise, we also experienced an exceptionally bad quality of

one of the static cameras. We suspect a malfunction or wrong intrinsical calibration of

the camera (maybe caused by a hard blow to the camera before the recording) because
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the depth image quality was notably worse than the depth image quality of the other

static cameras. The malfunctioning camera’s issue impacts the quality of the recorded

depth images and the quality of its calibration results, making it significantly worse than

the calibrations of the other cameras we use. Its recorded depth images are still usable,

especially the ICP fine-tuning improves the final merged point cloud quality.

7.1.3. Inaccurate robot state

Additionally, we experienced inaccuracies in determining the exact robot state that affected

the whole data collection process (including the camera calibration). The inaccuracies are

caused by the fact that the internal URDF model of our Franka Emika Panda robot slightly

differed from its physical counterpart. If the robot is moved by hand, its cartesian position

is calculated using the joint states of the robot and the slightly differing URDF model.

This difference causes errors in calculating the exact end effector position in the range of

a few millimeters. This issue inevitably affects the camera calibration with easy-hand-eye

and the exact location of the grasping actions in our dataset.

While there was no available solution to this issue (at the time of the data collection),

there could have been other possible ways to improve the quality of the camera calibration

by choosing the ArUco marker size. Our initial idea was to use big ArUco markers

(13cm×13cm) to make them more easily identifiable by our cameras. The bigger size

limited the variety of positions and rotations required for accurate calibration results by

easy-handeye. We recommend using smaller ArUco markers (the cameras should still

be able to identify the markers correctly) to enable a greater number of different poses

during calibration.

The inaccuracies in the camera calibration lead to a slight but notable offset of every

partial point cloud, which causes multiple object surfaces in the 3D point clouds. To

remove this noise in the dough surface, we introduce Poisson surface reconstruction [37]

and alpha surface reconstruction [38]. We think they have a positive impact (mainly

Poisson surface reconstruction) on the quality of the point clouds. However, it is still worth

mentioning that these algorithms are only approximations of the dough’s actual surface,

and both algorithms always tend to over-smooth fine-grained details of especially concave

shapes as showcased in Figure 4.4. Additionally, the surface reconstruction process is

time-consuming because the reconstructed mesh of every point cloud has to be manually

supervised by a human due to the algorithms often failing to create a watertight mesh.
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7.1.4. Diverse grasping actions

Another limitation of our work is the 3D-printed fingers we use. While they can perform

simple grasping actions similar to SculptBot, we found that they lead to predictable and

monotonous manipulation actions. When fully closed, there is still a relatively large gap

between the two fingers (see Figure 5.1. One of the key advantages of operating the

gripper by hand and not by automated robot movement is that it enables the human

operator to choose specific grasping actions to deform the dough into a target shape. For

example, the initial shape of the dough can be a disc, and the task is to deform it into a

square. However, during the data collection process, creating such target shapes is often

impossible due to the limitations of the 2-finger parallel gripper. Additionally, sometimes,

the grasping actions to reach such target shapes have a minimal effect on the resulting

shape. For our work, we want to avoid such fine-grained manipulation actions because

the current data collection setup cannot capture these kinds of small changes in the shape

of the dough due to the inaccuracies of the camera calibration and the noise in the depth

cameras. Instead, we aim for grasp actions that have a notable and diverse effect on the

shape of the dough. However, this means scraping the idea of trying to create target

shapes that would often require only fine-grained grasping actions.

The dough mount itself is another limitation in collecting as many diverse manipulation

actions as possible. While the mount ensures that the dough stays in place during ma-

nipulation, it also leads to the issue that the fingers cannot push into the location of the

dough where it is mounted on the small plastic rod. During the grasping actions, we have

to avoid pushing the fingers into the rod of the dough mount, further limiting the number

of different grasping actions.

The experiments initially include manipulation actions where the gripper fingers push

down onto the dough from above. This approach creates holes in the surface of the

dough, resulting in more diverse manipulation actions in the dataset. But these actions

are removed for the final dataset because even though the dough is mounted on the plastic

mount, it often happens that the dough sticks to the robot fingers when it is moved up

after a manipulation (see Figure 7.3).
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Figure 7.3.: Sticking dough during push-down manipulation. When moving the gripper up
the dough sticks to the fingers and leaves its original position making state
estimation impossible.

7.1.5. Gripper fingers

During data collection, we found that the fingers are too flexible, resulting in the fingers

bending under stress if they pinch a lot of dough mass. Our forward kinematics (using the

robot’s SDF and robot state) assume the robot fingers to be rigid and do not account for

any finger flexibility during manipulation. While the deformation of the fingers under

stress is minimal, we think it is still notable and can potentially affect the exact location

of the fingertips and the distance between them.

The high flexibility of the fingers can also cause them to break during manipulation, which

happened two times during the data recording process. This accident led to losing time

recording more dough manipulation samples because we had to wait until backup fingers

were reprinted. Additionally, the new fingers were printed out of black plastic. Initially,

we planned on using blue fingers. Initially, we planned to use blue fingers. However, since

our work does not involve frames where the robot fingers obstruct the view of the dough,

the color of the fingers is not significant. However, for future work that aims to capture

every frame of the dough manipulation, we recommend not using a black color for the

fingers. The reasoning behind this is similar to our choice of color for the manipulation

platform, which we explain in Section 4.1. Black is too similar to some of the color shades

created by shadows from the gripper or human operator during the grasping action.
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7.1.6. Dataset size

Learning representations on 3D data requires a lot of data [3]. Data augmentation helps

increase the size of the provided dataset. Still, only having 438 unique grasping action

samples might not be enough to accurately learn the dynamics of a complex soft object like

dough. In our work, we focus on collecting as many diverse shapes and grasping actions

as possible by guiding the robot arm by hand. This type of data collection is tedious and

time-consuming, leading to a smaller dataset than using automated robot movements for

data collection, but we think it is necessary. Besides reprinting the fingers while recording

the data, another bottleneck of the data collection is the limited disc size of the recording

PCs. We have to transfer the recorded data from the PCs onto an external hard drive at

regular intervals. Due to the size of the recordings (one minute of recording equals 40GB

to 45GB), this takes a substantial amount of time, during which we have to interrupt the

data collection process until the data transfer is finished to clear the disc space on the PCs.

7.1.7. Gridsearch

Due to time constraints, the training runs for the grid search are kept shorter. However,

many hyperparameters often reveal their impact on the model performance late in the

training. This makes it challenging to choose the best hyperparameter configuration for

the models accurately. Additionally, different configurations of the models, like the number

of layers and layer size, might not be sufficiently explored.

7.1.8. Point cloud representation

The finding that the point cloud shell dataset leads to slightly better results (even though

the point clouds contain more noise and have no lower surface) might not necessarily mean

that it is a representation form unsuited for the presented deep learning networks. We

suspect the reason to be caused by the utilized Chamfer distance metric. Volumetrizing the

point clouds but keeping the same point size of 1024 points leads to a lower surface point

resolution than the point cloud shells. By lower resolution, we mean the average distance

between the nearest points is lower. The Chamfer distance is sensitive to discretization

and is naturally better at capturing details if the resolution is higher. This means that

comparing the model performances on the volumetric and the point cloud shell dataset

with the same point size seems unfavoured for the volumetric point cloud representation.

It is worth noting that for most next-state prediction tasks, representing shapes as point
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cloud shells, focusing only on their outer surfaces, is usually sufficient. Points inside

the dough may not be necessary, and it would be more beneficial to concentrate on a

high-resolution outer surface rather than sampling the interior volume of the point cloud.

7.1.9. Encoder bottleneck

A possible explanation for why all three autoencoder architectures we tested had similar

reconstruction results could be the decoder network we used. Since it’s a simple MLP, it

might not be able to accurately reconstruct the point cloud, even if the encoded latent

representation is good. This means the decoder could be limiting the overall reconstruc-

tion ability. The simpler decoder network might be holding back the potentially better

encodings from the PointNet++ and Point Transformer models.

7.2. Outlook

Our research lays the groundwork for developing an accurate dynamics model that can

capture the complex behavior of soft objects like dough. Similar to projects like Sculpt-

bot or RoboCraft, our ultimate goal is to integrate this dynamics model into a planning

framework, enabling a robot to create complex, never-before-seen target shapes out of

dough. We provide a pipeline to create a quality dataset of dough manipulation based

on raw RGB-D data. Our results suggest room for improvement in the reconstruction

quality and prediction capabilities of the networks we use. Repeating the data collection

process with our new insights could significantly improve the overall point cloud quality,

especially since one camera we used in this research had some issues. To further assess

the quality of the provided dataset, we suggest using a pre-trained Point-BERT model

similar to SculptBot’s work and comparing its reconstruction ability on our point cloud

dataset.

We recommend using higher-resolution point clouds, particularly for the volumetric point

cloud representation. To support future research, we provide the downsampled volumetric

point cloud dataset and the dense version from an earlier data processing step 4.1.4 that

can be easily downsampled to any size. Another approach for the point cloud shell dataset

could be to sample the lower surface of the dough and see the potential impact of a

fully enclosed point cloud shell. Furthermore, it might be worth exploring the impact

of different loss metrics for model training. While computationally expensive, the Earth

Mover’s Distance or variations [39] could improve model training.
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Instead of only training the dynamics model to predict subsequent dough states given

the initial dough state and a grasp action as input, it might also be interesting to give the

model both the initial state and the next state as input and let it learn to predict the grasp

action necessary to get to the next dough state. This ability is essential to fully integrating

the dynamics model into a planning framework.

One limitation of our work is that the dataset only captures the dough states before and

after manipulation. For future data collection experiments, it might be worth focusing

on a method to accurately extract the frame-by-frame states of the dough manipulation.

A model that can predict changes in the dough’s shape in every frame could lead to a

more robust planning framework that can accurately change its policy even during a

manipulation action. When manipulating the dough in the real world and encountering

a change in the dough’s shape that significantly differs from the predicted shape, the

model could update its behavior during the grasp action and not only until after the

complete grasp action has finished. Our dynamics models using PointNet++ and Point

Transformer can perform decent long-horizon predictions of subsequent dough states for

five subsequent grasp actions. However, there is still a lot of room for improvement in

precision. Future research might benefit from exploring more sophisticated dynamics

models, similar to SculptBot, instead of using a simple MLP for predictions in the latent

space.

Another direction for future work could be exploring learning alternative 3D data repre-

sentations instead of latent vector representations and comparing their effects on learned

dynamics models. For example, researchers created a model, DeepSDF [41], that learns

a continuous signed distance function to represent a shape’s surface as a continuous

volumetric field.
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A. Appendix

A.1. Data recording setup

To record the data, we use two separate computers. The main machine runs on Ubuntu

20.04 with ROS1 and is responsible for launching Rviz to inspect the point clouds and

for launching the panda moveit stack [42], necessary for recording the robot state. The

second machine runs on Ubuntu 22.04, thus we use an Ubunutu 20.04 docker image with

ROS1 installation). The robot and the second machine are connected via a network to the

main machine. Before every grasp trajectory, the two machines are synchronized using

the chrony tool. Every machine is connected to three cameras. For the robot state, we are

subscribing to the /tf , /tf_static and /joint_state topics in ROS1. Figure A.1 shows the

SL-block used for the ICP registration.

Figure A.1.: SL-block used for ICP registration.
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A.2. Grid search

We do not implement learning rate reduction nor random input dropout in the training of

the networks. All models were trained with a learning rate of 0.0001. We use the following

notations to describe our architectures:

1. FC(input, output): is a fully connected (linear) layer with input size input and
output size output

2. latent_size: is 256 for all our models

3. point_size: refers to the point cloud size for our models which is 1024

4. MLP(l1, ..., ld): is a multi-layer perceptron with l1 being the input layer size and

ld the output layer size. The layers are fully connected linear layers with ReLu

functions as activation functions except for the output layer.

5. SAModule(ratio, r,MLP(l1, ..., ld)): is a set abstraction layer with ratio being the

downsampling ratio and r being the ball query radius.

6. GlobalSAModule(MLP): is the last set abstraction layer that performs additional

feature transformation with a MLP and then applies global max pooling resulting in

the latent vector.

The decoder for all employed autoencoder architectures is based on the same architecture:

FC(latent_size, latent_size) → ReLU

→ FC(latent_size, 512)

→ ReLU

→ FC(512, point_size)

→ ReLU

→ FC(point_size, point_size× 3)

→ Reshape(3, point_size)
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A.2.1. Autoencoder grid search

A.2.2. PointNet

Our PointNet encoder is a modified version of [8].

Input is input point cloud of shape (3, 1024)
Encoder:

Input → FC(3, 64)

→ FC(64, 128)

→ FC(128, 256)

→ FC(256, latent_size)

Figure A.2 compares the test losses for the PointNet autoencoder using latent sizes of

128, 256, and 512.

Figure A.2.: Optimal latent size search for the PointNet autoencoder. The run for latent
size 128 ends early, however it is still apparent that the other two latent sizes
perform better. Latent size 256 performs best.
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PointNet++

Our PointNet++ encoder is a modified version of PyG’s PointNet++ networks [43]. Input

is is a pytorch geometric [44] graph object (pos, x). pos refers to the three coordinates

of each point of the input point cloud and x to the point features. In our usecase we set

pos = x because our point clouds do not contain additional features.

Encoder:

Input → SAModule(0.5, 0.1,MLP(3 + 3, 32, 32, 64, 64))

→ SAModule(0.4, 0.2,MLP(64 + 3, 64, 64, 128, 128))

→ SAModule(0.1, 0.4,MLP(128 + 3, 128, 128, 256, 256))

→ GlobalSAModule(MLP(256 + 3, 256, 512, 512, self.latent_size))

Figure A.2 compares the test losses for the PointNet++ autoencoder using latent sizes of

128, 256, and 512.

Figure A.3.: Optimal latent size search for the PointNet++ autoencoder. The run for latent
size 128 ends early, however it is still apparent that the other two latent sizes
performbetter. The latent sizes of 256 and 512 yield comparable performance.
For better comparability with the other two models we choose latent size
256.

86



Point Transformer

Our Point Transformer encoder is a modified version of PyG’s Point Transformer net-

works [43]. Input is is a pytorch geometric [44] graph object (pos, x). pos refers to the

three coordinates of each point of the input point cloud and x to the point features. In

our usecase we set pos = x because our point clouds do not contain additional features.

We use the following notations to describe our architectures:

1. TransitionDown(a, b, ratio, k): a describes the number of input channels (features),

b describes the number of output channels. ratio describes the point downsampling

ratio and k is the number of k number of nearest neighbors to consider in this layer.

2. TransformerBlock(a, b): a describes the number of input channels (features), b
describes the number of output channels.

Encoder:

Input → MLP(3, 32)

→ TransformerBlock(32, 32)

→ TransitionDown(32, 64, 0.25, 16)

→ TransformerBlock(64, 64)

→ TransitionDown(64, 128, 0.25, 16)

→ TransformerBlock(128, 128)

→ TransitionDown(128, 256, 0.25, 32)

→ TransformerBlock(256, 256)

→ TransitionDown(256, latent_size, 0.25, 64)

→ GlobalMeanPooling

Figure A.2 compares the test losses for the Point Transformer autoencoder using latent

sizes of 128, 256, and 512.
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Figure A.4.: Optimal latent size search for the Point Transformer autoencoder. The run
for latent size 128 ends early, however it is still apparent that the other two
latent sizes perform better. The latent sizes of 256 and 512 yield comparable
performance. For better comparability with the other two models we choose
latent size 256.

A.2.3. Dynamics model grid search

The dynamics models only differ in the encoder and decoder layers. Action-MLP and

Global-MLP are the same. The Action-MLP gets the robot state of shape (1, 11) as input:
Input → MLP (11, 32, 32)
The Global-MLP gets a the latent representation of the input point cloud and the latent

representation of the action input as input:

Input → Global-MLP(latent_size+ 32, 64, 128, 256)

→ decoder

→ Output(3, point_size)

Figure A.5, Figure A.6 and Figure A.7 show the test loss for the three employed training

strategies for each of the presented network architectures:
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A. Encoder/decoder layers and dynamics layers initialized from scratch.

B. Freeze encoder/decoder layers during dynamics model training.

C. Fine-tune encoder/decoder layers during dynamics model training.

PointNet

Figure A.5.: Comparison of training strategies A, B and C. Strategy B (fine-tuning en-
coder/decoder layers) yields the best test loss.
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PointNet++

Figure A.6.: Comparison of training strategies A, B and C. Strategy B (fine-tuning en-
coder/decoder layers) leads to an increase of test loss after a short time
and was stopped early. Strategy C (freezing encoder/decoder layers) yields
the best test loss.

Point Transformer

Figure A.7.: Comparison of training strategies A, B and C. Strategy B (fine-tuning en-
coder/decoder layers) leads to an increase of test loss. Strategy C (freezing
encoder/decoder layers) yields the best test loss.
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