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Abstract
Multi-modal densities appear frequently in time series and practical applications. However,

they cannot be represented by common state estimators, such as the Extended Kalman Filter
(EKF) and the Unscented Kalman Filter (UKF), which additionally suffer from the fact that
uncertainty is often not captured sufficiently well, which can result in incoherent and diver-
gent tracking performance. In this thesis, we address these issues by devising a non-linear
filtering algorithm where densities are represented by Gaussian mixture models, whose param-
eters are estimated in closed form. The filtered results can be further improved by a backward
pass or smoothing. However, the optimal backward filter does not offer a closed form solution
and, hence, approximations are needed. We propose a novel algorithm for smoothing in non-
linear dynamical systems with multi-modal beliefs. The resulting method exhibits a superior
performance on typical benchmarks.

i



Acknowledgements
First of all, I would thank my supervisors Dr.-Ing. Marc P Deisenroth and Prof. Jan Peters for ac-

cepting me as an external student, and Prof. Henning Puder for his support as an internal supervisor.

I have learned a lot from my interactions with Marc, and I am grateful for his continued support
even after moving to London. I admire him for his hands-on approach to supervision, especially
for encouraging some of my outlandish ideas. I thank him for his suggestions on the approximate
inference algorithms and his patience to help me draft my first research paper. Both, the paper and
his suggestions constitute a substantial part of this thesis.

I thank Prof. Jan Peters for his support during my thesis with not only technical supervision and
financial assistance but also guidance on host of other questions I keep directing towards him.

I acknowledge the partial financial support for my thesis by Akademisches Auslandsamt at Tech-
nische Universität Darmstadt

I thank Felix Schmitt, Dominik Notz, Marco Ewerton and Roberto Calandra for making my stay
in the lab enjoyable and for indulging in discussions from abstract mathematics to utter nonsense.
My floor-mates Aishwarya Sharma and Divya Yenna helped me to cope up with absolute lows in my
personal life and their support allowed me to concentrate on my thesis, and, hence, I would like to
thank them.

This space would be too small to express my gratitude to my parents, as I cannot thank them
enough for their continued support throughout my studies without which I could not have reached
this stage in my career.

ii



Contents

1. Introduction 1
1.1. Scope of the Work and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Bayesian Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1. Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2. Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Linear Gaussian Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1. The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2. The Rauch-Tung-Striebel (RTS) Smoother . . . . . . . . . . . . . . . . . . . . 12

1.4. Nonlinear Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1. Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2. Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3. Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4. Gaussian Sum Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5. Summary of State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Multi-Modal Filter and Smoother 24
2.1. Multi-Modal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1. Estimation of the Gaussian Mixture Parameters . . . . . . . . . . . . . . . . . 25
2.1.2. Propagation of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3. Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4. Mixture Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2. Multi-Modal Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1. Gaussian Sum Smoother for Non-linear systems . . . . . . . . . . . . . . . . . 30

2.3. Summary of the Multi-modal filter and Smoother . . . . . . . . . . . . . . . . . . . . 33

3. Numerical Results 37
3.1. Univariate Non-linear Growth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1. Non-stationary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2. Stationary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Lorenz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Discussion and Conclusion 44
4.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A. Gaussian Conditioning 47

iii



1 Introduction
The Hawk-Eye (Owens et al., 2003) technology has revolutionised the way we watch tennis.

How do they generate ball trajectory ? A path traced by a dynamical system (ball) is called
trajectory of that dynamical system. We express trajectory as a times series, that is our trace is
over time, as we are interested in predicting the trajectory (over time). The dynamical systems
are often described by differential equation in time. In the Figure 1 Hawk-Eye technology
generates the trajectory of the ball. The proprietary system was originally developed for cricket
in 2001 and now is included in English Premier League as well.

The Hawk-Eye uses a set of cameras that capture the motion of the ball and based on the
model of dynamical system we estimate the position of ball in a tennis court (Owens et al.,
2003). Tracking a moving object based on observations is a classic example of estimation or
filtering (Bar-Shalom et al., 2004). Filtering is a signal processing term for estimation of a true
signal from a noisy data (we filter noise). The filtering algorithms to estimate the true signal
based on noisy time series data have wide applications from biomedicine to rocket science.

Figure 1.1.: Ball tracking: The shaded trace rep-
resents estimated trajectory of the
ball. The trajectory can be repre-
sented as a time series describing
time evolution of a dynamical sys-
tem.(For definitions of the terms
see text )

In fact, the first (linear) filter for track-
ing non-stationary systems was proposed by
Kalman (Kalman, 1960) for National Aero-
nautics and Space Administration (NASA).
The Kalman filter, the Hawk-Eye system and
this work share a common theme, they esti-
mate the latent state of a system (ball) from
sequential noisy observations. Filtering and
estimation in a non-linear dynamical system
has been studied extensively and hence, has
resulted in unique terminology. We use the
tennis ball tracking as an example to estab-
lish terminology and as a visual aid 1.

We define the ball and the forces acting on
it (wind, gravity etc.) as a ‘system’. We wish
to track the ball, i.e. the position of the ball
in space and its velocity, which tell us the cur-
rent ‘state’ of our system, as our state changes
over time we define state by ‘state variables’.
Now we cannot actually measure these state
variables directly without disturbing the on-
going match, so we ‘observe’ the ‘latent’ state of ball. For technical reasons, it is easier to
measure distance and the angle the ball makes with respect to observer, we call these mea-
surements as ‘observed variables’. Now, we aim to predict how the ball will move in future based
on the measurements of the ball by the observer. We may be able to approximately model the
1 The ball tracking is used only as a visual aid to interpret abstract terminology. The focus of thesis is not tracking

a tennis ball, however, the algorithms proposed here can be used for tracking.
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tennis court, e.g. hard court or clay court to predict the velocity of ball once it hits the surface.
However, the challenge of accurately modelling the impact forces and the approximations in
model introduce ‘uncertainty’ in our system and we can only ‘estimate’ the position of the ball.

How we account for the ‘uncertainty’ introduced by the approximate model of our complex
real life system is central theme of this thesis. The unknown noise makes the task even more
challenging, we model noise a Gaussian with known variance. In this report, we restrict our-
selves to the Gaussian noise model and non-linear dynamical systems. See Section 1.1.1 for
details on scope of the work.

An optimal algorithm for a linear dynamical system with Gaussian noise was proposed by
Kalman (Kalman, 1960). In such systems, the Gaussianity allows us to derive the recursive
filtering equations in closed-form. In contrast, for a non-linear system Gaussian uncertainties
may become non-Gaussian due to the non-linear transform. Hence, we require approxima-
tions, such as linearising the functions, e.g. in the Extended Kalman Filter (EKF) (see 1.4.1),
or deterministic sampling, e.g. in the Unscented Kalman Filter (UKF) (see 1.4.2) to approxi-
mate a non-Gaussian density by a Gaussian (Julier and Uhlmann, 2004). Such approximations
make the limiting implicit assumption that the true densities are uni-modal. Filters based on
these approximations often severely under-perform when true densities are multi-modal. Hence,
multi-modal approaches are frequently needed.

For representing multi-modal, non-Gaussian densities particle filters are a standard ap-
proach (see 1.4.3). They are computationally demanding since they often require a large
number of particles for good performance, e.g. due to the curse of dimensionality. An in-
sufficient number of particles may fail to capture the tails of the density and lead to degenerate
solutions. In practice, we have to compromise between the deterministic and fast (UKF/EKF) or
the computationally demanding and more accurate Monte Carlo methods (Doucet et al., 2001).

An ideal filter for a non-linear system should allow for multi-modal approximations, and at
the same time its approximations should be consistent to avoid degenerate solutions. In this
report, we propose a filtering method (see 2.1.3) that approximates a non-Gaussian density
by a Gaussian mixture model (GMM). A GMM allows modelling multi-modality as well as rep-
resenting any density with arbitrary accuracy given a sufficiently large number of Gaussians,
see (Anderson and Moore, 2005), Section 8.4, for a proof. Intuitively we can imagine a extreme
case of infinite Gaussians with variances tending to zero forming a train of Dirac deltas, that
in asymptotically can approximate any function with arbitrary precision. The GMM presents
an elegant deterministic filtering solution in the form of the Gaussian Sum filter (Alspach and
Sorenson, 1972).

The Gaussian Sum filter (GSUM-F) was proposed as a solution to estimation problems with
non-Gaussian noise or prior densities. The GSUM-F relies on linear dynamics and the assump-
tion that the parameters of the Gaussian mixture approximation to the non-Gaussian noise or
prior densities are known a priori. This linearity assumption can be relaxed, e.g. by linearisa-
tion (EKF GSUM-F) (Anderson and Moore, 2005) or deterministic sampling (UKF GSUM-F) (Luo
et al., 2010), but both solutions still require a priori knowledge of the GMM parameters. If, how-
ever, the prior and noise densities are Gaussian, the UKF GSUM-F and EKF GSUM-F are reduced
to the standard UKF and EKF, i.e. they become uni-modal filters. To account for a possible
uni-modal to multi-modal transition in a non-linear system, we need to solve two problems:
the propagation of the uncertainty and the parameter estimation of the GMM approximation.
Kotecha and Duric (Kotecha and Djuric, 2003), proposed random sampling for uncertainty prop-
agation and Expectation-Maximization (EM) to estimate the GMM parameters. In this report,
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we propose to propagate uncertainty deterministically using the Unscented Transform, which
also allows for a closed-form expression of the GMM parameters.

In our proposed multi-modal filter (Kamthe et al., 2013) we present an approximate solution
to address the possible uni-modal to multi-modal transition in a non-linear system by a Gaus-
sian mixture models and derive closed form expressions to estimate Gaussian mixture model
parameters, for details see Section 2.1.3.

While filtering is an online estimation, i.e. our current state estimate is based on all the
observations up to current time index, we can look back and correct our previous state estimates
based on new observations, the filter to correct estimates based on future observations is called
‘Fixed lag Smoother’ or just ‘smoother’. The smoother also needs to take into account the non-
linear transition function. We propose a novel smoother based on multi-modal filter in the
Section 2.2. To the best of our knowledge the smoothing algorithm for non-linear estimation
based on Gaussian is not available. The other Gaussian mixture based smoothers in literature
are the “ Two-filter smoother” based on the backward information filter (Kitagawa, 1994), the
“Gaussian Mixture smoother” (Vo et al., 2012) based on the β recursion and the “Expectation
Correction” smoother (Barber, 2006) based on approximating a Gaussian integral by evaluating
the integral at mean of the Gaussian uncertainty.
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1.1 Scope of the Work and Contributions

As a testimonial to the importance of the non-linear estimation and time series models many
standard texts are available, and in particular excellent description of filtering and state estima-
tion problems are covered in texts (Kailath et al., 2000) and (Bar-Shalom et al., 2004).

We include standard Gaussian filters and particle filters as state of the art non-linear estimators
in introductory chapter. Non-linear filters can be broadly classified as described in 1.2. We
introduce the only the standard algorithms for each theme, e.g. Determinisitic unimodal filters
(Gaussian beliefs) also include Cubature Kalman filters (Arasaratnam and Haykin, 2009), Gauss
Hermite Quadrature filters, etc.

1.1.1 Scope

In this work we restrict ourselves to Gaussian priors, Gaussian Noise densities and use stan-
dard benchmarking tools like Univariate Non-linear Growth Model (UNGM) to test new al-
gorithms proposed in this work. The Gaussian sum filter and Multi-modal filters can handle
non-Gausian densities and, hence, will outperform uni-modal non-linear filters in non-Gaussian
noise density scenarios. However, we avoid non-Gaussian priors to demonstrate that the pro-
posed algorithm can predict and handle non-Gaussian densities generated due to non-linearity
of systems. The proposed mulit-modal filter will outperform uni-modal filters under standard
testing conditions for non-Gaussian priors 2, hence, for fair comparison with uni-modal filters
we only consider a Gaussian noise in the system.

Non-linear
Filters

Multi-
modal

Random

Particle
Filter

Deter-
ministicGaussian

Sum
Filter

Unimodal
/ Gaussian

Deter-
ministic

UKF

EKF

Random

Gibbs
Filter

Figure 1.2.: Non-linear Filters: The classification of non-linear filters is abstract and its main pur-
pose to define scope of this work in context of state of the art literature, e.g. all
leafs are non-linear filters and described in this report. Orange circles represent the
standard algorithms on which we establish our contributions.

2 Multi-modal filter is based on (Alspach and Sorensen, 1972)
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Assumptions and Scope

Unless stated otherwise, the following assumptions are made throughout the report.

• Non-linearity: The system function f and measurement function h are non-linear and
assumed to be known and continuous.

• Prior: We assume a Gaussian prior on initial state variables

• Noise: Noise density is assumed to be Gaussian and we assume standard normal distribu-
tion through out our discussion and examples to maintain consistency.

The following points are NOT covered in this report.

• A thorough comparison with Markov-Chain-Monte-Carlo (MCMC) methods.

• Comparison of proposed smoother with state of the art Gaussian smoothers.

We, however, include a comparison with Gibbs smoother (Deisenroth and Ohlsson, 2011) and
leave thorough comparisons to future work.

1.1. Scope of the Work and Contributions 5



1.1.2 Contributions

The main contributions of this thesis are enlisted below.

1. We present closed-form expressions for estimating the parameters of the Gaussian mixture
model to approximate multi-modal predictive density of a non-linear dynamical system,
see Section 2.1.2.

2. Multi-Modal-Filter (M-MF) (Kamthe et al., 2013), introduced in Section 2.1 is a multi-
modal approach to filtering in non-linear dynamical systems, where all densities are rep-
resented by Gaussian mixtures.

3. We propose a novel multi-modal smoothing pass for non-linear dynamical systems, the
result from Multi-Modal Filter is used to obtain a Gaussian Mixture based multi-modal
smoother, see Section 2.2. A smoothing pass based on Gaussian sum approximations is not
available in literature to the best of our knowledge, and this algorithm is the most signifi-
cant contribution of the thesis. Note: Gaussian Sum Approximations were first introduced
in (Alspach and Sorensen, 1972) and form the basis of Gaussian sum filter (Anderson and
Moore, 2005).

The Gaussian mixture representation provides flexibility to approximate complex predictive den-
sities along with ability to use closed form expressions for filtering and smoothing.

6 1. Introduction



1.2 Bayesian Filter

xn−1 xn xn+1

yn−1 yn yn+1

f

h
Filtering Smoothing

Figure 1.3.: State Space Model (SSM) of a dynamical system. Circles represent the hidden state
variables, squares represent observed variables and subscripts denote time indices.
State transition function f and measurement function h are assumed known and
non-linear. Arrows indicate information flow in filtering and smoothing and both
estimators are recursive, i.e. in a typical SSM model the above sequence repeats
itself in both directions (left and right).

We now describe the generic framework of inference in state space models and we introduce
standard terminology in the context of tennis ball tracking. Readers familiar with state-space
models can skip to Bayesian filters in Section 1.2.1.

The mathematics or equations to ‘predict’ the future state values and ‘correct’ our estimate of
the state based on the new measurements is called filtering. When the system is non-stationary
and noise is Gaussian we can use Kalman Filter (Kalman, 1960) to obtain optimal estimates (An-
derson and Moore, 2005).

The state-space models are powerful tools to represent many complex problems elegantly, e.g.
whole ball tracking system can be neatly and compactly represented by the state-space diagram
shown in Figure 1.3. The state-space representation is simple enough to understand intuitively
and yet it can represent almost all the estimation problems of practical significance (Thrun et al.,
2005).

In the diagram the states are represented by circles and measurements by squares . The
circles are called the latent variables as we can ascertain their existence only through our obser-
vations, the orange squares in the Figure 1.3. The velocity of tennis ball for example, is a latent
variable and we can estimate it based on our observations only.

To facilitate a mathematical formulation of system we assume Markov property, i.e. the next
state is based entirely on the current state and is independent of all the other states. The Markov
assumption allows us to write recursive estimation algorithms.

Throughout this thesis we represent state of the system by variable x and use subscript nota-
tion xn to denote values of the state vector at discrete time step index n. To model sequential
data in time series we use SSM as described above. The state transition function f and mea-
surement(observation) function h are assumed to be known. The variable Yj = {y1, . . . , y j}
represents all the observations up to time step j. The model can be represented as in Figure 1.3.

1.2. Bayesian Filter 7



1.2.1 Filtering

In a recursive Bayesian filter, the current belief or the state distribution p(xn) is calculated
from the previous state distribution p(xn−1) at a discrete time index n − 1. We initialise the
recursive filter with the state x0 and a distribution p(x0). As our state is latent, the current
belief is conditioned on observations up until the current observation, i.e. the current belief
is p(xn−1|Yn−1). Filtering is defined as estimating p(xn|Yn) given new observation yn and can
be divided in two steps, the time update and the measurement update. We typically, alternate
between these two steps, i.e. we predict the state (time update) and then correct the state
estimate (measurement update) and use the new corrected state to predict next state and so on.

Time Update

In the time update we move one step horizontally along the chain (horizontal red arrow) in
the Figure 1.3. This can be represented as estimating p(xn|Yn−1) from p(xn−1|Yn−1). The time
update is defined by the integral

p(xn|Yn−1) =

∫

p(xn|xn−1)p(xn−1|Yn−1)dxn−1. (1.1)

This integral cannot be solved in closed form for non-linear systems. All non-linear filters ap-
proximate this integral. Particle filters replace the integral by sum and probabilities by random
samples.

Measurement Update

In the measurement update we incorporate the current observation yn and estimate the poste-
rior density p(xn|Yn). This can be interpreted as moving information from observation to correct
the time update prediction according to the current measurement (vertical red arrow). We use
Baye’s theorem to write

p(xn|Yn) =
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
, (1.2)

where the marginal density p(yn|Yn−1) is obtained by
∫

p(yn|xn)p(xn|Yn−1)dxn.

1.2.2 Smoothing

In smoothing, we wish to estimate the distribution of the state xn given all observations YN .
We assume that all the state predictive densities p(xn|Yn) are available. We estimate p(xn|Yn)
recursively as (Kitagawa, 1994)

p(xn|YN ) = p(xn|Yn)

∫

p(xn+1|YN )p(xn+1|xn)
p(xn+1|Yn)

dxn+1. (1.3)

In the Figure 1.3, this can be interpreted as moving from right to left.

8 1. Introduction



Tennis Ball Tracking

We now consider Bayesian filtering in the ball tracking context.

Time Update:
We estimate the next state of the ball. Will it move in a straight line? Will it hit the ground
(in next time step)? Was there any spin?

Measurement Update:
We ‘correct’ our estimate to update our current state, e.g. it hit the ground, there was a top
spin imparted on it, etc.

Smoothing Update:
Smoothing allows us to correct the whole trajectory based on the final observations, i.e.
now we know that there was top spin, does it change our estimate of the state of the ball
at the very beginning (Ideally, it should, if the spin imparted was our latent variable and
now we know more about, the type and the amount, of spin based on the final result).

So if we know how the system works and have high speed cameras why do we need integrals and
probabilities? Our observations are noisy or uncertain (capturing 3D world with 2D sensors),
even with stereoscopic vision we can be tricked (optical illusions). In the Hawk-Eye tracking
system the ball and its environment are uncertain, e.g. humidity and amount of spin imparted
decide how the ball moves in air. So to deal with uncertainties we make assumptions, and
naturally the accuracy of estimation depends on how close our assumptions are to the reality. In
the following we establish a standard approximation used in Bayesian filtering and smoothing.

1.2. Bayesian Filter 9



1.3 Linear Gaussian Filter

The Bayesian filtering as defined by the Equations (1.1) to (1.3), can be solved in closed form
with Linear Gaussian systems (Thrun et al., 2005). The derivation of the Kalman filter from
Bayesian filter is well known and we do not attempt to rewrite it. Readers can find Kalman filter
derivation based on Wiener filter in (Kailath et al., 2000), a derivation based on Bayesian filter
approach is given in (Thrun et al., 2005).

The Kalman filter exploits Gaussian conditioning property, i.e. if we have a jointly Gaussian
distribution we can obtain conditional density in a closed form. We assume Gaussian uncer-
tainties and approximate densities or beliefs as Gaussians. The filtering based on the Gaussian
assumption is called Gaussian filtering.

1.3.1 The Kalman Filter

We consider a dynamical system described by the following equations

xn = f (xn−1) +wn, wn ∼N (0,Q), (1.4)

yn = h(xn) + vn, vn ∼N (0, R), (1.5)

where f and h are the (non-linear) transition and measurement functions, respectively. The
noise processes wn and vn are i.i.d. zero mean Gaussian with covariances Q and R, respectively.
We denote the D dimensional state by xn, and yn is the E dimensional observation.

In Gaussian filtering we assume that all the known densities , system and measurement noise
and prior density are Gaussian. For a linear system this enables us to use linear Gaussian
conditioning and all the equations (1.1) to (1.3) can be derived in closed form.

We assume that our state and measurement variables are jointly Gaussian to exploit the
Gaussian conditioning property. The assumption reduces Kalman filtering to estimating the
auto-covariance and cross-covariance matrices (Deisenroth and Ohlsson, 2011).

The joint Gaussian matrix for a latent state xn and measurement variable yn can be written as

�

xn
yn

�

∼N
�

xn
yn

�

�

�

�

�

µn
µy

n

�

,
�

Σx ,x
n Γx ,y

n
Γx ,y

n
T Σy,y

n

�

�

(1.6)

and for state variables at time index n and n− 1 as,

�

xn−1
xn

�

∼N
�

xn−1
xn

�

�

�

�

�

µn−1
µn

�

,
�

Σx ,x
n−1 Γx ,x

n
Γx ,x

n
T Σx ,x

n

�

�

(1.7)
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Algorithm 1 Kalman Filter: Algorithm illustrates Kalman filtering for Linear Gaussian systems.
Subscripts define time index, superscripts denote latent x or observed y variable, µ, Σ, and
Γ are mean, covariance and cross covariance respectively of a Gaussian (Linear systems) or
approximated as Gaussian (Non-linear systems) beliefs

1: function KALMANFILTER( f , h,µn−1,Σn−1, yn,Q, R)
2: cµn = f (µn−1)
3: Estimate Σx ,x

n using f and Σn−1

4: cΣn = Σx ,x
n +Q . Time update

5: Estimate Σy,y
n and Γx ,y

n using h and cΣn

6: Kn = Γx ,y
n

�

Σy,y
n + R

�−1
. Kalman Gain Kn

7: µn =cµn+ Kn
�

yn− h(cµn)
�

8: Σn = Σn−1− (Γx ,y
n )(Σ

y,y
n )(Γ

x ,y
n

T ) . Measurement Update
9: return µn,Σn

10: end function

We describe Kalman filter algorithm based on the joint Gaussian assumption in Algorithm 1.
For the linear dynamical system with system gain matrix Fn and measurement matrix Hn the
covariances are given by

Σx ,x
n = FnΣnF T

n , (1.8)

Σy,y
n = HnΣnHT

n ,

Γx ,x
n = ΣnF T

n ,

Γx ,y
n = ΣnHT

n .

For a non-linear system with a Gaussian assumption (implicit linearisation), we approximate
these covariances matrices using different methods such as the Unscented Transform or Gibbs
sampling (Deisenroth and Ohlsson, 2011).

1.3. Linear Gaussian Filter 11



1.3.2 The Rauch-Tung-Striebel (RTS) Smoother

In smoothing we move backwards to update our estimate of trajectory. Below we describe a
well-known backward pass called Rauch-Tung-Striebel (RTS) smoother. The derivation of the
backward pass below is similar to the backward pass presented in (Särkkä, 2008).

We describe below a procedure to evaluate integral (1.3).

1. We reproduce the Equation (1.3)

p(xn|YN ) = p(xn|Yn)

∫

p(xn+1|YN )p(xn+1|xn)
p(xn+1|Yn)

dxn+1. (1.9a)

2. We push the filtering result p(xn|Yn) inside the the integral as it a constant w.r.t. integration
variable xn+1 to obtain

p(xn|YN ) =

∫

p(xn+1|xn)p(xn|Yn)
︸ ︷︷ ︸

joint distribution of xn and xn+1

p(xn+1|YN )
p(xn+1|Yn)

dxn+1. (1.9b)

3. We can obtain conditional distribution of xn given xn+1 and Yn using the joint distribution
p(xn, xn+1|Yn). This conditional can be achieved by mere reformulation of terms in step
above

p(xn|YN ) =

∫

p(xn, xn+1|Yn)
p(xn+1|Yn)

︸ ︷︷ ︸

Conditional distribution of xn

p(xn+1|YN ) dxn+1. (1.9c)

4. Exploiting the Markov property, we can write p(xn|xn+1, YN ) = p(xn|xn+1, Yn) and, hence,

p(xn|YN ) =

∫

p(xn|xn+1, YN )p(xn+1|YN ) dxn+1. (1.9d)

12 1. Introduction



Algorithm 2 RTS Smoother: The algorithm describes RTS smoother for linear Gaussian systems.
Subscripts define time index, superscripts denote latent x or observed y variable, µ, Σ, and
Γ are mean, covariance and cross covariance respectively of a Gaussian (Linear systems) or
approximated as Gaussian (Non-linear systems) beliefs. Superscript ‘s’ is used to denote final
smoothed result, i.e. we define smoothed mean as µs

n and filtered mean as µn.
1: function RTSSMOOTHER(µn,Σn,µn+1,Σn+1,Q)
2: bµn+1 = f (µn)
3: bΣn+1 = FnΣn−1Fn(µn)

T +Q
4: Dn = ΣnFnbΣ

−1
n+1 . Smoother Gain Dn

5: µs
n = µn+ Dn

�

µn+1− bµn+1
�

6: Σs
n = Σn+ Dn

�

Σn+1− bΣn+1

�

DT
n

7: return µs
n,Σs

n
8: end function

5. If we assume

p(xn|xn+1, YN )∼N (xn|µ
′

n,Σ
′

n) and

p(xn+1|YN )∼N (xn|µs
n+1,Σs

n+1),

then the distribution p(xn|YN ) is also Gaussian, i.e.

p(xn|xn+1, YN )∼N (xn|µs
n,Σs

n)

Based on Step 5 above, we can use Gaussian conditioning to write smoothing algorithm as
Algorithm 2,

1.3. Linear Gaussian Filter 13
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Figure 1.4.: Example of Multi-modal predictive density in UNGM with standard normal distribu-
tion as prior. The blue curve is standard normal prior and the green curve represents
a non-linear function. The predictive density for a non-linear mapping of standard
normal distribution is shown by red curve. The red curve was generated using kernel
smoothing density estimator using 105 samples. The samples are generated from
the Gaussian distribution shown in blue and then mapped by non-linear function f
(in green).

1.4 Nonlinear Filters

The Kalman filter and RTS smoother allow us to recursively calculate state estimates and all
relations are given in closed form, however, they make assumption that the system is linear.
Most applications of real life examples are nonlinear in nature.

To understand it in our ball tracking system, our observation function, the video cameras
implicitly use non-linear transformations to measure position of the ball, e.g. Cartesian to polar,
3 dimensional world to 2 dimensional observation. We cannot use Kalman Filter in its form
described in Section 1.3.1 unless we use approximations to estimate the covariance matrices in
Equations (1.6) and (1.7). The approximations are needed due to the following challenges in
non-linear dynamical systems.

1. Predictive distributions or the integrals used in our Bayesian framework do not yield closed
form solutions. Approximations are needed.

2. Non-linear mapping results in non-Gaussian distributions, i.e. even if we were able to
somehow evaluate the integrals, we cannot propagate the results forward due to the lack of
parametric form. As an illustration, consider a hypothetical system that starts as Gaussian
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and undergoes a nonlinear function map as shown in Figure 1.4. The red curve on left
describes non-Gaussian density hence we cannot use Kalman filter or RTS smoother.

Most non-linear estimators solve both challenges simultaneously i.e by linearising a non-linear
system. The process is described in the following sections. We make the above distinction to
illustrate our approach to tackle the problem.

We treat above challenges individually, i.e.

1. Provide a Bayesian framework to estimate predictive density

2. The density is parametric hence we can use recursive filters like Gaussian sum filters and
yet it is not necessarily linearisation as we allow a non-Gaussian predictive density to a
Gaussian prior. The Figure 1.4 shows approximation for the same non-linear function we
described in Figure 2.2.

If we approximate the predictive density by a Gaussian we implicitly linearise the system. This
implicit linearisation can lead to large approximation errors, e.g. see Figure 1.4. In Figure 1.4,
any Gaussian approximation to the red curve (predictive density) would result in large errors as
a single Gaussian cannot capture both modes simultaneously.

1.4. Nonlinear Filters 15



Linear Approximation

As described above in the linear approximation we approximate all the beliefs or state distri-
butions by a Gaussian density. The Gaussian assumption allows us to use property of Gaussian
conditioning a property that enables us to write state estimation in closed form.

So, if we assume p(xn) ∼ N (xn|µn,Σn) and p(xn−1) ∼ N (xn−1|µn−1,Σn−1), then our linear
approximation implies

�

xn
xn−1

�

∼N
�

�

xn
xn−1

�
�

�

�

�

�

µn
µn−1

�

,
�

Σn Γn
ΓT

n Σn−1

�

�

. (1.10)

With the known transition function f we can evaluate the mean of the predictive Gaussian
as µn = f (µn−1). In the following we describe standard methods classified based on the way
we approximate the predictive Covariances Σ and Γ. A unified view on the linear Gaussian
systems is given in (Deisenroth and Ohlsson, 2011). We give brief overview of some non-linear
estimators that use the linear Gaussian assumption.

Extended Kalman Filter: Linearise the function using Taylor series expansion, see Sec-
tion 1.4.1.

Unscented Kalman Filter: Use deterministic sampling to estimate the Covariances, see
Section 1.4.2.

Gibbs Filter: Random sampling to estimate the mean and the Covariances, see Sec-
tion 1.4.3.

The list of algorithms is meant to be illustrative and not exhaustive. Each type described above
demonstrates a principle or concept used to approximate to tackle intractability inherent in non-
linear filtering systems (Deisenroth and Ohlsson, 2011). Several ad-hoc methods are available
in literature.
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1.4.1 Extended Kalman Filter

As described in Section 1.4, we linearise the system and measurement functions. We use the
same model as described by system of Equations (1.4). With our linear approximation model
(1.10), the parameters of predictive Gaussian are calculated as

µn = f (µn−1), (1.11)

Σx ,x
n = Fn−1(µn−1)(Σn−1)F

T
n−1(µn−1),

Σy,y
n = Hn(µn)(Σn)H

T
n (µn),

Γx ,y
n = Σn−1HT

n−1(µn−1),

Γx ,x
n = Σn−1F T

n−1(µn−1),

where Fn−1 is the Jacobian matrix of f obtained by

�

Fn(µn)
�

k,k′ =
∂ fk(x)
∂k′ x

�

�

�

�

x=µn

. (1.12)

where k and k′ denote row and column of a matrix, similarly we have

�

Hn(µn)
�

k,k′ =
∂ hk(y)
∂k′ y

�

�

�

�

x=µn

. (1.13)

The matrices in (1.11) can be used in Algorithm 1 to obtain Extended Kalman Filter (EKF).
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Figure 1.5.: Example of the UT for mean and covariance propagation. a) actual, b) first-order
linearization (EKF), c) UT. The Figure is reproduced from (Wan and van der Merwe,
2000)

1.4.2 Unscented Kalman Filter

The unscented Kalman filter is based on the Unscented Transform (UT) (Julier and Uhlmann,
2004) where we use deterministic sampling to estimate the covariance matrices Σn and Γn.
Similar to EKF we need only estimate the covariance matrices (Deisenroth and Ohlsson, 2011)
to obtain Unscented Kalman filter.

The matrices in (1.14) can be used in Algorithm 1 to obtain Unscented Kalman Filter (UKF).
To illustrate the UT consider a variable xn−1 ∼N (xn−1|µn−1,Σn−1) and we want to estimate the
distribution of p(xn) gievn that xn = f (xn−1) and f is any non-linear function. We can divide
the transform in the following steps,

1. Calculate sigma points Xn of distribution N (xn−1|µn−1,Σn−1).

2. Propagate the sigma points through non-linear function f .

3. Estimate transformed mean and covariances based on the transformed sigma points. 3

3 The Yn in (1.14f) and (1.14g) is a matrix and not a vector of observations.
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χ[0]
n−1 = µn−1, (1.14a)

χ[ j]
n−1 = µn−1+ (

p

Σn−1)
j, (1.14b)

χ[ j+D]
n−1 = µn−1− (

p

Σn−1)
j,

(1.14c)

where (
p

Σn−1) j represents j th row of the Cholesky factor of Σn−1. The points χn−1 are called
sigma points as they are spread around mean at a distance of one sigma

µn = Xnwµ, (1.14d)

Σx ,x
n = XnW X T

n , (1.14e)

Σy,y
n = YnW Y T

n , (1.14f)

Γy,x
n = YnW X T

n , (1.14g)

where χn−1 is a sigma point matrix and
p

Σn−1 is a lower triangular matrix of the Cholesky
factorisation, function f (.) is applied to each column of argument matrix. The constant is
obtained by c = α2(n+ κ) where α and κ are constants of UT. The vector wµ and matrix W are
defined as

wµ =
�

W 0
m . . . W 2n

m

�T
, (1.14h)

W =
�

(I − [wµ . . . wµ])
��

diag(W 0
c . . . W 2n

c )
��

(I − [wµ . . . wµ])
�T

. (1.14i)

(1.14j)

Where the weights are obtained by

W 0
m = λ/(n+λ), (1.14k)

W 0
c = λ/(n+λ) + (1−α

2+ β),

W i
m = 1/ {2(n+λ)} , i = 1, . . . , 2n.,

W i
c = 1/ {2(n+λ)} , i = 1, . . . , 2n.

with λ defined as

λ= α2(n+κ)− n. (1.14l)

The hyperparameters λ, α and κ control the spread of the sigma points χ (?)
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Algorithm 3 Particle Filter: The following algorithm describes a generic particle filter algorithm,
adapted from (Thrun et al., 2005). The χ represents samples, subscript denotes time index. The
system function and the measurement functions are given by f and h respectively. The algorithm
returns particles χn that collectively represent filtered estimate of system at time n.

1: function PARTICLE FILTER(χn−1, f , h, yn)
2: cχ

n = χn = ;
3: for m=1 to M do
4: sample x[m]n ∼ f (x[m]n−1)∼ p(xn|x

[m]
n−1)

5: w[m]n = p(yn | h(x[m]n ) ) . Calculate weight (importance) of particle
6: cχ

n = cχn+
¬

x[m]n , w[m]n

¶

7: end for
8: for m=1 to M do
9: sample i with probability ∝ w[i]n . Importance re-sampling

10: add x[i]n to χn
11: end for
12: return χn
13: end function

1.4.3 Particle Filters

Particle filters are non parametric implementation of Bayesian filter. In particle filters we
represent our beliefs or probabilities densities by samples drawn from these densities. See
(Thrun et al., 2005) for detailed overview on particle filters in terms of Bayesian filtering.

As an illustrative example consider a system with prior probability,

p(x0|Y0) =N (x0|µ0,Σ0).

Subsequently, we represent p(x0|Y0) by set χ of randomly drawn samples from N (x0|µ0,Σ0),
i.e.

χ[M]
0 ∼ p(x0|Y0) =N (x0|µ0,Σ0)

where M represents the number of particles.

For the time update we can use the function f on set of particles χ[M]n−1, i.e.

χ[M]
n ∼ p(xn|Yn−1)∼ f (χ[M]n−1)

Generic particle filter is described in algorithm 3 which is adapted from (Thrun et al., 2005) for
a thorough overview of particle filters and Markov Chain Monte Carlo (MCMC) methods refer
(Doucet et al., 2001).
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Gibbs Filter

Unlike generic particle filters described in Section 1.4.3 Gibbs filter is parametric. The state
densities p(xn|Yn) are approximated by a parametric distribution and we use random sampling
(Gibbs sampler) to estimate parameters of these approximate density.

In (Deisenroth and Ohlsson, 2011), the authors use the Gaussian assumption for predictive
densities and the state covariance and cross covariance matrices are calculated using Gibbs sam-
pler. In this work we use Gibbs filter described in (Deisenroth and Ohlsson, 2011) to compare
performance of the proposed filter.

1.4.4 Gaussian Sum Filter

The non-linear filters we discussed in preceding sections all share a common philosophy, ap-
proximate a intractable predictive distribution by a Gaussian distribution. Gaussian approxima-
tion also implicitly imposes a unimodal belief on our state estimate, however, as the name of the
report suggests we are interested in multi-modal beliefs. If we express our multi-modal beliefs
as Gaussian mixtures then we can use Gaussian Sum Filter proposed by (Alspach and Sorenson,
1972). We would like to stress that we view Gaussian sum filter as an algorithm to Kalman Filter
like approximations when beliefs are expressed as Gaussian Mixture. The difference is subtle
and we give following examples to support our view.

1. Gaussian sum filter can be used for non-linear systems if and only if we express approx-
imate beliefs as Gaussian Mixtures. Gaussian sum filter has no mechanism to deal with
non-linearities. Various ways to approximate functions using optimisation are discussed by
authors in (Alspach and Sorenson, 1972).

2. In Switching Linear Dynamical Systems (SLDS) Gaussian mixtures arise naturally, Gaussian
sum filter can be expressed as a Assumed Density Filter [cite Minka, Barber] where the
assumed density is Gaussian Mixture.

An excellent discussion and alternative view on usage of Gaussian sum for non-linear filtering is
given in Section 8.4 of (Anderson and Moore, 2005). The chapter covers several pages and we
recommend it as must read to gain insights in the interpretations of Gaussian Sum Filter. How-
ever, the argument “ Gaussian Sum Filter can be used as an approximate inference technique
with Gaussian Mixture beliefs ” is the important take away point from this Section.
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Estimation Scheme Mean Variance P(X ≤ 0)
χ2 distribution 1.0 2.0 0

Particle Filter 1e3 [1e6] particles 0.9599 [0.9998] 1.8569 [2.0020] 0
Extended Kalman Filter 0 N/A† N/A†

Unscented Kalman Filter 1.1 4.8400 0.3085
Multi-modal Filter 1.1 1.3 0.1680

Table 1.1.: Comparison of various deterministic non-linear approximations: The table shows
approximations for standard normal distribution p(x) = N (0,1) mapped through
quadratic non-linearity x2. True distribution is chi-squared with 1 degree of freedom
p(x2) = χ2

1 . The unscented Kalman filter and multi-modal filter use the same opti-
mal hyper parameters, multi-modal filter in addition uses tuning parameter α = 1.2.
† The EKF diverges, see Figure 1.6

1.5 Summary of State of the Art Filters and Motivation for Multi-Modal Filter

The Extended Kalman filter and Unscented Transform filter are standard state of the art al-
gorithms for deterministic inference with Gaussian beliefs, a similar method for multi-modal
beliefs is not available to the best of our knowledge. The success of EKF and UKF is based on
the ease of implementation and approximations may result in severe errors even for most trivial
problems.

We motivate need for a fast deterministic method with a simple example of one dimensional
quadratic map to demonstrate. The Section is motivated by discussions in (Gustafsson and
Hendeby, 2012). We use quadratic approximation to test the methods.

• Large number of real life applications often have quadratic map, e.g. the euclidean distance
in tracking problems is a quadratic map.

• Quadratic map is simple enough that we can calculate desired values in closed form.

• The probability distribution is not a Gaussian and we can estimate errors in approximation.

We consider a map f (x) = x2 for a standard Gaussian variable x ∼ N (x |0, 1). The p( f (x))
is then a χ2

n distribution with n degrees of freedom, where n is dimension of the variable x .
The plots of approximations for prediction with UKF, EKF, Particle Filter(sampling) and true χ2

1
distribution are plotted in Figure 1.6.

We discuss this results along with the proposed Multi-modal filter in Chapter 4. Here, the main
aim of presenting these results is, both EKF and UKF may result in severe errors, particle filters
need substantially large number of particles to get good approximations, an approximation may
not match true moments of transformed variable and yet result in less approximation errors, see
Figure 1.6 and Table 1.1.
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Figure 1.6.: Comparison of various deterministic non-linear approximations: The figure shows
predictive densities for a quadratic transformation (x2) of the standard normal dis-
tribution by non-linear estimation methods. The green curve shows the ideal result,
χ2 distribution with 1 degree of freedom (χ2

1 ) (a) The plot shows cumulative dis-
tribution of the predicted densities, ideally there should be no mass before zero as
shown by the green curve of χ2 distribution. The EKF concentrates whole mass at
x = 0 (b) The plot shows predictive densities. Note, the χ2

1 distribution has disconti-
nuity at x = 0

1.5. Summary of State of the Art 23



2 Multi-Modal Filter and Smoother
We discussed shortcomings of unimodal approximations in Section 1.5. The ideal filter for

a non-linear system should be able to represent multi-modal densities and make consistent es-
timates. The multi-modal beliefs give the filter additional flexibility to reduce approximation
errors. A Gaussian mixture is an ideal approximation for multi-modal beliefs; it is paramet-
ric, and we can use Gaussian Sum filter for estimation. With a sufficiently large number of
Gaussians in the mixture we can arbitrarily reduce approximation error (Anderson and Moore,
2005); (Alspach and Sorensen, 1972).

The challenge with the Gaussian mixture approximations is to estimate its parameters. We
need to find a method to fit a Gaussian mixture to the predictive density of Gaussian undergoing
a non-linear transform. Given such a method we can repeat the procedure to obtain a predictive
Gaussian mixture for a non-linear transform of the input Gaussian mixture.

The first step to estimate Gaussian mixture parameters to approximate the non-Gaussian,
predictive density for a non-linear map of a Gaussian, is described in Section 2.1.1 (Kamthe
et al., 2013).

Given the filtering results and all the observations we can improve our estimation result by
implementing a backward filter as described in Section 1.2.2. For multi-modal beliefs the op-
timal backward filter, Equation (1.3), cannot be evaluated in closed form due to conditioning
on p(xn+1|Yn) which is a Gaussian a mixture (see Section 2.1.3). We propose an approximate
solution to smoothing with Gaussian mixture beliefs in Section 2.2.

2.1 Multi-Modal Filter

In the following, we devise a closed-form filtering algorithm with multi-modal representations
of the state distributions. Our algorithm is inspired by the following observation made by Julier
and Uhlmann (Julier and Uhlmann, 2004): “Given only the mean and the variance of the under-
lying distribution, and, in absence of any a priori information, any distribution (with the same
mean and variance) used to calculate the transformed mean and variance is trivially optimal.”
This observation was the basis to derive the Unscented transform and the UKF. However, predic-
tions based on the Unscented Transform often under-estimate the true predictive uncertainty,
which can result in incoherent state estimation and divergent tracking performance.

To address this issue, we use a different (optimal) representation of the underlying distribu-
tion, which still matches the mean and variance: We propose to represent each sigma point in
the Unscented transform by a Gaussian centred at this sigma point. This approximation of the
original distribution is effectively a GMM with 2D+1 components, where D is the dimensionality
of x .

In Section 2.1.1, we derive an optimal GMM representation of a state distribution p(xn−1) of
which only the mean and variance are known. In Section 2.1.2, we detail how to map this GMM
through a non-linear function to obtain a predictive distribution p(xn), which is represented by a
GMM. We generalise both uncertainty propagation and parameter estimation to the case where
p(xn−1) is given by a GMM. In Section 2.1.4, we propose a method for pruning the number of
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mixture components in a GMM to avoid their exponential increase in number of components.
In Section 2.1.3, we propose the resulting filtering algorithm, which exploits the results from
Sections 2.1.1–2.1.4.

2.1.1 Estimation of the Gaussian Mixture Parameters

Let the mean and the variance of the state distribution p(xn−1) be given by µ, Σ, respectively.
Then, we can represent p(xn−1) by a GMM p(xn−1) =

∑2D
i=0δiϕi(xn−1), such that the mean and

the variance of the approximate density p(xn−1) equal the mean µ and variance Σ of p(xn−1).
This representation is achieved by the closed-form relations

δi = 1/(2D+ 1),

µ0 = µ, µ j = µ+σ j, µ j+D = µ−σ j,

Σi =
�

1− 2α
D+1

�

Σ,

(2.1)

where i = 0, . . . , 2D and j = 1, . . . , D, where D is the dimensionality of the state variable xn−1.
The variable σ denotes D rows or columns from the matrix square root ±

p
αΣ. From (2.1), we

can see that we need to calculate
p
Σ only once for all 2D + 1 Gaussians ϕi(xn−1). To ensure

that Σi is positive semi-definite, the scaling factor α should be chosen such that 2α ≤ (2D+ 1),
see (2.1). For 2α= 2D+1 in (2.1), the equations above reduce to scaled sigma points (Julier and
Uhlmann, 2004). Hence, the GMM representation in (2.1) can be considered a generalisation
of the classical sigma point representation of densities employed by the Unscented Transform,
where each sigma point becomes an improper probability distribution.

2.1.2 Propagation of Uncertainty

A key step in filtering is the uncertainty propagation step, i.e. estimating the probability
distribution of random variable, which has been transformed by means of the transition func-
tion f . Given p(xn−1) and the system dynamics (1.4), we determine p(xn) by evaluating
∫

p(xn|xn−1)p(xn−1)dxn−1. For non-linear functions f , the integral above can not be solved
in closed form. Thus, approximate solutions are required.

Uncertainty propagation in non-linear systems can be achieved by approximate methods, em-
ploying linearisation or deterministic sampling as in the EKF and UKF. In such approaches, the
state distribution p(xn−1) and the approximate predictive density p(xn) are well represented
by Gaussians. If the state distribution p(xn−1) is a Gaussian mixture as in (2.1), we can esti-
mate the predictive distribution p(xn) similarly, e.g. by applying such an approximate update
to each mixture component in the GMM. In the multi-modal filter, we propagate each mixture
component ϕi(xn−1) of the GMM through f and approximate p(xn) by

p(xn) =

∫

p(xn|xn−1)
∑2D

i=0
δiϕi(xn−1)dxn−1

≈
∑2D

j=0
δ jϕ j(xn),

(2.2)
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Figure 2.1.: Demonstration of predictive density estimation with multi-modal filter. 1) We ap-
proximate Gaussian (blue solid) by a Gaussian mixture (blue dashed) using (2.1)
2) Green solid line represents a non-linear function 3) The solid red line represents
a Gaussian mixture evaluated using EM. The dashed red Gaussians represent un-
scented transform of dashed blue Gaussians. The dashed straight dashed lines rep-
resent sigma points used by a unscented transform.

where the mean and covariance of each ϕ j(xn) are computed by means of the Unscented Trans-
form. The Figure 2.1, shows an example of uncertainty propagation using scheme described in
Equation (2.2).

If the prior density is a Gaussian mixture p(xn−1) =
∑M−1

j=0 β jϕ j(xn−1), we repeat the pro-
cedure above for each mixture component in p(xn−1), i.e. we split each mixture component
ϕ j into 2D + 1 components δiϕ ji, i = 0, . . . , 2D, and propagate them forward using the Un-
scented Transform. For notational convenience, we define this operation on a Gaussian mixture
as Fn( f , p(xn−1)), such that

p(xn) =Fn( f , p(xn−1))=

∫

p(xn|xn−1)p(xn−1)dxn−1

=
M−1
∑

j=0

2D
∑

i=0

β jδi

∫

p(xn|xn−1)ϕi j(xn−1)dxn−1

≡
M(2D+1)−1
∑

l=0

γlϕl(xn), (2.3)

where γl = δiβ j. We compute the moments of the mixture components ϕl by means of the
Unscented Transform.

From (2.3), it can be observed that during an update step the number of components grows
by a factor of M. When applied multiple times, it will result in an exponential explosion of
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Figure 2.2.: Example of a multi-modal predictive density for a non-linear stationary function with
standard normal distribution as prior. The blue curve shows predictive distribution
with calculated using EM (105 samples, 3 components). The solid red curve shows
fit with proposed mulit-modal method and black solid line represents the Unscented
Transform approximation of predictive density. We use Hellinger distance(Beran,
1977) as a metric to measure goodness of fit which shows that proposed method
outperforms standard Unscented Transform based method for this non-linear func-
tion. We can also visually confirm that multi-modal filter is able to capture both
modes of the distribution.

components. We reduce the number of mixture components at each time step, for details, see
Section 2.1.4.

2.1.3 Filtering

In the following, we subsume all derivations in our multi-modal non-linear state estimator,
whose time and measurement updates are summarised in the following.

Time Update

Assume that the filter distribution p(xn−1|Yn−1) is represented by a GMM with M components.
The time update, i.e. the one-step ahead predictive distribution is given by

p(xn|Yn−1) =

∫

p(xn|xn−1)p(xn−1|Yn−1)dxn−1. (2.4)
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This integral can be evaluated as Fn( f , p(xn−1|Yn−1)), such that we obtain a GMM representa-
tion of the time update

p(xn|Yn−1) =
M(2D+1)−1
∑

j=0

γ jϕ j(xn|n−1) (2.5)

as detailed in (2.3).

Measurement Update

The measurement update can be approximated up to a normalisation constant by

p(xn|Yn)∝ p(yn|xn)p(xn|Yn−1), (2.6)

where p(xn|Yn−1) is the time update (2.5). We now apply a similar operation as in (2.3) with
the measurement function h as a non-linear function and obtain

p(yn|Yn−1) =Fn(h, p(xn|Yn−1)). (2.7)

Substituting (2.7) and (2.5) in (2.6) yields the measurement update, i.e. the filtered state
distribution

p(xn|n)∝
2D
∑

i=0

δiϕi(yn|n−1)
M(2D+1)−1
∑

j=0

γ jϕ j(xn|n−1),

≡
M(2D+1)2−1
∑

l=0

βlϕl(xn|n). (2.8)

We calculate the measurement update for each pair ϕi and ϕ j. Recalling that ϕl(xn|n) =
N (x |µi j

n|n,Σi j
n|n) for i = 0, . . . , 2D and j = 0, . . . , (2D+1)2−1, the measurement updates (Särkkä,

2008) and weight updates (Gaussian Sum (Alspach and Sorenson, 1972)) are given by

K j
n = Γ

j
n|n−1

�

Σ j
n|n−1

�−1,

µ
i j
n|n = µ

i
n|n−1+ K j

n

�

y −µ j
n|n−1

�

,

Σi j
n|n = Σ

i
n|n−1− K j

n

�

Σ j
n|n−1

�

K j
n

T
,

βi, j =
δi γ jN (x = y |µ j

n|n−1,Σ j
n|n−1)

∑

k,l
δl γkN (x = y | µk

n|n−1,Σk
n|n−1)

,

(2.9)

where Γ j
n|n−1 is the cross covariance matrix cov(xn−1, xn) determined via the Unscented Trans-

form (Särkkä, 2008).
After the measurement update, we reduce the M(2D+ 1)2 mixture components in the GMM,

see (2.8), to M according to Section 2.1.4.
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2.1.4 Mixture Reduction

Up to this point, we have considered the case where a density with known mean and variance
has been represented by a GMM, which could subsequently be used to estimate the predicted
state distribution. Incorporating these steps into an recursive state estimator for time series,
there is an exponential growth in the number of mixture components in (2.3). One way to
mitigate this effect is to represent the estimated densities by a mixture model with a fixed num-
ber of components (Anderson and Moore, 2005). To keep the number of mixture components
constant we can reduce them at each time step (Anderson and Moore, 2005).

A straightforward and fast approach is to drop the Gaussian components with the lowest
weights. Such omissions, however, can result in poor performance of the filter (Kitagawa,
1994). Kitagawa (Kitagawa, 1994) suggested to repeatedly merge a pair Gaussian compo-
nents. A pair is selected with lowest distance in terms of some distance metric. We evaluated
multiple distance metrics, e.g. the L2 distance (Williams and Maybeck, 2003), the KL divergence
(Runnalls, 2007), and the Cauchy Schwarz divergence (Kampa et al., 2011). In this report, we
used the symmetric KL divergence (Kitagawa, 1994), D(p, q) = (K L (p|q) + K L (q|p))/2, which
outperformed aforementioned distance measures for mixture reduction in filtering.

2.2 Multi-Modal Smoothing

The smoothing update is based on the forward-backward filter. The optimal backward pass
for a dynamical system described by Figure 1.3 is given by equation (1.3) (Kitagawa, 1994), we
repeat the equation (1.3) here for quick reference,

p(xn|YN ) = p(xn|Yn)

∫

p(xn+1|YN )p(xn+1|xn)
p(xn+1|Yn)

dxn+1. (2.10)

Equation (2.10) is a recursion initiated by setting p(xn+1|YN ) = p(xn+1|Yn+1) where the index
n+ 1 now points at last observation, i.e. N = n+ 1. The quantities we know are

p(xn+1|YN ) =
M
∑

j

α jϕ j(xn+1|YN ), previous smoothing result (2.11)

p(xn|Yn) =
P
∑

i

δiϕi(xn|Yn), previous filtering result (2.12)

p(xn+1|xn) =
L
∑

k

αkϕk(xn+1|xn). forward prediction or time update (2.13)

The denominator of (2.10) is a Gaussian mixture that can be evaluated as am integral
∫

p(xn+1|xn)p(xn|Yn)dxn. A Gaussian mixture in the denominator makes a closed form ex-
act solution to the equation (2.10) impossible and we need approximations for a Gaussian sum
smoother.

We propose an approximate solution to the Gaussian sum smoother in Section 2.2.1. The
solution proposed in Section 2.2.1 is not available in the literature to the best of our knowl-
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edge. In the following, we list state of the art deterministic approximations to the smoothing
Equation (2.10).

• Kitagawa’s two filter smoother (Kitagawa, 1994). In the two filter smoother the right
hand side integral is replaced by a backward information filter p(YN |xn), i.e. we write the
smoothing pass as, p(xn|YN )∝ p(xn|Yn) p(YN |xn).

• Closed form forward-backward smoothing (Vo et al., 2012). The forward-backward
smoother uses a recursion to calculate likelihood to approximate smoother as, p(xn|YN ) =
p(xn|Yn) Lik(YN |xn), the Lik( ) denotes likelihood function. The forward-backward re-
places the information filter in Kitagawa’s two filter smoother by the likelihood and avoids
the inversion of transformation matrix (Vo et al., 2012)

• Expectation Correction (Barber, 2006). The expectations correction algorithm ignores the
integral altogether and evaluates left hand side at the mean values of Gaussians in mixture,
i.e. we replace Gaussian by its mean. The crude approximation gives excellent results,
underlining the importance of a Gaussian sum smoother in estimation.

The Gaussian sum smoothers described above attempt to solve the problem of backward pass
with Gaussian mixture beliefs, however, the system is assumed to be linear (Switching Linear
Dynamical Systems (SLDS)). There is no smoothing algorithm in literature for inference in a
non-linear dynamical system with multi-modal beliefs, to the best of our knowledge.

The proposed multi-modal smoother is, however, not restricted to non-linear dynamical sys-
tems alone and in principle can be applied to SLDS as well.

2.2.1 Gaussian Sum Smoother for Non-linear systems

Proposition 2.1. If we define probabilities as in Equations (2.11) to (2.13), the Gaussian mixture
approximation to smoothing equation (2.10) is given as

p(xn|YN ) =
LM P
∑

z=1

βzN (xn|N |µz
n|N ,Σz

n|N ), (2.14)

where the mean µz
n|N and covariance Σz

n|N are given by

Dk
n = Γ

k
n+1|n

�

Σk
n+1|n

�−1
,

µ
i jk
n|N = µ

i
n|n+ Dk

n

�

µ
j
n+1|N −µ

k
n+1|n

�

,

Σi jk
n|N = Σ

i
n|n+ Dk

n

�

Σ j
n+1|N −Σ

k
n+1|n

�

Dk
n

T
,

βi, j,k =
δi α j γkN (x = µ

j
n+1|N | µ

k
n|n−1,Σk

n+1|n+Σ
j
n+1|N )

∑

p,q,r

δp αq γrN (x = µ
q
n+1|N | µ

r
n+1|n,Σr

n+1|n+Σ
q
n+1|N )

.

(2.15)
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Proof. We can rewrite (2.10) as

p(xn|YN ) =

∫

p(xn|xn+1, YN )
︸ ︷︷ ︸

Step 1

p(xn+1|YN )

︸ ︷︷ ︸

Step 2

dxn+1. (2.16)

Step 1

The conditioning is defined as

p(xn|xn+1, YN ) =
p(xn+1|xn)p(xn|Yn)

p(xn+1|Yn)
. (2.17)

The right hand side of (2.17) cannot be evaluated in closed form as the denominator p(xn+1|Yn)
is a Gaussian mixture given by equation (2.13). We rewrite the denominator as,

p(xn|xn+1, YN ) =
p(xn+1|xn)p(xn|Yn)

∫

p(xn+1|xn)p(xn|Yn) dxn

. (2.18)

The expression
∫

p(xn+1|xn)p(xn|Yn) dxn in the denominator is independent of xn and can be
treated as normalisation constant for the probability distribution p(xn|xn+1, YN ). We can obtain

p(xn|xn+1, YN )∝ p(xn+1|xn) p(xn|Yn) = β p(xn+1|xn) p(xn|Yn) (2.19)

where β is a constant independent of xn and defined as

β = 1

Â
∫

p(xn+1|xn)p(xn|Yn) dxn. (2.20)

It should be noted that β is a function of xn+1 and, hence, cannot be treated as a constant when
marginalising over xn+1. Substituting (2.13) in (2.19) yields

p(xn|xn+1, YN ) = β
L
∑

k

γkϕk(xn+1|xn)
M
∑

j

α jϕ j(xn+1|Yn). (2.21)

This derivation completes Step 1 of (2.16). Substituting the result of Step 1 (2.17) in (2.16) we
obtain

p(xn|YN ) =

∫

β

L
∑

k

γkϕk(xn+1|xn)
P
∑

i

δiϕi(xn|Yn)
M
∑

j

α jϕ j(xn+1|YN ) dxn+1. (2.22)
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Pushing the Gaussian variables ϕk and ϕi inside the sum yields

p(xn|YN ) =

∫

β

L
∑

k

γk

P
∑

i

δi

M
∑

j

α j ϕk(xn+1|xn) ϕi(xn|Yn)
︸ ︷︷ ︸

ϕi,k(xn,xn+1|Yn)

ϕ j(xn+1|YN )

︸ ︷︷ ︸

Step 2

dxn+1. (2.23)

We define the individual components of Gaussian mixture ϕ as

ϕi(xn|Yn) =N (xn|n|µi
n|n,Σi

n|n) , (2.24)

ϕk(xn+1|Yn) =N (xn+1|n|µk
n+1|n,Σk

n+1|n). (2.25)

to evaluate the joint distribution

ϕi,k(xn, xn+1|Yn) =N (x ′n|n|µ
i,k
n|n,Σi,k

n|n), (2.26)

where

Dk
n = Γ

k
n+1|n

�

Σk
n+1|n

�−1
, (2.27)

µi,k
n|n = µ

i
n|n+ Dn(xn+1|n−µk

n+1|n),

Σi,k
n|n = Σ

i
n|n+ Dn(Σ

k
n+1|n)D

T
n .

The covariance Σ and cross-covariance Γ can be obtained by any method non-linear Gaussian
approximation methods like Unscented Transform, extended Kalman filter etc.
By definition of β in (2.20) we write Gaussian component of conditional p(xn, xn+1|Yn) as,

ϕi,k(xn|xn+1, Yn) = ϕi,k(xn, xn+1|Yn) β(xn+1) (2.28)

Substituting values from(2.28) in (2.23) yields

p(xn|YN ) =

∫

β(xn+1)
L
∑

k

γk

P
∑

i

δi

M
∑

j

α j ϕi,k(xn|xn+1, Yn)
︸ ︷︷ ︸

Step 1

ϕ j(xn+1|YN )

︸ ︷︷ ︸

Step 2

dxn+1. (2.29)

Step 2 We marginalise over xn+1 to obtain

ϕi, j,k(xn|xn+1, Yn) =N (xn|n|µ
i, j,k
n|n ,Σi, j,k

n|n ), (2.30)
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where

Dk
n = Γ

k
n+1|n

�

Σk
n+1|n

�−1
, (2.31)

µ
i, j,k
n|n = µ

i
n|n+ Dn(µ

j
n+1|N −µ

k
n+1|n),

Σi, j,k
n|n = Σ

i
n|n+ DnΣ

j
n+1|N −Σ

k
n+1|nDT

n .

To evaluate the constant β(xn+1), we use Theorem 1 to write

β(xn+1) =N (xn+1|µk
n+1|n,Σk

n+1|n) (2.32)

and using (2.29) we obtain

βi, j,k = δi α j γk

∫

N (xn+1|µk
n+1|n),Σ

k
n+1|n) N (xn+1|n|µ

j
n+1|N ,Σ j

n+1|N ) dxn+1. (2.33)

We use definition of product of two Gaussians, and the fact that marginalisation is over xn+1 we
obtain

βi, j,k = δi α j γk N (x = µ
j
n+1|N |µ

k
n+1|n,Σk

n+1|n+Σ
j
n+1|N )

∫

N (xn+1|,µn+1,Σn+1) dxn+1, (2.34)

= δi α j γk N (x = µ
j
n+1|N |µ

k
n+1|n,Σk

n+1|n+Σ
j
n+1|N ).

To ensure the Gaussian mixture approximation is a valid probability distribution we must ensure
that all weights sum to one. Therefore, we normalise β according to

βi, j,k =
δi α j γkN (x = µ

j
n+1|N | µ

k
n|n−1,Σk

n+1|n+Σ
j
n+1|N )

∑

p,q,r

δp αq γrN (x = µ
q
n+1|N | µ

r
n+1|n,Σr

n+1|n+Σ
q
n+1|N )

. (2.35)

The right hand side of (2.29) is completed by (2.35) and (2.31) and completes the proof of
Proposition 2.1.

2.3 Summary of the Multi-modal filter and Smoother

In this chapter we proposed a multi-modal filter and multi-modal smoother based on the
Gaussian sum approximation. The important points of this chapter are below.

• We described a closed form solution for estimating the mixture parameters of the density
obtained, when mapping a Gaussian mixture through a non-linear mapping. The approx-
imations of a Gaussian by a Gaussian mixture is based on Cholesky factorisation and the
approximation can be described as a generalisation of the Unscented Transform. The rela-
tive error values in likelihood per data point of Gaussian samples, under Gaussian mixture
as a model shows that our approximation does not introduce large errors (see figure ).
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• We used Gaussian sum filter for filtering with multi-modal beliefs, the important prop-
erty of Gaussian sum filter is that it is based on the Gaussian Sum Approximations. A
Gaussian sum approximation allows a filter to match the optimal Bayesian filter as the
number of mixture components increases (Anderson and Moore, 2005). Hence, our filter
based on Gaussian sum filter will converge to the optimal Bayesian filter as the number of
components reaches infinity.

• We use the Gaussian sum approximations to devise a closed form Gaussian sum smoother.

• Mixture reduction: We use the symmetric KL divergence as a measure for a distance based
Gaussian mixture reduction technique. It was found to perform better than standard
mixture reduction techniques. A comprehensive study on the various mixture reduction
techniques is marked as a future work.

The multi-modal filter and smoother allow us to use the flexibility of Gaussian mixture models
over Gaussian models. The parametric form makes filter deterministic and, hence, the numerical
results we obtain in next next chapter are reproducible.
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a) We generate 106 samples from prior p(xn−1) propagate density forward by using
xn = f (xn−1) to obtain 106 samples of p(xn) and use Expectation Maximisation (EM)
to approximate p(xn) with M=3 components
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(b) We calculate density propagation p(xn|xn−1) using the proposed Multi-Modal
filter with α= 1.3 and the density p(xn) ∼ p(xn|xn−1) is represented by using M=3
components
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(d) Absolute error between plots a) & b)

Figure 2.3.: The Figure demonstrates the ability of the proposed multi-modal approximations for
non-stationary non-linear function. The plots a) and b) show EM and Multi-modal
approximations, to facilitate comparison both plots use same Y axis and colour cod-
ing. Visual inspection shows that the proposed filter is able to track predictive den-
sities, we confirm this by plotting the error between EM estimate and multi-modal
estimate. The Y axis is different for plot d).

36 2. Multi-Modal Filter and Smoother



3 Numerical Results
We evaluated our proposed filtering algorithm on data generated from standard one-

dimensional non-linear dynamical systems. Both the UKF and the Multi-Modal Filter (M-MF)
use the same parameters for the Unscented Transform, i.e. α = 1, β = 2 and κ = 2. The prior
p(x0) is a standard Gaussian p(x0) = N (x |0,1). Densities in the M-MF are represented by a
Gaussian mixture with M = 3 components. The mean of the filtered state is estimated by the
first moment of this Gaussian mixture. The employed Particle filter (PF) is a standard particle
filter with residual re-sampling scheme. The PF-UKF (Van Der Merwe et al., 2000) on the other
hand uses the Unscented Transform as proposal distribution and the UKF for filtering. Unlike
our M-MF the PF-UKF uses random sampling and the UKF. We use the root mean square error
(RMSE) and the predictive Negative Log-Likelihood (NLL) per observation as metrics to com-
pare the performance of the different filters. Lower values indicate better performance. The
results in Table 3.1 were obtained from 100 independent simulations with T = 100 time steps
for each of the following system models.

3.1 Univariate Non-linear Growth Model

The the Univariate Non-stationary Growth Model (UNGM) (Doucet et al., 2001) is a standard
benchmark problem for non-linear estimators.

3.1.1 Non-stationary Model

We tested the different filters on a standard system, the Univariate Non-stationary Growth
Model (UNGM) from (Doucet et al., 2001)

xn=
xn−1

2
+

25xn−1

1+ x2
n−1

+ 8cos(1.2(n− 1))+w, w ∼N (0,1), (3.1)

yn=
x2

n

20
+ v , v ∼N (0,1).

The true state density of the non-stationary model stated above alternated between multi-modal
and uni-modal distributions. The switch from uni-modal to a bi-modal density occurred when
the mean was close to zero. The quadratic measurement function makes it difficult to dis-
tinguish between the two modes as they are symmetric around zero. This symmetry posed a
substantial challenge for several filtering algorithms. The PF lost track of the state as N = 500
particles failed to capture the true density especially in its tails, which led to degeneracy (Doucet
et al., 2001). The particle filters in Table 3.1 are in their standard form and performance may
improve if advanced techniques are used (Doucet et al., 2001), as can be seen from the Gibbs
filter (Deisenroth and Ohlsson, 2011). The proposed M-MF could track both modes and, hence,
led to more consistent estimates. The RMSE performance of the multi-modal filter (M-MF)
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(a) Multi-modal filter (Multi-modal smoother). RMSE 2.58 (1.28). NLL 1.79 (1.57)

(b) Unscented Kalman filter (Unscented Kalman smoother). RMSE 7.738 (7.734). NLL 13.12 (13.44)

(c) Extended Kalman Filter (Extended Kalman smoother). RMSE 10.07 (13.42). NLL 90.82 (118.34)

(d) Unscented Kalman filter (Multi-modal Smoother). RMSE 7.738 (1.33). NLL 13.12 (1.577)

Figure 3.1.: An example trajectory from table 3.1 for non-stationary quadratic measurement
function (UNGM). In Figure d) the forward pass is UKF and the multi-modal
smoother is used for backward pass. The true state is represented by dashed red
line, the shaded region represents 95% confidence area for filtering distribution and
solid green lines represent 95% confidence area for smoothing distribution
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Stationary Non-Stationary
h(x) = 5 sin(x) h(x) = x2/20 h(x) = 5sin(x)

RMSE NLL RMSE NLL RMSE NLL

EKF 7.59 ± 0.31 329.22 ± 27.13 11.03 ± 0.88 101.7 ± 21.3 10.31 ± 0.31 630.9 ± 60.23
UKF 12.27 ± 2.3 89.95 ± 44.96 6.77 ± 1.22 14.9 ± 7.69 9.96 ± 1.69 37.48 ± 20.6

M-MF 0.97 ± 0.17 1.375 ± 0.1595 3.48 ± 0.56 2.03 ± 0.7 6.4 ± 1.73 8.65.7 ± 8.04
PF 2.4 ± 0.03 N/A 3.5 ± 0.86 17.4 ± 8.3 11.2 ± 3.6 N/A

Gibbs Filter 3.62 ± 0.4 3.06 ± 0.03 3.97 ± 0.4 2.18 ± 0.1 8.64 ± 0.4 3.57 ± 0.08

Table 3.1.: Average performances of the filters are shown along with standard deviation. Lower
values are better. The M-MF filter performs better than the standard filtering
methods.

Stationary Non-Stationary
h(x) = 5sin(x) h(x) = x2/20 h(x) = 5 sin(x)

RMSE NLL RMSE NLL RMSE NLL

EKS 10.16 ± 0.27 5.42× 103 ± 1.55× 103 12.2 ± 1.19 210.8 ± 81.9 10.4 ± 0.4 662.2 ± 98.5
UKS 12.40 ± 2.66 91.72 ± 45.73 6.42 ± 1.24 15.9 ± 8.13 10.0 ± 24 44.79 ± 25.6

M-MS 0.92 ± 0.13 1.378 ± 0.1593 1.91 ± 0.59 1.67 ± 0.6 6.5 ± 1.43 10.92 ± 9.06

Table 3.2.: Average performances of the smoothers are shown along with standard deviation.
Lower values are better. The M-MS filter performs better than the standard smooth-
ing methods.

is significantly better than the UKF, with the M-MF outperforming the UKF in terms of a lower
mean error and standard deviation. The main advantage of the M-MF is its ability to capture the
uncertainty appropriately. The NLL values of the M-MF were significantly better than the UKF
even when the same parameters are used to calculate the Unscented Transform, see Table 3.1.

We tested the UNGM with an alternative measurement function h(x) = 5 sin(x). For this
function, the performance of the EKF is best in terms of RMSE, since its estimates are more
stable. The proposed M-MF could track multiple modes, which resulted in significantly better
performance in terms of NLL. Moreover, the filter performance was consistently stable, indicated
by the small standard deviation values for the NLL measure.

3.1.2 Stationary Model

The stationary model is based on the Uniform Non-stationary Growth Model (UNGM) de-
scribed above by (Kitagawa, 1996) and can be described by the following equations:

f (x) =
x

2
+

25x

1+ x2 +w, w ∼N (0, 1), (3.2)

h(x) = 5sin(x) + v , v ∼N (0, 1). (3.3)

We see from the results in Table 3.1 that the UKF was outperformed by all other deterministic
filters. The failures of the UKF and the PF-UKF are attributed to their overconfident predic-
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tions for sinusoidal functions, which confirms the results in (Deisenroth et al., 2012). The EKF
approximates these sinusoidal functions better but both the UKF and EKF fail to capture the
multi-modal nature of system dynamics. Thus, the EKF and UKF are inconsistent for the model
and settings used in this experiment. The proposed M-MF on the other hand performed con-
sistently better in terms of RMSE and NLL values (see table 3.1). Moreover, the small standard
deviation of the NLL suggests that our proposed M-MF is consistent and stable.
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Figure 3.2.: Lorenz time series (reproduced from http://math.gmu.edu/~rsachs/tj/ )

3.2 Lorenz System

The Lorenz system is a non-linear dynamical system proposed by Lorenz in (Lorenz, 1963)
as a solution to the heat convection flow in atmosphere. This system is a 3 dimensional, non-
linear, deterministic dynamical system defined by coupled deferential equations (3.4) (Lorenz,
1963) (Hilborn, 2000). The system is unstable for certain values of parameters and can be
described as deterministic chaos (Hilborn, 2000). The chaotic behaviour is characterised by
an unstable system highly sensitive to initial values, and a small deviation may result in a
completely different evolution of system states (Lorenz, 1963). We use the parameter values
ρ = 28, σ = 10, and β = 8/3 as described by Lorenz in (Lorenz, 1963). The system is bistable
and describes a butterfly shape usually associated with non-linear chaos (Hilborn, 2000). The
system is described by the differential equations

∂ x

∂ t
= σ(y − x), (3.4)

∂ y

∂ t
= x(ρ− z)− y,

∂ z

∂ t
= x y − βz.

We define the system function as a solution to the differential equations defined by coupled
equations f ′(x , y, z) in (3.4). The solutions are obtained by a solver in Matlab®. We discretise
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the continuous time index t with n+∆ t = n+ 1. The system function f and the measurement
function h is described by the following equations

f (x , y, z, n) =

∫ n

n−1

f ′(x , y, z) dt +wn, w ∼N (0, 1), (3.5)

h(x , y, z, n) = f (x , y, z, t)3+ vn, v ∼N (0, 1).

The Lorenz system is bimodal and symmetric around zero. The cubic measurement function
allows the filter to distinguish between the positive and negative modes.
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Figure 3.3.: Lorenz attractor filtering results
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4 Discussion and Conclusion
The multimodal filter and smoother presented in the chapter 2 show marked improvement

in the filtering and smoothing performance of a non-linear estimator, as evidenced by the state
estimation results for standard non-linear benchmark problems. The filter and smoother both
benefit from the proposed closed form Gaussian mixture approximation and mixture reduction
techniques. In the following we analyse some of the key points in this report. A novel approach
to multi-modal projections and the proposed Gaussian mixture smoothing also open up new
avenues for research and we briefly discuss future work based on the numerical results.

The Salient Points of This Thesis

In the following, we discuss the implications of the multi-modal assumption and consider
some related work to motivate possible extensions of the algorithms proposed in this thesis.

Need of the Multi-Modal Filter. We can see from the predictive densities for the Univariate
Non-linear Growth Model bench problem that, for a nonlinear transformation of a Gaussian
can become multi-modal. Moreover, the filtering with multimodal beliefs is significantly
superior to unimodal Gaussian belief systems in terms of Root Mean Squared Error and
Predictive Log Likelihood as metrics. It is worthwhile to note that, the gain in performance
of the filter is due to transformation a Gaussian to a Gaussian mixture, which is different
than Gaussian sum approximation in (Anderson and Moore, 2005), where the Gaussian
mixture components serve the purpose of reducing trace(Σ) and not necessarily to capture
multi modality. However, we believe that the superior performance of the multi-modal
filter can also be partially attributed to the fact that by replacing a Gaussian with multiple
Gaussians with smaller variances, we reduce the trace(Σ).

Multi-modal Approximation. While the flexibility of multi-modal beliefs allow us to reduce
approximation errors, it also presents a challenge to evaluate the parameters of Gaus-
sian mixture components. We proposed a closed form solution to estimation of Gaussian
mixture parameters. The approximation is based on representing Gaussian by a Gaussian
mixture such that the mean and covariance of the Gaussian mixture is same the original
Gaussian. We assume the number of Gaussians to be fixed and their weights to be equal.
The filter exhibits better performance than the Gaussian (uni-modal) filters even with the
predetermination of some parameters of the Gaussian mixture, hence, we expect the per-
formance to improve even further if we estimate the weights and the number of mixture
components online. We mark online and efficient estimation of Gaussian mixture as a
future work on multi-modal approximations

Multi-Modal Filtering. The multi-modal belief propagation and the closed form solution to
mixture estimation give us a fast and highly flexible framework to model our transition
dynamics, the multi-modal filter (Kamthe et al., 2013) exploits this framework along with
Gaussian sum approximations to produce a very efficient non-linear estimation scheme.
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The efficiency implies the ability of filter to be consistent (true value is not an outlier
with respect to estimated probability density) and at the same time being able to compute
results in reasonable time. The filter is an attempt to break the mould that for a multi-
modal belief system particle filters are standard solutions. Through our results we show
that the multi-modal filter, not only reduces error in mean square sense it also does it with
consistency. The solutions are also deterministic and, hence, reproducible and do not suffer
from the degeneracy associated with the particle filters. A consistent state estimate would
imply that any inference or control task carried out with estimated probability distribution
would account for the true value.

Multi-Modal Smoothing. The Gaussian sum smoother proposed in Section 2.2 is based on the
forward-backward filter. The Gaussian sum smoother is a backward pass for the Gaussian
mixture based forward multi-modal filter. The backward pass significantly improves the
estimation results in terms of mean square error as shown by the numerical experiments.
The smoother is based on the Gaussian sum approximation, hence, it guarantees optimal-
ity as the number of terms in approximation tends to infinity. Similar argument cannot
be established for any Gaussian smoother available in literature, to the best of our knowl-
edge. The Gaussian sum approximation allows us to establish the Gaussian sum filter as
an optimal Bayesian filter as the number of terms in the mixture tend to infinity (Ander-
son and Moore, 2005). We can establish a similar claim for the proposed Gaussian sum
smoother. The proposed Gaussian sum smoother reduces to an RTS smoother for the un-
scented Kalman filter proposed in (Särkkä, 2008). However, from our initial experiments
we observe that the forward pass needs to be consistent for the Gaussian sum smoother to
be optimal, and inconsistent forward pass can result in a negative covariance matrices and
a divergent smoothing estimate. The exceptional performance of the proposed smoother
in terms of mean square error is due to consistent forward filtering by multi-modal filter.

Filtering and Smoothing in General. The multi-modal filter and smoother can be treated
as generalisation of Unscented Kalman filter (Julier and Uhlmann, 2004) and RTS
smoother (Rauch et al., 1965). Our key contributions are mutli-modal approximations
and Gaussian sum smoother together they form an efficient non-linear state estimation
tool.

Mixture Reduction. We compared various mixture reduction techniques available in the lit-
erature. We carried out a brief and non-comprehensive study to determine the suitable
mixture reduction technique. The mixture reduction is crucial for a consistent estimate,
and, hence, a thorough study is warranted to determine an optimal reduction scheme.

The multi-modal filter introduces a new framework to approximate predictive densities of non-
linear transition functions. The proposed method demonstrates a superior performance in
standard benchmark problems and in future we would investigate its feasibility in a real life
example.

4.1 Conclusion

In this thesis, we presented the M-MF, a Gaussian mixture based multi-modal filter for state
estimation in non-linear dynamical systems. Multi-modal densities are represented by Gaussian
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mixtures, whose parameters are computed in closed form. We demonstrated that the M-MF
achieves superior performance compared to state-of-the-art state estimators and consistently
captures the uncertainty in multi-modal densities.We proposed a Gaussian sum smoother for a
non-linear dynamical system with a closed form approximation to optimal backward pass.

4.2 Future work

In future work, we will evaluate the significance of the scaling parameter α and its impact
on higher moments of the approximations. We plan to introduce additional hyperparamters
to build more flexible estimation scheme. The hyperparameters may, e.g. control the weight
assigned to different Gaussians in a mixture, which is fixed at 1/M for the current scheme with
M Gaussians.

The effect of the mixture reduction techniques also will be investigated to achieve better
filter performance. Mixture reduction needs to be a robust procedure, i.e. it should be able
to determine the Gaussian components whose elimination has least impact on approximation
accuracy.

The proposed multi-modal smoother can in principle be used for inference in switching lin-
ear dynamical systems. We would compare the proposed smoother with “Expectation Correc-
tion" (Barber, 2006), the forward-backward smoother (Vo et al., 2012) and particle filter based
smoothers (Lindsten and Schön, 2013).
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A Gaussian Conditioning
Consider variables x and y, where f is a non-linear functions. We are interested in p(y|x , z).

x y
f

the probabilities p(x) and p(y) are assumed to be Gaussian

p(x) =N (x |,µx ,Σx), (A.1)

p(y) =N (y|,µy ,Σy),

We assume p(x , y) to be jointly Gaussian as well, i.e.

�

x
y

�

∼N
�

x
y

�

�

�

�

µx
µy

,
Σx Γ
ΓT Σy

�

(A.2)

If we represent the conditional densities p(y|x) and p(x |y) as,

p(y|x) =N (y|µ′y ,Σ′y) (A.3)

p(x |y) =N (y|µ′′x ,Σ′′x )

then we can evaluate parameters for conditonal Gaussian (Petersen and Pedersen, 2008) as

µ′y = µy +Γ
TΣ−1

x (x −µx), (A.4)

Σ′y = Σy −ΓTΣ−1
x Γ, (A.5)

and

µ′′x = µx +Γ
TΣ−1

y (y −µy), (A.6)

Σ′′x = Σx −ΓTΣ−1
y Γ. (A.7)

The Equations (A.4) to (A.7) along with the Bayes’ theorem form the basis of Kalman (Gaussian)
filter derivation starting from the Bayesian filter described in Section 1.2.
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