
Feedback Error Learning
for Gait Acquisition
Master-Thesis von Nakul Gopalan
November 2012

Fachbereiche ETIT und Informatik
Intelligent Autonomous Systems

Feedback Error Learning for Gait Acquisition

Vorgelegte Master-Thesis von Nakul Gopalan

1. Gutachten: Jan Peters
2. Gutachten: Klaus Hofmann

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345
URL: http://tuprints.ulb.tu-darmstadt.de/1234

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutsch-
land
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegendeMaster-Thesis ohne Hilfe Drit-
ter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die aus Quellen entnommen wurden, sind als so-
lche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den November 6, 2012

(N. Gopalan)

1

Acknowledgements
Firstly, I would like to thank my supervisors Prof. Jan Peters and Prof. Klaus
Hofmann.

Jan has helped me realize importance of presentation skills, and taught me most
of the basics of robotics that I had not even known a year back.

Prof. Hofmann has been really kind in accepting me as an internal thesis student
at the last minute, and putting up with my mails.

I would like to thank Dr. Marc Deisenroth. Marc has put up with the most
absolute worst of my presentation skills and helped me with innumerous drafts,
apart from helping me on the theoretical problems.

I would also like to thank the members of Intelligent Autonomous Systems Lab,
they have been most kind, and helpful, and the best of friends.

I would also like to thank my friend Sriram Prabhu Kumble who also read these
drafts.

Last but not the least, I would like to thank my Mother, my Father and my
Brother who have always supported me with my decisions and put up with my
antics.

Abstract
Robots execute a wide array of rhythmic behaviors like walking, running, drib-
bling, etc. Rhythmic movement primitives are parametric models that can be used
to represent these behaviors. Previously, these models have been learned either by
means of demonstrations or by means of reward signals. While executing a rhyth-
mic behavior, a stabilizing controller is needed in most robots to prevent failure.
An example for this controller can be that of a balance controller, needed to keep
the torso of a biped upright while walking. The stabilizing controller uses a feed-
back mechanism to maintain stability. Learning a balanced forward trajectory or
gait in case of a biped, which mutes the stabilizing controller would avoid the use
of high gain feedbacks, and instead use the feedbacks only in case of emergencies.

We propose to learn the balanced forward trajectory, i.e., its movement prim-
itive using feedback error learning. Feedback error learning is a model-learning
method that we modify to learn rhythmic movement primitives using the feed-
back of the stabilizing controller. This modification, along with the architecture
of feedback error learning allows us to learn new trajectories without complicated
reward functions, or training examples as are needed by reinforcement learning
or supervised learning respectively. Moreover, this method is online. Thus, the
trajectories can be learned by the system while executing them stably. We test
our novel method, using simulations on two problems: forward trajectory learn-
ing in a two link manipulator and gait adaptation by a biped robot to confirm the
method’s efficacy in learning trajectories using feedback errors.

ii

Contents

1 Introduction 2

1.1 Learning Rhythmic Behaviors . 2

2 Background 5

2.1 Rhythmic Motor Primitives . 5
2.1.1 Trajectory Modeling . 5
2.1.2 Biological inspiration for movement primitives 6
2.1.3 Movement primitives and attractor landscapes 6
2.1.4 Development of rhythmic movement primitives 6
2.1.5 Training movement primitives 7
2.1.6 Generating trajectories using RMPs 8

2.2 Model Learning . 9
2.2.1 Feedback error learning . 11

2.3 Legged Locomotion in Robotics . 13
2.3.1 Gait classification in animals 13
2.3.2 Gait classification in robots . 14
2.3.3 Early experiments in active balance 15
2.3.4 Gaits in biped robots . 16

3 Feedback Error Learning of Movement Primitives 17

3.1 Development of FEL for Trajectory Learning 17
3.2 Experiments to Learn Trajectories using FEL 20

3.2.1 Evaluation on a Two Link Robot Manipulator 20
3.2.2 Biped Model’s simulation . 25

4 Conclusion and Future Work 30

4.1 Future work . 30

A Two Link Robot Manipulator 33

A.1 Two Link Manipulator: Standard Model 33
A.2 Two Link Manipulator: Human Arm Model 35

B Biped Simulator 38

1

1 Introduction

1.1 Learning Rhythmic Behaviors

Animals exhibit many rhythmic behaviors like walking, running, swimming, etc.
These behaviors are learned and developed by animals over their life spans for
sustenance. We would like robots too to acquire and develop skills like animals,
instead of needing handcoding or programming actions. Anthropomorphic robots
would need to learn skills exhibited by humans and other animals, including the
rhythmic behaviors discussed previously. This makes learning rhythmic behavior
an important problem in the field of motor skill acquisition.

Ijspeert developed the idea of parametrized dynamical systems that can be used
to model, and generate trajectories [1] using supervised learning methods. These
models are also used to learn rhythmic behaviors using supervised learning of
demonstrations and are called Rhythmic movement primitives. Subsequently, re-
inforcement learning techniques [2, 3] can be used for improving the behavior
or trajectory with respect to a cost function. In recent past, skills like ball pad-
dling [3], drumming [4], walking, and running [5, 6] have been acquired using
these methods. We also use rhythmic movement primitives to model our trajec-
tory, in this thesis.

A common concept observed in most rhythmic behaviors is the presence of a
balancing component, e.g., humans can walk while carrying a cup of water in our
hands. This balancing component ensures that when body parts like hands and
legs are performing a rhythmic behavior, the other body parts like the head and
the torso are stable so as to perform other tasks like watching a target or carrying
an object safely. This balancing can be observed in Fig. 1.1, where a man is shown
running in a series of pictures. The torso in the photographs can be seen to be at
the same angle throughout the run, i.e., the torso maintains balance by following
a trajectory with respect to the limbs of the man, such that he does not fall over.
This stability is a dynamic equilibrium and different torso angles would be found
for different running speeds of the man. While walking for example the torso
might be almost upright. If we learned only the rhythmic behavior and ignored
learning its balancing component, we would get solutions that are not optimal,
i.e., the robots would need high gain feedbacks to maintain balance if they did
not learn the balancing component. Large feedback gains are bad for stability of
the whole system as even a small disturbance can cause the system to provide
large torques. Consequently, the robots become unsafe for humans and expend
more energy.

Instead, if we learn the balancing component we generate rhythmic behavior
with balance, i.e., the head and torso will receive balancing rhythmic trajectory
and the arms and limbs will receive the rhythmic trajectories previously learned,

2

Figure 1.1.: Photo series taken by Eadweard Muybridge to show a man running,
it can be noticed that the man’s torso is balanced at the same angle
through the run, while the arms and legs are moving in a periodic
fashion. This means the torso has a joint trajectory w.r.t. the legs
which keeps it stable. Photo from http://www.gabrielsolomon.ro

performing the whole rhythmic behavior optimally. In the absence of large bal-
ancing feedbacks we can use cheaper and lighter motors, lower sampling rates,
and less electronics, while performing the desired behavior. Once the rhythmic
behavior is learned with the balancing component, the purpose of the stabilizing
controller would only be to function in case of emergencies, when the robot is
completely out of balance because of external factors.

Nevertheless, most common approaches [1, 3] ignore this additional constraint
of balance learning, despite the fact that important tasks, such as hopping, walk-
ing, and running of both robot or animals, all require a balance controller in
addition to their rhythmic behavior (e.g., their gaits). The objective of this the-
sis is to develop a method to learn the balancing forward trajectory of a robot,
such that the stabilizing controller falls silent after learning, while executing the
learned rhythmic behavior.

Learning of the balancing trajectory to reduce the stabilizing feedback appears
similar to a reinforcement learning problem, as value function methods can be
used to reduce the feedback, but it has a much simpler solution in the form of
feedback error learning [7]. Feedback error learning is a model learning method
similar to supervised learning. In feedback error learning the feedback from a
system is used as an error signal to learn the open parameters of the required
model. Kawato originally used the model for learning inverse dynamics models. In
our case the open parameters would be the parameters of the Rhythmic movement
primitives that we use to model trajectories, and not an inverse model. We assume
the inverse model to be already known. This difference is novel to our method,
i.e., we learn the model of the trajectory and not the inverse model. Hence, we

3

adapt the trajectory generator to generate stable trajectories based on feedbacks
given by the stabilizing controller or a control law.

Feedback error learning of rhythmic motor primitives has substantial advantages
over both imitation and reinforcement learning. Unlike classical imitation learn-
ing, it does not require a well-demonstrated behavior where the balance controller
already remains silent; however, it can be used in conjunction when a (potentially
bad) demonstration is used for the initialization of the rhythmic motor primitives.
Nevertheless, it still results in a supervised learning problem, it is hence a gener-
ically easier problem than reinforcement learning. Furthermore, learning can be
achieved online and on-policy. As a result, it can even be used to adapt a behavior
to a non-stationary environment, e.g., adapt a walking gait to a novel terrain.

We evaluate this insight and the resulting learning architecture in two scenarios,
i.e., firstly, a toy problem with a two-link robot arm, and, secondly, a planar biped
walking robot with a torso. Both evaluations illustrate the applicability of this
novel way of learning rhythmic behavior.

The structure of this thesis is as follows, Chapter 2 describes the required back-
ground information used in the development of this thesis, Chapter 3 discusses
the development of the modified learning method and experiments conducted on
the method. Further a conclusion and some ideas about future work is discussed
in Chapter 4.

4

2 Background
This chapter details the background concepts utilized in this thesis. First, we
discuss representing trajectories using movement primitives. Subsequently we
describe the architecture that we use for our learning problem, i.e. Feedback
Error Learning. Finally we take a look at the problem of Legged locomotion in
robotics.

2.1 Rhythmic Motor Primitives

Animals and humans perform actions in their everyday life. These actions are
performed by trajectories that are followed by the limbs or other body parts, over
the period of the action. Robots need to perform actions too, either to imitate
anthropomorphic actions or to perform specific tasks. The trajectories for these
actions need to be modeled, such that these trajectories can be given as motor
commands to generate torques. For example, to teach a robot to kick a ball, we
can teach it the trajectory to be followed by each of its joints, which can then be
converted to motor commands. We need model these trajectories so that they can
be reproducible and parameterizable.

2.1.1 Trajectory Modeling

Previously, trajectory modeling has been done by hand-coding or by using splines.
Hand-coded trajectories cannot be parameterized even for small changes like
changes in the amplitude or period of the trajectory, and, hence, their use is
avoided. Splines are functions made piece-wise from polynomial functions, and
are used to fit smooth trajectories. Splines can be learned using machine learn-
ing methods, but they do not satisfy the need to be inherently stable and are not
suitable for online learning [1].

In this work, we use Movement Primitives [5], because apart from giving
smooth, learnable trajectories, Movement Primitives are parameterizable, robust
to perturbations, and provide goal directed behavior.

Movement Primitives [5] are a framework to model kinematic motor behav-
iors in robots. In the context of this thesis, Movement Primitives model the joint
trajectories that the robot follows. Movement Primitives must provide stable tra-
jectories and must be easy to parameterize, hence Schaal et al. [5] use dynamical
systems to model trajectories. Dynamical systems have an attractor behavior that
can be modulated using nonlinear terms to get the desired attractor behavior, i.e.,
stable trajectories form a baseline that can be modulated using nonlinear terms to
get desired trajectories that are both precise and stable. The parameters to learn
the model are the nonlinear terms that modulate the attractor behavior to get the
desired behavior.

5

2.1.2 Biological inspiration for movement primitives

Movement primitives have biological inspiration from motor behavior models
called motor primitives. Mussa-Ivaldi [8] models muscular movement in frogs
with vectorial superposition of force fields in neurons. This can be seen as an
inspiration to use sum of nonlinear terms to generate trajectories. Also Schöner
et al. [9, 10] modeled motor behaviors with dynamical systems. They lead to
the inspiration of using adjustable attractor landscapes to learn motor primitives
in [1].

2.1.3 Movement primitives and attractor landscapes

Movement Primitives have two flavors: Dynamic and Rhythmic Movement Primi-
tives. The distinction between them is based upon the type of attractor the dy-
namical systems use. An attractor can be defined as "a set of points to which a
dynamical system converges from its many choices of initial points" [11]. If the
attractor set is a single point, the attractor is called a point attractor, and if the
attractor set is a closed trajectory which repeats itself over time, it is called a limit
cycle. The use of attractors to model equations of trajectories gives the important
property of stability to the model, to ensure that the trajectory always settles down
to its goal state or its baseline trajectory.

Dynamic Movement Primitives (DMPs) use a point attractor in their dynamical
system equation, i.e., they represent actions that have a goal state at which the
trajectory ends. Examples of trajectories that can be modeled with DMPs can be
an action to throw a ball, or an action to hit a moving ball. Rhythmic Movement
Primitives (RMPs) use limit cycles in their dynamical system equations to model
trajectories. Limit cycles are periodic in nature and allow modeling of periodic tra-
jectories. Examples of trajectories that can be modeled with RMPs can be walking,
jumping, masticating food, swimming etc. Since this thesis aims to learn rhythmic
actions like walking, we discuss RMPs and its formulation next.

2.1.4 Development of rhythmic movement primitives

A simple and well understood second order dynamics equation — a damped spring
model, was chosen by Schaal et al. [1, 5] to model the trajectories. In this thesis,
the trajectories being modeled are the joint angles, hence, the equations are for-
mulated with joint angles. RMPs equation formulation have a canonical system,
which removes the dependence on time of the main dynamics equation, hence,
making the system autonomous. The canonical system models the phase of the
system as a variable of time, i.e.,

τφ̇ = 1, (2.1)

this allows the system to be parameterized with respect to the time period of the
rhythmic trajectory τ [5]. The variable φ is the phase of the system, and φ̇ is

6

its first order time derivative. The second order dynamical equation that models
the trajectory is called the transformation system as it transforms the dynamical
equation’s limit cycle to a desired trajectory. The transformation system can be
represented as

τ2q̈ = αz(βz(g − q)−τq̇)
︸ ︷︷ ︸

Attractor function

+Θψr
︸︷︷︸

Forcing function

, (2.2)

where q , q̇ and q̈ are the joint angles of robot and the first and second order
derivatives of the joint angles w.r.t. time. Parameters αz and βz are timing con-
stants. The time period of the rhythmic action is as mentioned before, represented
by τ. The parameter g is the baseline of the rhythmic trajectory. The weight vec-
tors are represented by Θ, and ψ are the nonlinear basis functions. The product
Θψr is called the forcing function, as it modulates the landscape of the attractor,
learning Θ implies learning the forcing function. The nonlinear basis functions
are von Mises basis functions defined upon the canonical systems output defined
in Eq. (2.1), given by

ψ= exp
�

h
�

cos
�

φ − c
�

− 1
��

, (2.3)

where c and h describe the positions and widths respectively of the raster of von
Mises functions defined over the space of the canonical system φ. RMPs are based
on dynamical systems that are critically damped, i.e., the dynamical systems have
a tendency to return to their equilibrium state if not energy is input to them.
Therefore, the trajectories generated using them are stable as they do not move
away from the equilibrium, if given stable inputs. We now have a mathematical
model for the RMPs, next we look at training this model to a desired trajectory.

2.1.5 Training movement primitives

In [6, 12] imitation learning is used to learn an RMP trajectory model. In imita-
tion learning, a desired trajectory for the joint angle, q d with its first and second
order derivatives q̇ d and q̈ d can be recorded and given as supervised learning
examples to learn the forcing function. The cost function for learning the forcing
function can be formulated as the difference between the desired trajectory and
the modeled trajectory over N measurements as,

E =
1

2

N
∑

k=1

τ2q̈ k
d − (αz(βz(g − q k

d)−τq̇ k
d))

︸ ︷︷ ︸

Demonstrated Trajectory

−Θψr
︸︷︷︸

Forcing Function

2
, (2.4)

from Eq. (2.2). This cost function needs to minimized by learning the weight vec-
tors Θ, which in turn minimizes the difference between the modeled trajectory
and desired trajectory, thereby learning the forcing function. The weight vectors
Θ can be learned using single-step solutions like the method of least squares re-
gression or by using multi-step solutions like gradient descent [5]. The period

7

0 1 2
−1

0

1

q

Time in s
0 1 2

−10

0

10

d
(q

)/
d
t

Time in s
0 1 2

−100

0

100

200

d
2
(q

)/
d
t2

Time in s

0 1 2
0

0.5

1

ψ

Time in s
0 1 2

0

5

10

15

φ

Time in s
0 5 10

−200

0

200

W
e
ig

h
t
v
a
lu

e

Weight number

RMP

Desired

Figure 2.1.: Example trajectory generated by the RMP over two cycles. The param-
eters have been trained to a desired trajectory of q(t) = sin(2πt).
The first row, from left to right, shows the trajectory generated q(t)
along with its first and second order derivatives q̇(t) and q̈(t). The leg-
end of the q̈(t) subfigure applies to all the subfigures in the first row.
The second row, from left to right, shows phase variable φ generated
by the canonical system, the basis functionsψ, which are 10 per cycle,
and the 10 weights trained for these basis functions for each cycle. It
can be seen from the first row that the trajectory generated by the
RMP overlaps with that of the desired trajectory completely.

of the rhythmic trajectory needs to be evaluated in advance using Fourier anal-
ysis [5, 12]. The time constants of αz and βz are chosen such that the system is
critically damped, i.e., the dynamical system returns to an equilibrium at the end
of the action and does not show oscillations. The goal parameter for a rhythmic
action can be the mean of the desired rhythmic trajectory or a value that the de-
sired trajectory attains in each cycle. Once given all the timing parameters, the
goal state and a desired trajectory the RMP model can be learned for the trajec-
tory. Hence the only parameters that need to be learned a RMP model are the
weight vectors θ of the model.

2.1.6 Generating trajectories using RMPs

After learning the model, the new trajectories can be generated by using Eq. (2.2),
where q̈ is calculated with known weight vectors and q̇ and q are calculated
by numerical integration. A plot of RMP generation is given in Fig. 2.1. It can
be seen that this learned model can be easily parameterizes, we can change the

8

generated trajectory’s amplitude by varying the value of r in Eq. (2.2) and we can
change the period of the generated trajectory by changing the parameter τ in the
Eq. (2.1) and Eq. (2.2). This section detailed the development of the RMP model
and its advantages of stability, learning and parameterization. The RMPs model
the trajectories that we want to learn. Next we look at how to learn these models.

2.2 Model Learning

Model learning is the name given to the set of learning problems where given a
set of input and output data of a system, we learn a representation of the system
to predict future outputs. Model learning is a broad field and has large applica-
tions in the field of robotics, where we have a robot that needs to manipulate its
environment to achieve desired results.

Animals including humans manipulate their environment for everyday tasks.
Robots inherently also need to manipulate their environment to be useful. An-
imals learn to do tasks by learning muscle control, robots also need to learn to
control their actuators for tasks. To control a robot we need to know its kine-
matics model and its dynamical model. The dynamical model gives the relation
between applied joint torques and output joint trajectories. The kinematic model
gives the relationship between joint angles and the robot end effector’s Cartesian
coordinates. Previously, these models were calculated using physics-based model-
ing techniques or hand-crafting them [13]. These calculated models are generally
imprecise, as they are can make assumptions for non-linearities. Moreover, hand
crafting models requires a lot of effort as well. Instead with machine learning
methods these models can be learned precisely based on the observed data, and
without as much effort [13]. Thus, machine learning methods are important in
model learning for robot control.

A dynamical system can be formulated as follows [13]

s k+1 = f
�

s k, ak

�

+ ε f , (2.5)

y k = h
�

s k, ak

�

+ εy , (2.6)

where s k and ak are the state of the system and action taken at time k, y k is the
output of the system at time k, f and h represent the state transition and mea-
surement function, and ε f and εh are the noise components which are generally
assumed Gaussian [13]. Given such a system the following types of models can
be formulated as described in [13]:

• Forward Models: These predict the next state s k+1 and current output y k
given the previous output or measurement y k−1 according to Eq. (2.5). The
forward model is needed in problems such as filtering, prediction, optimiza-
tion etc. where the impetus is to predict or improve the output given a set
of inputs. To learn such a model we would need to learn state transition
function f and the measurement function h.

• Inverse Models: They predict the action required in the current state so as
to reach the desired next state. This learning is the opposite to what model

9

Controlled
Object

Feedback

ufb utotal

qd, q̇d, q̈d Inverse

+

−

+
+

++

q̈d

Controller

Model

q, q̇

qd, q̇d
q, q̇
b

b

uff

b

(a) Direct Model Learning.

Controlled
Object

Feedback

ufb utotal

qd, q̇d, q̈d Inverse

+

−

+
+

++

q̈d

Controller

Model

q, q̇

qd, q̇d
q, q̇

b

b

uff

b

Forward
Model

(b) Distal Teacher Learning.

Controlled
Object

Feedback

ufb

uff

utotal

qd, q̇d, q̈d
Inverse

+

−

+

+
++

q̈d

b

ufb

Controller

Model

q, q̇

qd, q̇d

q, q̇
b b

b

(c) Indirect Modeling or Feedback Error
Learning.

Figure 2.2.: Learning architectures for Inverse modeling: (a) Direct Inverse Model-
ing, the torque u total is the action, and the joint angle q is the output.
Regression on both leads to modeling. (b) Distal Teacher Learning,
the forward model provides the errors to the inverse model for learn-
ing. (c) Feedback Error Learning model where an inverse model is
learned using the feedback error, [7]. The dotted arrows signify learn-
ing signals.

learning achieves. An inverse model has applications in the areas of robot
control like Inverse dynamics control and computed torque control. In this
work we use a learning architecture, Feedback Error Learning, which is tra-
ditionally used for Inverse model learning problems. Inverse models need
to map the desired next state sdes

k+1 and output ydes
k to the current action ak

given the current state s k, and this needs the inverse of the state transition
function f inv. The mapping of f inv need not be unique, for example the
inverse of the square function, i.e., square root is not unique.

• Mixed Models: These models are useful when the inverse model is actually
non unique, and we need uniqueness when mapping the inverse model. This
is achieved by combining constraints in the form of a forward model to make
sure that the inverse model is unique in mapping. Mixed modeling approach
has applications in Inverse Kinematics, Operational Space Control and Mul-
tiple model control. Inverse kinematics and Operational space control have
non unique mapping when the robot has redundant degrees of freedom.

• Multi-step Prediction Models: When we need to predict the output state of a
system n steps in advance these models are useful. Normal forward model-
ing for n steps would accumulate errors, hence we need a model that takes
care of this error accumulation. They are useful in tasks of planning, model
predictive control etc.

10

The objective of this work is to learn trajectories or RMPs, so as to control a
robot. This task is closest in definition to an inverse model learning problem,
albeit we are trying to learn not the inverse system model, but the trajectories
that can be input to an inverse model. This difference would become more clear
in the next chapter. Inverse model learning as stated previously is a tricky problem,
because it can have one to many mapping from the desired state space to the input
action space. Below is a list of architectures that can be used to learn an inverse
model of a system:

• Direct Inverse Modeling: It is the simplest inverse model learning architec-
ture as shown in Fig. 2.2(a) and has been used in many applications such
as inverse dynamics control [13]. The constraint for using Direct Inverse
modeling is that the inverse mapping must be unique. If the mapping is
unique then standard regression techniques can be used to learn the inverse
model. The model is trained directly by measuring the input and output to
the system and applying regression methods to learn the model.

• Distal Teacher Learning: This learning architecture is useful in learning in-
verse models with many to one mapping. This is done by teaching particular,
desired solutions so as to reduce the learning problem to a unique map-
ping problem. It uses supervised learning and is goal directed as shown in
Fig. 2.2(b). The forward model guides the inverse model to solutions such
that the error signal of the forward model to the inverse model are mini-
mized. The forward model can ensure giving unique errors even if the actual
inverse model of the system has one to many mapping, hence the forward
model acts as a teacher. The learning is goal directed to reduce the error sig-
nal of the forward model. Distal Teacher Learning can be potentially unstable
and can accumulate errors, but these shortcomings have been overcome for
many applications of inverse kinematics modeling [13].

• Indirect Inverse Modeling: In problems such as inverse kinematics the map-
ping of the inverse model need not be unique. To deal with this there are
indirect inverse modeling methods like feedback error learning [7] as shown
in Fig. 2.2(c). Here the feedback of the system output and desired trajectory
are used to learn the inverse model. This learning is goal directed and aims
to minimize the feedback by perfecting the inverse model.

The objective of this work is to learn trajectories, by using the outputs of the bal-
ancing controllers. This problem statement automatically makes Feedback Error
learning the obvious choice to learn the trajectories, using the balance controller’s
feedback as an error signal. We describe Feedback Error Learning in more detail
in the following paragraphs.

2.2.1 Feedback error learning

Feedback Error Learning (FEL) is a biologically inspired idea by Kawato in [7].
Kawato postulated FEL as in inverse model learning method for the cerebellum

11

to learn motor commands to be passed onto the motor cortex of the cerebrum
to produce actions, based on the feedbacks from the reflex arc [7, 14]. After the
learning is complete, the inverse model in the FEL architecture does not require a
change of neural connections, i.e., when an inverse model is learned by means of
FEL its connections remain the same when the learned model is in use, performing
its desired task. The learning is also goal directed, to reduce the feedback from
the visual task space. Kawato further realized that this architecture can be used
for inverse dynamics modeling for robotics in [7]. FEL can learn inverse models of
systems with redundant degrees of freedom and this property will be useful when
the learning is combined with task space control.

The inverse dynamics modeling architecture of FEL is shown in Fig. 2.2(c). It
has input desired trajectories in the form of qd, q̇d, and q̈d. These are fed into
the inverse model to be learned that ideally would generate the precise forward
motor torques u ff. This forward motor torque is summed with feedback motor
torque to produce the total torque u, and fed into the system to be controlled

u = u ff + u fb,

where ufb is the feedback torque generated with a Proportional and Derivative
(PD) control law give by

u fb = KP

�

qd − q
�

+ KD

�

q̇d − q̇
�

, (2.7)

with positive gains KP and KD, to ensure that the desired behavior is achieved
in the presence of uncertainty and model errors. Learning an inverse model in
this case is equivalent to modeling the forward torque uff to the system. Consider
ud to be the desired forward torque to produce the desired trajectory q d . In a
supervised learning setup the forward torque can be represented parametrically
using basis function as,

u ff ≈ f
�

qd, q̇d, q̈d,θ
�

= φ(qd, q̇d, q̈d)θ , (2.8)

where θ are the weights of the model, which we want to obtain, to learn the
model and φ(qd, q̇d, q̈d) are the basis functions that are defined over input joint
angles qd and their derivatives q̇d and q̈d). The forward torque, hence is a linear
sum of nonlinear basis functions. To learn the model by regression methods we
need an error between the calculated feedback and the desired feedback term

E =
1

2

N
∑

k=1

ek

2
=

1

2

N
∑

k=1

uk
d − f

�

q k
d, q̇ k

d, q̈ k
d,θ

�

2
, (2.9)

over N instants of time. To learn the weight parameters θ , we can use any New-
ton based method, like Gradient descent and change the weight vectors in the
direction of diminishing error E. If the inverse dynamics model is precise, i.e.,
feedforward u ff is error free, hence dominant and q̈d ≈ q̈ , the controller u fb will
remain dormant most of the time, i.e.,

u fb

 ≈ 0. Otherwise, the feedback con-
troller will generate torques to make sure that the output of the system follows

12

the control laws and gives desired outputs. Kawato [7] realized that the feedback
of a linear control law can be used as an error signal as

e = ud −Φ
�

qd, q̇d, q̈d

�

θ = u − u ff = u fb (2.10)

for inverse dynamics learning. Hence, the feedback signal can function as an error
signal for the purpose of supervised learning. Stability analysis of FEL has been
performed by Kawato in [7] and by Nakanishi and Schaal in [15] and have found
the method to provide stable control while learning and thereafter.

We can now state that RMPs for joint trajectories are the model that we want
to learn, and FEL is the method chosen to learn them. Next we look at basics of
locomotion as the final goal of this thesis is to improve upon gaits online.

2.3 Legged Locomotion in Robotics

Figure 2.3.: Big Dog climbing a hilly
terrain. Image from Boston
Dynamics’ website - http:
//www.bostondynamics.

com/robot_bigdog.html

Locomotion is an important character-
istics of animals that robots try to em-
ulate. Robots initially used wheels for
locomotion, but soon the need for us-
ing legs for locomotion of robots be-
came apparent. Raibert in [16] gives
two important reasons for develop-
ing robots with legs. Firstly, there
is a need for creating machines that
can travel across a difficult terrain.
Wheeled robots can only access even
and smooth terrains, whereas some
robots also need to travel across much
harder and uneven terrains. Legged
systems can use isolated footholds that
give support and traction, but wheeled
robots would need continuous paths,
which do not always exist. Secondly,
legs give active suspension that wheels
do not provide, i.e. a legged system decouples the path of its body from the path
of the legs, allowing the legs to navigate a rugged terrain keeping its body’s trajec-
tory smooth. Fig. 2.3 show the Boston Dynamics’ robot "Big Dog" climbing a hill
side with snow, lined with trees. This terrain would be impossible to navigate with
a wheeled robot carrying a payload, proving the importance of legs in locomotion.

2.3.1 Gait classification in animals

To understand legged gait we first describe the gaits that animals follow. The first
work in studying gaits was done by Eadweard Muybridge [17] when he took a
series of stop motion photographs of a galloping horse. From then on various he

13

went on to compile walking and running behavior of over 40 mammal, including
humans.

A stride is defined as "the complete walk cycle of leg movements, e.g. for once
setting down a foot to next setting down of the same foot" [18]. Duty factor is
defined within the period of the stride, as the fraction of the duration of a stride
when the foot is on the ground [18]. A walk is when the duty factor of a gait is
more than 0.5, and a run is when the duty factor is less than 0.5, i.e., in a run
both feet are off the ground at certain stages [18].

The last criterion gaits are classified upon is whether the gait is symmetrical
or asymmetrical. Symmetrical gait is one where left and right feet of each pair
(front or back) have equal duty factors and relative phases which differ by half a
cycle, within a stride. Examples can be human walk and running, trot of a horse,
amble of an elephant, etc. Asymmetric gait is one where the pair of feet have the
same relative phase, this can be seen in the gallop of a horse and bounding gaits
of deers. Since this work deals with bipedal motion we concern ourselves with
symmetric human like gaits.

2.3.2 Gait classification in robots

A robot gait can be classified as being active or passive based on whether the
robot has actuation or not [19]. Passive robot gaits do not use actuation and are
important for learning gaits that dissipate less energy. Passive robot walkers are
usually designed to walk down a slope, by training their trajectories to settle in
a limit cycle that dissipates less energy by using the periodicity of the gait [19].
The biped model used in this thesis has an active gait, i.e. it uses actuation, which
allows us more control over the robots gait.

Robot gaits on the other hand are also classified based upon the type of stability
they have, static or dynamic. Static gaits can be defined as those gaits which are
stable at each instant of time in within the stride, i.e., if the robot is paused at any
instant of time within the stride, the robot will have enough feet on the ground
so as to have the center of gravity within its broad support base [16]. These gaits
were the easiest to achieve in the early stages of legged locomotion. Ralph Mosher
at General Electric constructed one of the first human driven static crawlers— The
walking truck [16]. The idea of a static gait is that the forward velocity is kept
sufficiently low such that it does not affect stability calculations of walker [16].

A dynamic gait on the other hand balances actively, i.e., the velocities and the
kinetic energy of the masses determines the behavior of the gait, and not the
geometry or the configuration of legs of the device. Dynamic gait is also closer to
way humans and most other animals walk or run. Since dynamic gait requires the
robot to balance actively, the robot can fall unlike static gaits. The control system
needs to make sure that the sum of forces making the robot fall in one direction
must be equal to the sum of forces in its opposite direction such that the robot
does not fall [16].

14

y

x

M F
➝

θ

l

m

(a) Cart and Pole experiment (b) Final forward trajectory for the
torso.

Figure 2.4.: (a) Cart and Pole Diagram take from the Inverted pendulum wikipedia
page - http://en.wikipedia.org/wiki/Inverted_pendulum. The
idea is to move the cart along the sides such that the pendulum is
balanced upright at the center. (b) Raibert’s one legged hopper, the
balance is maintained with a control system regulating height and di-
rection of hops, also the design of the hopper helps in maintaining
balance, from MIT’s website, http://www.ai.mit.edu/projects/
leglab/robots/3D_hopper/3D_hopper.html.

2.3.3 Early experiments in active balance

Research in active balance goes back to the problem of balancing an inverted pen-
dulum, or balancing an inverted double pendulum [20]. Cannon [20] worked
on balancing an inverted double pendulum on a cart and provided an analysis
of different system parameters affecting the equilibrium of the pendulums. The
inverted pendulum experiments are since used as primary experiments for learn-
ing balance and control. A schematic of the cart and pole problem is shown in
Fig 2.4(a), the idea is to balance the pole upright by moving the cart along a line.
The work on inverted pendulums was followed by the development of the first
dynamic biped walker by Miura and Shimoyama [16], which had three actuators,
one for each leg to enable the robot to swing sideways and another that allowed
the legs to move w.r.t. its hips. This three actuator configuration is important as it
allows a robot without knees to walk, by shuffling. In this thesis we have worked
at the problem of learning the balanced trajectory of an oscillating double pen-
dulum first, before moving on to balancing a biped’s trajectory, using the double
pendulum as a test bed.

Before finishing the section about experiments in robotic gaits a mention must
be made about dynamically stable running robots. The first running robot was
designed by Matsuoka [16,21], with four legs that ran with long hops. Matsuoka

15

also worked on a simple one legged hopper that inspired Raibert to design a one
legged hopper capable of running [16]. Raibert’s walker had a stance phase, when
the robot was out of balance but on the ground and a flight phase when it was
airborne. The gait was realized by a continuous hop, a forward velocity of the leg
during the stance phase and posture of the the torso while being in the support
phase. Raibert’s hopper is shown in Fig. 2.4(b). The single legged hopper is an
important milestone because it proves the concept of active balance without doubt
because there is no statically stable configuration for the robot at any point of time
in its trajectory, the robot is always tipping or airborne.

2.3.4 Gaits in biped robots

Biped robots have been traditionally designed with a dynamic gait. This gait can
be precomputed and provided to the biped, after which the robot is controlled by
tracking this trajectory [12,22]. There are also other methods present to generate
this gait, for e.g. Grizzle [23,24] uses Poincaré methods to generate future trajec-
tories based upon the criteria of maintaining stability in the walk cycles. The idea
is to have the periodic gait to be based on a limit cycle so as to be stable. In this
thesis we use the first method of control, where we feed a learned trajectory and
control the robot using PD control laws. Since the trajectories we use are gener-
ated using RMPs, which use limit cycles, the concern for stability of the generated
periodic trajectory is appeased.

In this chapter we discussed discussed the topic of Gaits, their representation
with RMPs and FEL as a model learning method. In the next chapter we develop
the concept of learning trajectories used FEL with a novel modification to the
traditional FEL approach. We look at applying this method to learning balanced
trajectories in a biped simulator that we described previously.

16

3 Feedback Error Learning of
Movement Primitives

Feedback error learning is a method developed for inverse model learning. Our
problem statement involves learning forward trajectories and not the inverse
model. We assume that we already have a satisfactory inverse model to work
with. This assumption is can be valid in scenarios where the inverse model is
already known, but not all the trajectories that keep the system in motion.

For example consider a biped robot whose inverse model is known, also known
is the gait followed by its limbs, now we want to learn the trajectory followed by
the torso of the biped in the gait cycle such that the biped would be stable and in
balance.

As mentioned before this method helps keep feedbacks of the balance controller
low. Therefore, it will improve its gait as the terrain changes.

3.1 Development of FEL for Trajectory Learning

An inverse dynamics model takes in desired joint trajectories as input and outputs
torques required to be produced by the actuators in the joints to perform the
desired joint trajectories. Hence, the desired trajectories that are input to the
inverse dynamics model are the forward trajectories of the system, that produce
forward torque. Assuming that a robot is a rigid body system, its inverse dynamics
equation is given by [25]

u ff =M(q)q̈ + c(q , q̇) + g(q) , (3.1)

where q ,q̇ and q̈ denote joint positions, velocities and acceleration, respectively,
M(q) is the inertia matrix, c(q , q̇) denotes centripetal and Coriolis forces, and
g(q) denotes the gravity forces and u ff as mentioned previously denotes forward
torque.

The joint angles and their derivatives in Eq. (3.1) are forward trajectories gen-
erated by RMPs, according to Eq. (2.2). We want to improve upon the forward
trajectories based on the feedback of the balance controller, Fig. 3.1(b) shows the
modified architecture. The original FEL architecture is also presented, repeated
for comparison in Fig. 3.1(a). We can observe that instead of learning the inverse
model the modified FEL learns the forward trajectories. Therefore, there is no
desired trajectory to compare our system outputs with but rather a control law
which decided the direction of learning. We first describe the equations for the
original FEL architecture, and then develop the equations for the modified model
using them.

17

Controlled
Object

Feedback

ufb

uff

utotal

qd, q̇d, q̈d
Inverse

+

−

+

+
++

q̈d

b

ufb

Controller

Model

q, q̇

qd, q̇d

q, q̇
b b

b

(a) Original feedback error learning.

Trajectories Generator

(Rhythmic Motor Primitives)

Controlled
Object

Feedback
q, q̇

ufb

uff

utotal

qd, q̇d

Inverse

+

−

+

+
++

q̈d

b

ufb

Controller

Model

b b

q, q̇

(b) Modified feedback error learning.

Figure 3.1.: (a) Original feedback error learning model where an inverse model
is being learned using the feedback error, from [7]. (b) Modified
feedback error learning of gaits. The feedback from the the balance
controller’s feedback output is used for learning the gait and not the
inverse model.

Let us assume that the forward torque is defined as per Eq. (2.8), where θ are
the weight vectors of the inverse model to be learned. Combining Eq. (2.8) and
Eq. (3.1) we have

f
�

qd, q̇d, q̈d,θh

�

=M(qd)q̈d + c(qd, q̇d) + g(qd) , (3.2)

i.e., f
�

qd, q̇d, q̈d,θh

�

is the parameterized form of the inverse dynamics model,
and θ is the weight vector to be calculated to learn the inverse model. Minimizing
the error in Eq. (2.9) using stochastic gradient descent

θ h+1 = θ h−αh∇θ E (3.3)

= θ h+αh

∑N

k=1
ek ∂ f (q k

d, q̇ k
d, q̈ k

d,θh)

∂ θ h
,

where αh is a learning rate or step size, and E is the summed up error e over N
measurements as defined in Eq. (2.9). Stochastic gradient descent for a convex
error is guaranteed to converge to the optimal solution under mild conditions such
as
∑∞

h=1αh→∞ and
∑∞

h=1α
2
h<∞, see [26]. This learning can also be done in a

single step, but we need an online learning method that can keep learning as the
surroundings change, i.e., continuous online learning.

Using the result of feedback error learning, i.e., Eq. (2.10), such an update rule
would become

θ h+1 = θ h+αh

∑N

k=1
uk

fbΦ
�

q k
d, q̇ k

d, q̈ k
d

�T
, (3.4)

which is known as feedback error learning [7]. Learning and control using feed-
back error learning for inverse dynamics is stable under the following conditions
defined for the gains KP and KD as

KD

2
>

KP

 [15]. Nevertheless, these
gains have to be chosen on trial-and-error basis initially. Since we have discussed
FEL for inverse dynamics as shown in Fig. 3.1(a), we now use these results for
developing FEL for learning RMPs.

18

In the modified FEL architecture shown in Fig. 3.1(b) the RMPs are to be
learned, and not an inverse model. The RMPs as per Eq. (2.2), can be assumed to
be a parametric function of weights θ and basis functions ψ, i.e.,

q̈ k = g(θ ,ψk, q̇ k−1,q k−1) , (3.5)

where g is the functional representation of Eq. (2.2). Since the inverse dynamics
model is assumed to be known, the forward torque would just be the function of
joint trajectories, i.e., u ff = f (q k

d, q̇ k
d, q̈ k

d). Hence the update rule for RMPs can be
given as

θ h+1 = θ h+αh

∑N

k=1
uk

fb

∂ f (q k
d, q̇ k

d, q̈ k
d)

∂ θ h
,

where parameters θ are the weights of the rhythmic motor primitives. This implies
by using Eq. (3.5) and the application of the chain rule the new weight update rule

θ h+1 = θ h+αh

∑N

k=1
uk

fb

∂ f (q k
d, q̇ k

d, q̈ k
d)

∂ g(θ h,ψk, q̇ k−1,q k−1)

∂ g(θ h,ψk, q̇ k−1,q k−1)
∂ θ h

, (3.6)

is formulated. We notice that g is a temporal function, and is not just based upon
inputs of weights θ and basis functions ψ. Therefore, an analytical solution of

the partial derivative of ∂ g(θ h,ψk,q̇k−1,qk−1)
∂ θ h

is not possible, and it has to be cal-
culated functionally, using the properties of calculus of variations by numerical
differentiation. Hence, Eq. (3.6) gives the new update rule for learning RMPs
using FEL.

Now we would discuss the type of feedback that we want to use for the learning
process. There exist two kinds of feedback controllers, i.e., the feedback controller
either tracks the rhythmic trajectory given by

u track,i = u fb,i = KP,ii

�

qd,i − q i

�

+ KD,ii

�

q̇d,i − q̇ i

�

,

alternatively, it acts as a stabilizing controller such as

ustabilize, j = u fb, j = KP, j j

�

qd, j − q i

�

+ KD, j j

�

−q̇ j

�

.

For learning the rhythmic motor primitive, ideally, in a fully actuated system, we
realize that we can use e j = ustabilize, j as an error signal for all stabilizing con-
trollers and define e i = 0 for all other dimensions. This can also be used in the
case of over actuated systems where compliant actions are preferred. Moreover,
we also realize that this will be a problem in underactuated systems. In under-
actuated systems, many feedbacks are summed to be given into a single actuator.
Thus, to learn one input trajectory we would need to minimize all the sum of feed-
backs affecting it. Consequently, in underactuated systems we need to minimize
the sum of the stabilizing and tracking feedbacks, this is an important point and
will be discussed along with the experiments. In our experiments the robot arm is
a fully actuated system and the planar biped is an underactuated system.

19

  

 

  






Figure 3.2.: Trajectory cycle for the two link robot manipulator. The lower link
is oscillates between ±π/6 around the vertical, the upper link has to
learn to remain upright, using FEL.

3.2 Experiments to Learn Trajectories using FEL

Two experiments are described in this section that use the FEL architecture for
learning trajectories modeled by RMPs. The first is a two link robot manipu-
lator, whose lower links trajectory is defined and upper link trajectory is to be
learned while staying in balance. The second experiment is a biped robot, whose
torso’s trajectory is unknown and needs to be learned from the feedback to stay in
balance.

3.2.1 Evaluation on a Two Link Robot Manipulator

The two link manipulator served as a toy example for testing feedback error learn-
ing with rhythmic motor primitives. It is similar to a double pendulum, which as
previously stated, is used as a toy example for most control learning problems.

Model description

The two link manipulator consists of two links and two actuators as can be seen
in Fig. 3.2. The lower link of the manipulator oscillates between a range of angles
while inverted, i.e., its mass is above its pivot. The upper link initially has a
random feedforward trajectory, which can lead to the manipulator falling in the
absence of feedback signals. The manipulator has two actuators: one for each
link.

20

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(a) Initial trajectories for upper link.

400 401 402 403 404 405 406 407 408 409 410

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(b) Final forward trajectory for upper
link.

Figure 3.3.: (a) Initial trajectories of the upper link. The dashed line is the system
output and the continuous line is the forward trajectory. The forward
trajectory is unstable and can make the two link manipulator fall off.
The system feedback ensures that this does not happen, hence the
system trajectories because of feedback are complete (b) Final tra-
jectories of the upper link, the two trajectories completely overlap
proving that the forward gait is completely learned using feedbacks
to converge to the control law’s criterion.

The Standard two link manipulator

This model is called the standard two link manipulator as each link of the manip-
ulator weighs 1kg, and is 1 m long. The period of oscillation for the lower link
is 1s. The oscillation in the joint space for the lower link is between π

3
and 2π

3
,

i.e., (π
2
± π

6
) rad. This forward trajectory is generated using rhythmic motor prim-

itives [5] with 10 basis functions. 10 basis functions were enough to represent a
sinusoidal wave in our case. Adding more basis functions leads to more compu-
tations and increases the computation time of the simulations. Thus, we used 10
basis functions. The initial forward trajectory of the upper link q2 as shown in
Fig. 3.3(a), is chosen by random sampling of the weights for the rhythmic motor
primitives, also with 10 basis functions. The dynamics of the manipulator were
taken from [27], and the equations have the same form as Eq. (3.1). The dy-
namics equations are detailed in the Appendix A. The sampling frequency for the
simulator was chosen 100Hz as the learning was more stable at this frequency.
Increasing the frequency increased the quality of results, i.e., faster and stable
learning, but it also increased the computation time.

Feedback used for learning

The control signal for each link is the sum of the torques generated by the inverse
model f and the feedback torque generated by the PD control. The feedback
torque for the first link measures the PD error between the generated trajectory
and the joint angles of the first link. The feedback torque for the second link
measures the PD error of the second link of the manipulator from the vertical line

21

using joint angles. This is the stabilizing torque ustabilize to be minimized by gait
learning,

ustabilize = KP2(
π

2
− (q1 + q2)) + KD2(0− (q̇1 + q̇2)) ,

where, both the angles q1 and q2 are the system output measured from the hor-
izontal axis and their derivatives are q̇1, q̇2 respectively. The forward trajectory
for the first link is q1d and for the second link is q2d. For a balanced second
link we need the second link’s forward and system output angle to converge to
π/2 radians from the horizontal and its derivative to be 0 radians per second,
i.e., qk

1d + qk
2d = π/2 and q̇k

1d + q̇k
2d = 0. We use the control laws as described

in Eq. (2.7). Parameters KP1, KD1, KP2, and KD2 are PD gains for the both the
links and they were designed such that ‖KD2‖2 >‖KP2‖ for stable control and
learning [15].

Using FEL to learn trajectories of the upper link

The actuator for the upper link has an initial random feedforward gait that is not
balanced, i.e., it can lead to the manipulator falling, especially at the extremes of
the lower link’s trajectory. However, the control law follows the condition that the
second link of the manipulator is always vertical. Therefore, initially the stability
feedback ensures that the system never falls, generating feedback signals. These
feedbacks train the weight vectors of the feedforward rhythmic motor primitives
using gradient descent, so as to minimize the absolute balancing feedback torque
using Eq. (3.6). The goal state g of the RMP from Eq. (2.2), also needs to be
learned. This is because the goal state is also chosen randomly to ensure that the
trajectory’s state is completely unknown. The goal state is also solved using the
FEL and Eq. (3.6), with the goal state being one the parameters θ , of the RMPs to
be solved. The goal states were observed to perform better when learned slowly,
i.e., with lower learning rates when compared to the learning rates of the weight’s
of the RMP’s basis functions.

Using feedback error learning, the upper link’s feedforward gait q2d changes
in the direction to reduce the feedback. For this fully actuated system, only the
stability feedback, i.e., the second link’s feedback, was minimized as this was
sufficient for learning a stable gait. minimized as this was sufficient for learning a
stable gait.

Results of FEL for the standard two link manipulator

As learning proceeds, the learned feedforward trajectory when passed through the
inverse model, and the system, produces outputs that satisfy the control laws and
keep the feedback at zero. The convergence to a balanced gait using feedback
of the balance controller is shown in Fig. 3.3. Initially the forward trajectory
produced was random, but the system trajectories are still perfect because of the
feedback control laws. As the learning of the RMPs progressed the feedback was
minimized. The balancing feedback torque reduces drastically and is almost equal

22

1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(a) Initial trajectories for lower link.

400 401 402 403 404 405 406 407 408 409

1

1.2

1.4

1.6

1.8

2

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(b) Final trajectories for lower link.

Figure 3.4.: Trajectory followed by the non learning lower link’s joint is shown for
completeness. (a) Initial trajectories of the lower link, the dashed line
is the system output and the continuous line is the forward trajectory,
they almost completely overlap, as this trajectory is known. The lower
link is not able to follow the desired forward trajectory at some point,
this is because of the wrong and unstable forward trajectory of the
upper (second) link. (b) Final trajectories of the lower link. The two
trajectories completely overlap. As the learning for the upper link is
completed, the lower link’s system trajectory follows the desired tra-
jectory more easily with zero feedback.

zero after about 400 cycles. The two link model’s average absolute feedback
torque values for 20 random initial states are shown in Fig. 3.5(a). Fig. 3.5(b)
shows the weight convergence for one run out of these 20 runs. The weights for
all the 10 basis functions are perfectly settled after 400 cycles, which corresponds
to 400 s. In all the experiments in this work the time constants for the RMPs are
chosen as, αz = 25 and βz = αz/4. They make sure that the system is critically
damped.

For completeness, Fig. 3.4 shows the trajectory followed by the non learning
lower link q1, whose trajectory is known. It can been seen that the initial for-
ward and system trajectory here is almost correct, and does not change even after
learning of the second link is complete.

Two link manipulator: Human Arm Model

As a step towards a biped simulator, we evaluated our approach on a two-link
manipulator with a weight distribution and frequency closer to that of a human
hand, with the lower link acting as Arm and the upper link acting the Forearm. We
set the upper link’s weight to 2 kg and the lower link’s weight to 2kg, the length
of both to 0.5m and the period of a arm action cycle to 3 s. This model learned
the Forearm’s trajectory in 20 cycles, the reason for this quick learning can be a
relatively large sampling frequency of 50Hz. Another reason for this fast learning
is also the presence of heavier and shorter links, which result in a more stable
system (because of a compact distribution of weight around the actuators) that

23

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

F
e

e
d

b
a

c
k
 T

o
rq

u
e

 i
n

 N
m

Time in s

(a) Two link Manipulator feedback.

0 100 200 300 400 500 600 700 800
−100

−50

0

50

100

150

Time in s

W
e
ig

h
t
m

a
g
n
it
u
d
e
s

(b) Weight convergence for second link

Figure 3.5.: Feedback and weight convergence plots to show the learning of tra-
jectories in 400 cycles. (a) Moving average of the absolute stabilizing
feedback (i.e., the feedback for the second link), for the two link robot
manipulator, averaged over 20 different initializations. It can be seen
that as learning progresses the feedback reduces to zero in the case of
the two link manipulator, proving that the forward trajectory is pro-
viding the complete required torque. (b) Weight convergence for 10
basis functions over one run. We can see that weights have converged
after 400 cycles, which corresponds to 400 s.

20 40 60 80 100 120 140
0

1

2

3

4

5

6

F
e

e
d

b
a

c
k
 T

o
rq

u
e

 i
n

 N
m

Time in s

(a) Two link Manipulator feedback

0 50 100 150
−200

−100

0

100

200

300

400

500

W
e
ig

h
t
a
m

p
lit

u
d
e
s

Time in s

(b) Weight convergence for second link
or Forearm

Figure 3.6.: Feedback and weight convergence plots for the two link manipula-
tor with human arm like weights. (a) Moving average of the absolute
stabilizing feedback (i.e., the feedback for the second link), or the hu-
man arm like two link robot manipulator, with a cycle period of 3 s
averaged over 50 different initializations. It can be seen that as learn-
ing progresses the feedback reduces, and becomes nil in the case of
the two link manipulator, proving that the forward trajectory is pro-
viding the complete required torque. (b) Weight convergence for 10
basis functions over one run, we can see that weights have converged
after 20 cycles or about 60s.

24

allows large learning rates in gradient descent. The goal state was learned for the
RMPs as well. The Fig. 3.6(a), shows reduction in the feedback as predicted by
FEL as the learning progresses, and Fig. 3.6(b) shows the convergence of weights
within 20 cycles or corresponding to 60s.

3.2.2 Biped Model’s simulation

This section describes gait learning using the modified FEL. We learn the forward
stabilizing gait of a biped based on its rhythmic gait and a control law.

Problem description

Previously, there have been methods to learn biped gaits from demonstrations [6,
12] or using reinforcement learning [22,28], and also with trajectories generated
using Poincaré stability analysis [23, 29]. We try to learn a biped’s torso’s gait
using feedback error learning. The biped robot model consists of three links: two
legs, a torso, and two actuators, one for each leg to torso joint as shown in Fig. 3.7.
The orientation of the measured angles is also shown in Fig. 3.7, the angles are
defined keeping the stance leg as the fixed support, and defining the angles w.r.t.
the vertical axis. The dynamics model of the three link biped are taken from [23].
The purpose of the simulation is to modify the gait of the torso of the biped while
it continues to walk such that the balance controller’s feedback is minimized. The
biped model from [23] is used as it has a torso unlike other simple biped models
or compass walkers. The goal of this experiment is to minimize the feedback
required by the torso to remain in balance when its initial trajectory is random.
As in the previous section we already have a gait to follow, which is the gait of the
lower limbs, and we want to learn the gait of the torso according to a control law.

Biped model used

The biped dynamics model used for this thesis was taken from the work of Grizzle
[23]. The model is a three link biped, one for each leg and one for the torso. The
model has two actuators, between each leg and the torso.

The biped has only two actuators but five degrees of freedom (one for each link’s
orientation angle, and two for the x and y coordinate of the hip of the biped),
hence is an underactuated system. The biped has a dynamic gait, with one leg
swinging and the other resting on the floor providing fixed support much like an
inverted pendulum, but with a floating base. The walk cycle of the biped [23] is
described in Fig. 3.7. The walk cycle has two phases [23], the swing phase and
the impact phase. A walk cycle is complete when a leg finishes one stance and one
swing leg phase.

During the swing phase one leg acts as a stance leg over which the biped pivots
and swings forward. The inverse dynamics dynamical model of the biped is ap-

25

q2=−π/18

Stance leg

q3 = π/6

q1 = +π/18

q3 = π/6

Stance leg

q3 = π/6

Stance leg

Swing phase

q2 = +π/18

q1=−π/18

q3 = π/6

Stance leg

Impact event Impact eventSwing phase

Figure 3.7.: Part of a walk cycle of a biped, starting from an impact phase, with
the unshaded leg being the stance leg and the shaded leg swinging
forward. The swing phase continues till the shaded leg reaches its
terminal joint angle value, in our case the joint angle swing was from
+π/18 to−π/18. At the end of swing phase the impact phase begins
and the stance legs change as shown in the figure.

plicable in this phase and it is described in detail in Appendix B. The dynamics
equation has a general form as described by [23]

Bu =M(q)q̈ + c(q , q̇) + g(q) , (3.7)

where q = (q1, q2, q3) denote joint angles, and q̇ and q̈ are the velocities and
acceleration, respectively of these joints. The inertia matrix is given by M(q) ,
c(q , q̇) denotes centripetal and Coriolis forces, g(q) denotes the gravity forces,
u is the forward torque, and B is the gain matrix that also couples the torques
in case of underactuated systems. The orientation of the joint angles is visible in
the Fig. 3.7. Note that this equation is same as the one described for a general
robot in Eq. (3.1), with the exception of B, as this equation is a general dynamics
equation for rigid bodies. The complete dynamics equations with variable values
are described in the Appendix B.

The impact phase is occurs when the swinging leg lands back on the ground.
As soon as the swinging leg lands on the ground it becomes the new stance leg,
and the old stance leg becomes the new stance leg. The joint angles are described
based on the stance leg, so the joint angles and velocities are interchanged, i.e.,
if the initial states of joints and joint velocities is X− = [q1, q2, q3, q̇1, q̇2, q̇3], the
after impact new state would be X+ = [q2, q1, q3, q̇2, q̇1, q̇3].

Setup of the biped

The biped’s dynamics equation is of the same form as Eq. (3.1). The sampling
rate of the simulator is 200Hz. There are three joint angles to be considered,
each of which uses rhythmic motor primitives. We used 16 basis functions per
cycle. The number of basis functions is relatively high as more basis functions

26

would mean that the trajectory would be more precisely defined and also more
precisely trained. The weight and size of the biped are chosen analogous to that
of a human. The torso weighs 40kg, each of the legs weighs 15kg, and the hip
weighs 10 kg. The torso and limbs are 1m long. The walking rate is assumed to
be two steps a second or a complete walk cycle in 1s. A walk cycle consists of
pivoting the whole body on one limb called the stance leg and pushing the other
limb, the swing leg forward. And then, switching the stance and the swing legs
and repeat. A walk cycle is finished when a leg finishes one stance and one swing
leg phase. As mentioned previously this is a dynamic gait where the impact stage
is instantaneous.

The forces on a leg during the stance and the swing phase are completely dif-
ferent. The forces are defined only with respect to the stance leg as it is a fixed
support, and the swinging leg and the torso, form the moving parts (or links) of
this system. The dynamical model of the biped used is defined in terms of the
stance leg as a fixed support and the torso and the swing leg being in motion
attached to this fixed support, until the switch. The switching of stance legs is
assumed to be instantaneous in the impact stage. In our simulations, we have not
assumed any special force model for the impact stage. There is a simple switch
in trajectories and forces between the old stance leg and the new stance leg. All
the angles for the model are taken in the uniform coordinate system from the
vertical, measuring in the clockwise direction as shown in Fig. 3.7. Hence, if the
before-impact state is X− = [q1, q2, q3, q̇1, q̇2, q̇3], the after-impact state would be
X+ = [q2, q1, q3, q̇2, q̇1, q̇3]. Along with these angles their corresponding force
equations are also switched as the other leg is now the fixed support, i.e., the
stance leg. The stance leg is clearly shown by an arrow under the surface in
Fig. 3.7. An example walk cycle is displayed in Fig. 3.7.

Feedbacks used for FEL

As discussed previously the biped system has three links resulting in 5 degrees
of freedom with 2 actuators. Hence, it is an under-actuated system. Our first
intuition was to reduce only the torso’s balancing feedback as it was our required
stabilizing control feedback ustabilize, therefore making it the cost function. The
trajectory learned using this cost function leads to an increase in the feedbacks
for the other two joint angles, as three joint angles are described between two
actuators, as shown in Fig. 3.7. Consequently, we need a better cost function that
does not lead to a wrong gait being learned, in case of underactuated systems like
the biped.

The cost function chosen was the sum of squares of the three feedbacks, one for
each joint angle. The cost function is minimized w.r.t. the weights of the rhythmic
motor primitives for the torso’s joint using the learning rule as per Eq. (3.6). In the
biped gait experiment we force the torso to be at π/6 radians to the vertical axis,
this is our stabilizing criterion. The initialization of the torso’s forward trajectory
is random, the stabilizing feedback makes sure that even with this random gait
the torso does not fall over. The feedbacks therefore are based on this stabilizing
criterion for the torso link and regular trajectory tracking condition for the other

27

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(a) Initial forward trajectories for the
torso.

135 136 137 138 139 140

−0.2

0

0.2

0.4

0.6

0.8

Time in s

A
n

g
le

 i
n

 r
a

d
ia

n
s

System Output
Forward Trajectory

(b) Final forward trajectory for the
torso.

Figure 3.8.: (a) Initial forward trajectories for the torso: The dashed line is the sys-
tem output and the continuous line is the forward trajectory. (b) Final
forward trajectory for the torso: the two trajectories almost overlap
proving that the forward gait is learned using feedbacks to converge
to the sum of the control laws requirement. The convergence is not
perfect because of the under-actuated system, however the periodic
structure of the trajectories is the learned perfectly.

two links using the PD control in Eq. (2.7), and the sum of these feedbacks gives
us the new cost function.

Results

It can be seen in the output results of Fig. 3.8 that the torso has learned the
gait relatively well. The lower limbs maintain a gait of −π/18 to +π/18. As
previously mentioned we minimize all the three squared feedback torques with
respect to the torso’s RMP weight parameters to achieve the best possible solution.
As the sum of the feedbacks can not be reduced to zero, the upper torso does not
perfectly converge to the required limit of +π/6, as can be seen in Fig. 3.8. The
convergence in the two link manipulator case was perfect to the desired gait as
the link to be stabilized had an actuator only for balance, which is not the case
for the biped. Hence, a perfect output according to the control law is difficult to
achieve in the biped, but our method also ensured that all the tasks are fulfilled
at best without breaking down the system. Fig. 3.8 shows the forward gait being
learned from a random initial forward gait of the torso. The learned gait has the
same periodic structure, but differs in the baseline by a small margin.

The plot of reduction of summed absolute feedback torque is given in
Fig. 3.9(a). It can be seen that the feedback is reduced considerably from the
start time, because the gait has been learned. It can be seen that there is a con-
siderable amount of learning in the first 40s as the feedback reduces the most
here and then reaches a minimum. After learning, the sum of the absolute feed-
back torques is almost halved from the initial value, and the standard deviation
is almost zero. We have used 16 basis functions which are too many to plot,
hence Fig. 3.9(b) shows the convergence of the first 5 weights. The goal state was
learned for the RMPs as well. The weights converge within the first 60 cycles or

28

0 50 100

1000

1200

1400

1600

Time in s

F
e

e
d

b
a

c
k
 t

o
rq

u
e

s
 i
n

 N
m

(a) Biped feedback in Nm.

0 50 100

−200

0

200

Time in s

W
e
ig

h
t
m

a
g
n
it
u
d
e
s

(b) Biped weight convergence

Figure 3.9.: (a) Moving average of the sum of feedbacks for the biped robot for a
single run. Here the feedback does reduce and reaches a minimum
when the learning stops. (b) The convergence plot of the first 5
weights amongst the 16 basis functions actually used. The weights
converge within the first 60 cycles and the trajectory is almost learned
within 100 cycles.

60 s correspondingly, after which the trajectory is almost completely learned and
sum of feedbacks reaches its minimum.

This chapter dealt with our development of the modified FEL algorithm and the
results obtained by using this method in learning balancing forward trajectories
of a two link model and a biped’s torso. The results show that this method can
be used in learning forward trajectories and that this can be a viable solution in
cases of online learning scenarios where gait changes while executing gaits might
be required.

29

4 Conclusion and Future Work
In this thesis we described a novel method to learn balanced forward trajectories
using feedback error learning. Our method allows us to learn trajectories online,
while executing stable trajectories, using the stabilizing feedback of a rhythmic
behavior. It learns trajectories without the need of complicated value functions or
numerous supervised examples. Moreover, the modified FEL method also allows
us to use low feedback gains to control our robots, in turn making the robots safe
for use around humans.

We tested our method on two example problems: learning the forward balanc-
ing trajectory in a two link manipulator and gait adaptation in a biped robot.
Our method gave impeccable solutions in both these example tasks. The method
learned the forward trajectory flawlessly in the case of a fully actuated model,
i.e. the two link manipulator, and with a small bias in case of an underactuated
model, i.e., the biped robot. The bias in case of the underactuated model is the
result of the minimization of all the feedback torques (instead of the stabilizing
torque alone), which can not be completely minimized. In both the cases feed-
back torques were reduced drastically and learning of the forward trajectory was
observed.

4.1 Future work

Our method currently functions in the joint space, i.e., joint space trajectories are
learned and task space trajectories are derived from them using kinematics, even
feedbacks are being calculated in the joint space. It would be easier to describe tra-
jectories to be performed in the task space. This can be done using the framework
of Operational Space Control. Using operational space control can allow us to use
lower gains and still achieve a smooth control performance in the task space. We
currently have a formulation to combine the modified FEL with operational space
control, but learning in this scenario is proving to be difficult. We need to investi-
gate this idea further. If the combination of modified FEL works with operational
space control, then in future our method can help learning compliant control of
manipulators with redundant degrees of freedom.

30

Bibliography
[1] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for

learning motor primitives. In NIPS, 2003.

[2] J. Peters and S. Schaal. Policy gradient methods for robotics. In IROS, 2006.

[3] J. Kober and J. Peters. Learning motor primitives for robotics. In ICRA, 2009.

[4] D. Pongas, A. Billard, and S. Schaal. Rapid synchronization and accurate
phase-locking of rhythmic motor primitives. In IROS, 2005.

[5] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement prim-
itives. In International Symposium on Robotics Research, 2004.

[6] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato.
Learning from demonstration and adaptation of biped locomotion. In
Robotics and Autonomous Systems, number 2–3, 2004.

[7] M. Kawato. Feedback-error-learning neural network for supervised motor
learning. Advanced Neural Computers, 1990.

[8] F. A. Mussa-Ivaldi. Modular features of motor control and learning. Current
Opinion in Neurobiology, 9:713–717, 1999.

[9] G. Schoner and J. A. S. Kelso. Dynamic pattern generation in behavioral and
neural systems. Science, 239:1513–1539, 1988.

[10] G. Schöner and C.M.P. Santos. Control of movement time and sequential
action through attractor dynamics: A simulation study demonstrating object
interception and coordination. In SIRS 2001, 2001.

[11] J. W. Milnor. Attractor. Scholarpedia, 1(11):1815, 2006.

[12] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato.
A framework for learning biped locomotion with dynamic movement primi-
tives. In Humanoids, 2004.

[13] D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey.
Cognitive Processing, 12(4):319–340, 2011.

[14] M. Kawato and H. Gomi. A computational model of four regions of the
cerebellum based on feedback-error learning. Biological Cybernetics, 68:95–
103, 1992. 10.1007/BF00201431.

[15] J. Nakanishi and S. Schaal. Feedback error learning and nonlinar adapative
control. In Neural Networks, number 10, 2004.

31

[16] M. H. Raibert. Legged robots that balance. Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, 1986.

[17] E. Muybridge. Animals in Motion. Dover Publications, 1957.

[18] R. M. Alexander. The gaits of bipedal and quadrupedal animals. International
Journal of Robotics Research, 3(2):49–59, 1984.

[19] A. Goswami, B. Thuilot, and B. Espiau. A study of the passive gait of a
compass-like biped robot: Symmetry and chaos. International Journal of
Robotics Research, 17:1282–1301, 1998.

[20] J. F. Schaefer and R. H. Jr. Cannon. On the control of unstable mechanical
systems. International Federation of Automatic Control.

[21] K. Matsuoka. A mechanical model of repetitive hopping movements.
Biomechanisms, 5:251–258, 1980.

[22] J. Morimoto and C. A. Atkeson. Minimax differential dynamic programming:
An application to robust biped walking. 2003.

[23] J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking for
biped robots: Analysis via systems with impulse effects. IEEE Transactions on
Automatic Control, 46(01), 2001.

[24] E. R. Westervelt, J.W. Grizzle, and D. E. Koditschek. Hybrid zero dynamics
of planar biped walkers. IEEE Transactions on Automatic Control, 48:42–56,
2001.

[25] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1989.

[26] L. Bottou. Online algorithms and stochastic approximations. In David Saad,
editor, Online Learning and Neural Networks. Cambridge University Press,
Cambridge, UK, 1998.

[27] T. Yoshikawa. Foundations of Robotics. MIT Press, 1990.

[28] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters. Toward Fast Policy
Search for Learning Legged Locomotion. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2012.

[29] J. Morimoto and C. G. Atkeson. Nonparametric representation of an ap-
proximated poincaré map for learning biped locomotion. Auton. Robots,
27(2):131–144, 2009.

32

A Two Link Robot Manipulator
This section details the Two link Manipulator’s simulator shown in Fig A.1. First
we describe the inverse dynamics equations for this system taken from [27].

u1 =
�

m1l2
g1 + I1 +m2

�

l2
1 + l2

g2 + 2l1lg2C2

�

+ I2

�

θ̈1

+
�

m2

�

l2
g2 + l1lg2C2

�

+ I2

�

q̈2 −m2l1lg2S2

�

2q̇1q̇2 + q̇2
2

�

+m1 ĝ lg1C1 +m2 ĝ
�

l1C1 + lg2C12

�

,

(A.1)

u2 =
�

m2

�

l2
g2 + l1lg2C2

�

+ I2

�

θ̈1 +
�

m2l2
g2 + I2

�

q̈2

+m2l1lg2S2q̇2
1 +m2 ĝ lg2C12,

(A.2)

where ui is the forward torque for the ith link, mi is the mass of the ith link, li is
the length of the ith link, lgi is the distance of center of mass from the ith joint for
the ith link, Ii is the moment of inertia for the ith link calculated by Ii = mi l

2
i /3,

qi, q̇i and q̈i are the joint angles and their first and second order derivatives for
the ith joint and ĝ is the acceleration due to gravity. Si and Ci are sin(θi) and
cos(θi) respectively and Si and Ci j are sin(θi + θ j) and cos(θi + θ j).

Since, multiple configurations of the two link manipulator were experimented
with here two configurations would be discussed, with their chosen system pa-
rameters.

A.1 Two Link Manipulator: Standard Model

We describe the values of the system parameters of the standard manipulator with
the Table A.1. It is standard because the masses and lengths are 1 kg and 1 m.
Training this model was harder as it is potentially more unstable than the arm con-
figuration discussed next. It needed a high sampling frequency of 100 Hz, this is
because the pendulum’s center of mass for each link was relatively far which in-
creased the instability of the system while training. The training itself was initially
done using trajectories represented as a linear function of basis functions alone,
and not as an RMP. This was done ensure that the parameters of feedback gain
and learning rates are right before training the RMP, because RMPs are relatively
harder to train rather than basis functions. RMPs have the extra parameter of the
goal state to be learned that has different learning rates than the other weights of
the RMPs. The goal states were observed to perform better when learned slowly,
i.e., with lower learning rates.

Some snapshots of the visualization of the simulator are shown in Fig. A.2. The
Fig. A.2 shows half an oscillation cycle of the two link manipulator before and
after the learning is complete. Initially the double link’s forward trajectory and

33

q2 = π/6

q1=π/2−π/6

u

u

Figure A.1.: Model for the two link robot manipulator in the balanced state

System Parameter Value with units
m1 1 kg
l1 1 m
lg1 0.5 m
m2 1 kg
l2 1 m
lg2 0.5 m
ĝ 9.8 m/s2

Sampling Frequency 100 Hz
Oscillation Frequency 1 Hz

Table A.1.: System parameters for the standard two link manipulator experiment

34

System Parameter Value with units
m1 2 kg
l1 0.5 m
lg1 0.25 m
m2 2 kg
l2 0.5 m
lg2 0.25 m
ĝ 9.8 m/s2

Sampling Frequency 50 Hz
Oscillation Frequency 1/3 Hz

Table A.2.: System parameters for the arm link two link manipulator experiment

the trajectory executed is completely different, as the executed trajectory is being
corrected by the control laws for stability. The trajectories converge as learning is
complete, making the feedback zero, and driving the two link manipulator based
on forward torque alone.

A.2 Two Link Manipulator: Human Arm Model

This configuration of the two link manipulator is much closer to a human arm,
with similar mass and lengths. The system parameters are given in the Table A.2.
This model is considerably slower in completing its oscillation compared to the
standard two link model. It is heavier and the lengths of the links are much
shorter than that of the standard two link model. This mass and length distribu-
tion makes this arm like model compact and easier to control that the standard
model. Hence, it learns at a much faster rate than the standard model and the
learning is complete within the first 20 cycles, which is about 60 s. This model
was also trained initially with basis functions to ensure that the feedback gains
were precise, and then it was switched over to RMPs as the final goal is to learn
RMP modeled trajectories. The Fig. A.3 shows the snapshots of the simulator for
the two link arm model. The trajectory of the arm model was an up and down
motion, as seen in the Fig. A.3, this was done to just to test the arm in different
configurations. The Fig. A.3 shows a total overlap of the forward and the system
trajectory after learning.

35

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(a) Initial Trajectory 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(b) Final Trajectory 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(c) Initial Trajectory 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(d) Final Trajectory 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(e) Initial Trajectory 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(f) Final Trajectory 3

Figure A.2.: Simulator visualization for the experiment. The oscillation of the two
link manipulator before learning the forward trajectory learning is
shown be the first column (a), (c) and (e). It can be seen that the
RMP trajectory or the forward trajectory of the two link manipulator
is not stable and not following the control law. After learning the
forward trajectories are stable and follow the control law precisely.
These learned trajectories are shown in the second column (b), (d)
and (f). The trajectory of the second link is converged to that of the
first link, which reduced the feedback to zero.

36

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(a) Initial Trajectory 1.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(b) Final Trajectory 1.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(c) Initial Trajectory 2

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(d) Final Trajectory 2

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(e) Initial Trajectory 3

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

x coordinate in m

y
 c

o
o

rd
in

a
te

 i
n

 m

RMP Trajectory
System Trajectory

(f) Final Trajectory 3

Figure A.3.: Simulator visualization for the two link experiment modeled after a
human arm. The oscillation of the two link manipulator before learn-
ing the forward trajectory learning is shown be the first column (a),
(c) and (e). It can be seen that the RMP trajectory or the forward
trajectory of the two link manipulator is not stable and not following
the control law. After learning the forward trajectories are stable and
follow the control law precisely. These learned trajectories are shown
in the second column (b), (d) and (f). The trajectory of the second link
is converged to that of the first link, which reduced the feedback to
zero. The learning takes about 20 cycles or 60 s to complete.

37

B Biped Simulator
The biped simulator was taken from Grizzle’s work in [23]. This model simple
biped walker with just 3 links, two legs and a torso. The orientation of the angles
of the biped is given in Fig. B.1. The inverse dynamics equation of the biped is
given by

Bu =M(q)q̈ + c(q , q̇) + g(q) , (B.1)

where q = (q1, q2, q3) denote joint angles, and q̇ and q̈ are the velocities and
acceleration, respectively of these joints. The inertia matrix is given by M(q) ,
c(q , q̇) denotes centripetal and Coriolis forces, g(q) denotes the gravity forces, u
is the forward torque, and B is the gain matrix.

The inertia matrix M(q) is given by

M(q) =





(5
4
m+MH +MT)r2 −1

2
mr2c12 MTr lc13

−1
2
mr2c12

1
4
mr2 0

MTr lc13 0 MTl2



 , (B.2)

where m is the mass of the legs, MH is the mass of the hip, MT is the mass of the
torso, r is the length of the legs of the biped and l is the length of the torso of the
biped. ci j = cos(θi−θ j) and si j = sin(θi−θ j). The Coriolis forces matrix is given
by

c(q , q̇) =





0 −1
2
mr2s12θ̇2 MTr ls13θ̇1

1
2
mr2s12θ̇1 0 0
−MTr ls13θ̇1 0 0



 , (B.3)

where θ̇i is the time derivative of joint angle θi. The gravity matrix g(q) is given
by the expression

g(q) =





−1
2

g(2MH + 3m+ 2MT)r sin(θ1)
1
2

gmr sin(θ2)
1
2

gMTl sin(θ3)



 , (B.4)

and the gain matrix B is given by the expression

B=





−1 0
0 −1
1 1



 . (B.5)

38

q3 = π/6

q1 = +π/18

q2=−π/18

Stance leg

Figure B.1.: Model for the Biped robot in the balanced state.

System Parameter Value with units
m 15 kg
r 1 m
l 1 m
MT 40 kg
MH 10 kg
ĝ 9.8 m/s2

Sampling Frequency 200 Hz
Walk cycle Frequency 1 Hz

Table B.1.: System parameters for the biped experiment

The values of these system parameters were chosen to be close to that of the
human body. The Table B.1 gives the values of the system parameters of the biped
model. Fig. B.2 shows the visualization of the biped simulator. It can be seen
that the initial trajectory of the system and the forward torso trajectories are not
similar at all in Fig. B.2(a) and Fig. B.2(b) respectively. The forward trajectory
is random and seems unstable with the torso arching backwards in Fig. B.2(b)
and the system trajectory of the torso is controlled by a control law that keeps
the torso in balance. The control law force the torso to be at π/6 radians to the
vertical axis. This stable trajectory is learned by the RMPs completely after about
60 cycles corresponding to 60 s. The second row of plots in Fig. B.2 compares the
trajectories after learning, with Fig. B.2(c) being the system output and Fig. B.2(d)
being the forward trajectory given by the RMPs.

39

2 4 6

−1

0

1

2

3

Distance in m

H
e
ig

h
t
in

 m

(a) Initial System Trajectory.

2 4 6

−1

0

1

2

3

Distance in m

H
e
ig

h
t
in

 m

(b) Initial Forward Trajectory .

32 34 36 38

−1

0

1

2

3

Distance in m

H
e
ig

h
t
in

 m

(c) Final System Trajectory

34 36 38

−1

0

1

2

3

Distance in m

H
e
ig

h
t
in

 m

(d) Final Forward Trajectory

Figure B.2.: Simulator visualization for the biped robot. The first row shows the
biped using (a) initial System Trajectories and (b) the Forward RMP
Trajectories, at the same instant of time. The torso’s position in the
two figures are very different. The System Trajectories because of the
feedback produce a stable orientation of the torso which was defined
to be at π/6 to the vertical. Whereas, the forward trajectories are
untrained thus giving unstable torso orientation, trying to arch back-
wards. After learning in about 120 s the biped’s (c) System Trajectory
(d) and RMP Forward Trajectory are almost equal at the same instant
of time. This shows the modified FEL’S potential to learn trajectories
online.

40

