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Abstract

Identifying movement abnormalities from raw Electromyography (EMG) data requires three steps that
are the data pre-processing, the feature extraction and training a classifier. As EMG data shows large
variation (even for consecutive trials in a single subject) probabilistic classifiers like naive Bayes or prob-
abilistic support vector machines have been proposed. The used feature representations (e.g., PCA, NME
wavelet transformation) however, can not capture the variation. Here, we propose a fully Bayesian
approach where both, the features and the classifier, are probabilistic models. The generative model
reproduces the observed variance in the EMG data, provides an estimate of the reliability of the pre-
dictions and can be applied in combination with dimensionality reduction techniques such as PCA and
NME We found the optimal number of components and Gaussians for each model and tuned their meta-
parameters. Besides the the focus on the four EMG channels, we tested the knee angle alone and EMG
channels with the knee angle. We found that these probabilistic extensions outperforms classical ap-
proaches in terms of the prediction of knee abnormalities from few samples. We also show that the
robustness against noise of the proposed probabilist model is superior than classical methods.




Zusammenfassung

Das Feststellen von Bewegungsstorungen anhand Elektromyographie-(EMG) Rohdaten benoétigt drei
grundlegende Schritte. Diese bestehen aus dem Vorverarbeiten der Daten, der Feature-extraction und
dem Training eines Klassifizierers. Da die EMG Daten groe Schwankungen aufweissen (selbst bei auf-
einanderfolgenden Versuchen mit der gleichen Person) werden hierfiir probabilistische Klassifizierer wie
zum Beispiel Naive Bayes oder die probabilistischen Support Vector Machines angewendet. Die oft ver-
wendeten Feature Representationen (z.b. PCA, NME wavelet transformation) kénnen diese Schwankun-
gen jedoch nicht verarbeiten. Deswegen schlagen wir einen vollen Bayes Ansatz vor, in dem sowohl
die Features als auch der Klassifizierer probabilistische Modelle sind. Diese generativen Modelle kénnen
die festgestellte Varianz der EMG Daten nachbilden und liefert damit eine Abschétzung fiir die Zuver-
lassigkeit von Vorraussagen und kann dariiber hinaus in Kombination mit dimensions reduzierenden
Techniken wie PCA und NMF angewendet werden. Wir haben fiir jedes Model die optimale Anzahl von
Komponenten und Gaussians ermittelt und ihre Meta-Parameter optimiert. Neben dem Fokus auf die vier
EMG Kandle, haben wir auch den Winkel des Kniegelenk alleine und die EMG Kanéle zusammen mit dem
Winkel des Kniegelenk untersucht. Wir konnten sehen, dass diese probabilistische Erweiterung besser ge-
eignet ist fiir die Vorraussage von Kniestérungen als die klassischen Ansatze. Wir konnten auch zeigen,
dass das vorgeschlagene probabilistische Model robuster gegeniiber Storungen ist als die klassischen
Methoden.
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1 Introduction

Making medical diagnoses is challenging. Doctors might have a different angle on a certain topic, their
examination time is limited or comparative studies are not accessible. If the judgment is wrong, it
can cause severe consequences for a patient. To support the decision process computer-aided systems
therefore aim at providing additional insights by making use of large but noisy data sets. In this work,
we propose a probabilistic model that can be trained from EMG data, models the noise and is used to
predict movement abnormalities.

Electromyography (EMG) signals are recorded electric signals resulting from the activation of muscle
cells [1]. There is a wide spread use of EMG data in research disciplines such as muscle surgery [2]
by showing changes in abdominal muscle activity after upper abdominal surgery. In neurology [3] in
diagnosis of neuromuscular disorders and rehabilitation [4, 5] by building prostheses for amputees and
using EMG signals for on-line and realtime control of finger position and force or simply for monitoring
the performance levels of rehabilitation patients. As well in movement analysis [6, 7] developing a robot
hand controlled by EMG signals or biomechanics [8, 9] trying to predict motor functions after neural
injuries and in ergonomics as risk prevention [10]. A computational model that can be applied to these
different disciplines needs to implement two important features. First, the ability to compute reliable
predictions to group subjects and second, to analyze EMG signal similarities in a lower-dimensional and
thus easy to visualize feature space.

For classification neural networks [12, 13, 14],
linear discriminant analysis, kernel based meth-
ods [15], or support vector machines [16] have
been proposed. For dimensionality reduction,
principal components analysis (PCA) [17], non
negative matrix factorization (NMF) [18] or
wavelet transformation [19] were investigated.
While probabilistic classifiers demonstrated to be
robust in terms of signal noise [20], currently
used feature representations can not reproduce Figure 1.1.: Example of a prosthetic hand [11]
the omnipresent EMG signal variation. Solely the

mean of the EMGs signals is reproduced and a large quantity of the entropy is lost through averaging.
We propose a probabilistic EMG model that captures the mean and the covariance of multiple EMG
channels. The model learns a distribution over the signals which can be used either directly in a naive
Bayes classifier (we refer to this model as mixture model) or PCA and NMF are applied to classify EMG
trials in a lower-dimensional feature space, see Figure 1.2. PCA and NMF are often used when working
with EMG data. Either directly on the signals or after feature extraction like wavelet transformation.
Here we apply the dimensionality transformation by PCA and NMF to probabilistic features, and as such
we present 3 alternatives. We can show that the mixture model is the best choice and dimensionality
reduction yields no further improvement on this simple data set. Together, the mixture model and the
probabilistic feature space variants of PCA and NMF are the contributions of this work.

1.1 Related work

There have been many studies trying to utilize EMG data for various applications. Different methods
have been used for classification or decomposition and dimensionality reduction.
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Figure 1.2.: Concept of the probabilistic EMG model: (a) EMG signals are rectified, low-pass filtered
and optionally Dynamic Time Warping (DTM) is applied to correct for varying initial veloci-
ties in the trials. (b) For individual groups, the aligned EMG-channels (i.e., the first two EMG
channels for subjects with an without knee abnormalities are illustrated) are mapped to the
features space using a Probabilistic Trajectory Model (PTM). This model captures the mean
and the covariance of the features. The statistics can be used directly in a naive Bayes Clas-
sifier (the mixture model approach) or dimensionality reduction techniques such as PCA or
NMF are applied beforehand, i.e., the proposed probabilistic feature space variants of PCA
and NMF.

1.1.1 Classification of EMG signals

Neural networks (NN) can learn the relationship between the EMG pattern and the actual finger move-
ment [12]. This was demonstrated with recorded EMG data from hands of persons and the conclusion
was that learning linear separation functions with perceptrons are poorly classifying EMG patterns when
they are not linear separable. This could be improved by the use of NN due to good learnability, adapt-
ability and non-linear separability. Recognition of EMG patterns of NN is superior then methods using
linear separation functions.

The classification of EMG signals needs some basic steps of preprocessing. The signal is filtered, rectified,
normalized and finally down sampled. The data is then normalized, for each muscle its maximum activity
will be set to one and its minimum activity to zero. Such a normalization procedure can be adopted to
give an equal importance to all the muscles and also to preserve information concerning differences in
EMG amplitude between patients and control.

After collecting EMG recordings from the lower limbs of patients with arthritis several classifiers had been
tested to discriminate them from healthy subjects [15]. Working with raw EMG data, a comparison of
leastsquares kernel (LSK) algorithms, neural network algorithms like the Kohonen self organizing map,
learning vector quantification, the multilayer perceptron and linear discriminant analysis (LDA) have
been used. To identify the muscles that were critical for the classification, the classification rate was
tested again after deleting one muscle at a time from each of the classes. The proposed LSK method had
the best classification results and to ensure that the successful performance was not due to the sampling
methods used, k-fold cross validation has been applied.

Another use of an artificial neural network (ANN) is the classification of Motor unit action potentials
(MUAPs) [13]. The decomposition of raw EMG signals into their constituent MUAPs and their classi-
fication into groups of similar shapes is a typical case of an unsupervised learning pattern recognition
problem. The number of MUAP classes composing the EMG signal, the number of MUAPs per class, their
firing pattern, and the expected shape of the MUAP waveforms are unknown beforehand. Even worse
to handle is the variability of the MUAP waveform, jitter of single fiber potentials, and MUAP superpo-
sitions, which is why we propose a probabilistic EMG model to capture the mean and the covariance.
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The MUAPs clasification was also tested with a statistical pattern recognition technique based on the
Euclidean distance, which we used as a deterministic classification approach opposing the probabilistic
model.

1.1.2 Decomposition and dimensionality reduction of EMG signals

An algorithm for the decomposition of EMG signals should consists of four processing stages: segmen-
tation, wavelet transformation, PCA, and clustering [17]. For clinical interests, the main feature of the
EMG signal is the number of active motor unit (MUs) and the MUAP waveforms. In detail the decompo-
sition of the EMG signal was done by wavelet spectrum matching and principle component analysis of
wavelet coefficients. To classify the EMG signal, the Euclidean distance between the MUAP waveforms
was used.

Before classifying various types of movements, further preprocessing can be applied. After recording,
Surface EMG (SEMG) signals can be decomposed by wavelet packet transform (WPD). The resulting
feature space obtained by the WPD decomposition has a relatively high dimensionality, hence why PCA
is applied. The low dimensional features then form the input space for a neural network classifier, which
can e.g. discriminate between four types of prosthesis movement [14].

Another approach is the use of discrete wavelet transform (DWT) where the EMG signals are decomposed
into different frequency bands. Then statistical features are extracted from these subband decomposed
EMG signals. The resulting characteristics of the EMG waveform can be used for diagnosing patients with
neuromuscular disorders. A healthy patient can be classified against patients with various forms of the
disorder like Myopathic (where the disorder is in the muscle cells) and Neurogenic (where the disorder
comes from the nerve cells). Different classification methods have been tested, like k-nearest-neighbor,
Radial basis function networks and Support vector machines (SVM). Optimizing the good results from
the SVM, the use of Particle swarm optimization SVM (PSO-SVM) was proposed [16].

Other common practices after recording the signals are amplification, filtering (using 2nd order But-
terworth filter), sampling and segmentation [21]. Instead of raw signals various feature extraction
methods can be applied, such as time series analysis (AR, MA, ARMA), Wavelet Transform (WT), Dis-
crete Wavelet Transform (DWT) Wavelet Packet Transform (WPT), Fast Fourier Transform (FFT), Discrete
Fourier Transform (DFT).The resulting features can then be used to classify EMG signal patterns.

Wavelet transformation, which is a time-frequency transformation, as a preprocessing step can also be
used to reduce noise or to evaluate the energy of the signal [22]. The recorded EMG signals of multiple
muscles can be described in matrix form. PCA, NMF and Gain Shape k-Means can then be used to
gain a low dimensional approximation of the input matrix. A direct influence on the EMG signals can
be measured with stroke patients, because the loss of brain functionality leads to restricted muscle
activity on the affected body side. Using EMG signals from the limbs, it is possible to identify the latent
dimensionality of EMG data and derive a criterion for the health status of stroke patients. Since PCA and
NMF are methods for data decompositions, they can be used to analyze synergies in EMG signals, when
different kinds of muscles are activated at the same time to produce a movement. The transformation
matrix gained from mentioned methods can be used as explanation and visualization. Each of the column
vectors represents a synergy and each row refers to the corresponding muscle. The value indicates how
much this muscle contributes to the signal for that synergy. A final comparison found different patterns
in healthy and stroke patients and was based on the found synergies.

1.2 Outlook

In Section 2 we give a brief overview about the fundamentals of EMG signals and showing how chal-
lenging it is to work with them. Followed by an introduction into commonly used techniques for EMG
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analysis. Like non-negative matrix factorization and principal component analysis. We discuss their
physiological interpretation and how they can be visualized. Section 3 introduces a probabilistic model
for EMG signals and how a distribution over EMG signals can be modeled. The proposed probabilistic
model is complemented by descriptions of the deterministic methods used for comparisons. Furthermore
the used classifiers are presented, along with the quality measures. Finally the relationship to muscle
synergies is discussed. The results are shown in Section 4 that range from the description of the data
set and its preprocessing, to finding the optimal parameters for all used methods. The performance for
all models is evaluated in two real-world data sets, where in contrast their robustness against noise is
shown. In the end the principal components are shown. Concluding with Section 5 to discuss which
parts of this thesis can be studied further in future work.




2 Background about EMG signals and EMG
analysis

2.1 Electromyography signals

Electromyography (EMG) can detect and record electric signals resulting from the activation of muscle
cells. EMG can describe the behavior of what muscles are doing, by measuring their muscle perfor-
mance, help making decisions before and after surgeries or documentation of treatment and training
improvements. [1]

EMG can measure the action potential of single motorneurons, which are nerve cells located in the spinal
cord. Their axons form the efferent connection from the brain to the muscle fibers to transmit signals for
the contraction or relaxing of the muscle, Figure 2.1.

A raw EMG signal can be obtained in two different ways, either as surface EMG above the muscle on the
skin or by invasive methods directly from the muscle fiber membrane [1].

Because muscle activity consists not only of a single fiber the recorded EMG signal contains a super-
position of magnitudes of involved fibers, also called Motor unit action potentials (MUAPs). Related
work deals with decomposing those superposed signals into MUAPs (also Synergies) while others work
directly on the EMG signals. Working with surface EMG has a few drawbacks since the signals goes a
long way from the muscle membrane to the electrodes. External noise can alter the recordings as well
as unwanted activity of neighboring muscles can change the result. [1]

2.2 What is the challenge working with EMG signals ?

Humans can move elegantly or gracefully through dynamic environments which requires the coordina-
tion of different body parts like limbs, muscles and neurons. But those are characteristics which can
hardly be measured which is why its a challenge understanding how we move [23]. It becomes even
more of a problem realizing that even by performing the same task over and over again, the motor ac-
tivity will never be the exact same [24]. Yet a characteristic pattern can still arise even when a task is

Motor Unit
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Motor
Muscle endplates

Fibers
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Figure 2.1.: Concept of a Motor Unit and the efferent path ways from the spinal cord to the muscles.
From [1]




Neural Command Neural Command
c,(6) c,(6)
1 I\
/ N\
/ \

f

Synergy W, Synergy W,
_m —im

Wi Wi Wyg Wz1 Wy Wpz

.’ . ! o
>\ BN cl‘;\ PR A ':'4\"0' SV
‘.

~ o’ .
ﬁ;\ 2N e I O L SV
4 .

\ < > s
a7 M Sap

l | | | | |
0 £ . A AN

180 360 0 180 360 0 180 360

-h

N

m,(8) = c¢,(8) w,, + c,(8) w,,

Figure 2.2.: Concept of Muscle Synergy models: the two synergies W; and W, and the weights ¢; and ¢,
can reconstruct the activation patterns of all three given muscles after finding the synergies
by decomposition. From [23]

performed by different sets of muscles, as in movements on varied surfaces. Still the performance of such
a motor task can happen on a consistent basis even with huge amount of variability in the underlying
body systems needed for that task [25] [26] [27] [28]. In other cases the synchrony observed in one
movement might be canceled out in another. What may appear like a coordinated move, can be inde-
pendent during another measurement [24] [29]. An explanation is that small changes in neural control
have a noticeable effect on the muscles and the environment which is interacting with the body never
stays exactly the same. Yet the coordination of motor activity is responsible for generating predictable
biomechanical processes, like force generation and motion, allowing the reliable performance of motor
tasks [24].

2.3 NMF and PCA for EMG signals

For the analysis and decomposition of EMG Signals in scientific fields such as motor control or neu-
roscience, two techniques have established themselves: principal components analysis (PCA) and non-
negative matrix factorization (NMF) [23]. Other methods which could be used as decomposition tech-
niques are independent components analysis (ICA) or k-means analysis [18].

2.3.1 What PCA and NMF have in common

PCA and NMF are both linear decomposition techniques which try to find linear combinations of basic
elements in the measured data.
A observation M;(t) could be represented as

M;(t) =c;jWy+cyjWy+...+c,jW, +error,

where M; is a vector of measured activity of m muscles, the components W, also of length m, is a vector
representing invariant patterns of activity over different muscle recordings, which can be described by n
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Figure 2.3.: Visualization of PCA and NMF (a) the orginal data (b) the describing PCA decomposition (c)
the prescribing NMF decomposition. From [23]

scalar values c;;, each specifying the weight of each component for the measured muscle activation pat-
tern M;. The goal is to find a low dimensional representation where the m muscles can be expressed with
n < m components, where the basic elements Wy, ..., W, remain fixed. Only the factors c;; can change
and therefore absorb the variations of the data measured across different conditions [23]. The compo-
nents Wy,..., W, are often referred to as muscle synergies [30] [31] [32] [33] or M-modes [34] [35]
[36]. Figure 2.2 shows the two synergies W; and W, and the weights c¢; and c, which can reconstruct

the activation patterns of all three given muscles after finding the synergies by decomposition.

2.3.2 Differences of PCA and NMF

The differences of principal components analysis (PCA) and non-negative matrix factorization (NMF)
lie in the way each method decomposes the variability within a given data set. PCA is an analytical
technique and requires the components to be orthogonal to each other, with a unique solution for any
decomposition. While the resulting components for PCA are real numbers, the NMF features can only be
positive. NMF is found by a search algorithm, starting from a set of random components and iteratively
improving until the limit of iterations or a minimum error is reached. Repeated execution of the algo-
rithm yields numerically different but still similar components. The factorization is a convex problem
because NMF constrains the factors to be non negative. Components with such constraints can not be
orthogonal but they must be independent [23].

2.3.3 Visualization of PCA and NMF: Describing vs. Prescribing

PCA describes the mean and the largest variance in each data set with its first principal component.
Each following component describes the maximal possible variance in orthogonal direction. By allowing
negative and positive values, two independent components can be scaled to reach any data point, even
when facing in opposite direction of the data, see Figure 2.3 b). In NME the components prescribe a
subspace. Due to the constraint of non-negativity, the scaling of two components is limited so that the
data points can only reside inside of that subspace. Delimited by the components the data points are
enclosed by a convex hull. Adding components increases the subspace, Figure 2.3 c) [23].

2.3.4 Physiological interpretation of PCA and NMF components

The PCA components W, representing muscle activation patterns, and the weights c,; can be positive
and negative values. This representation contradicts an interpretation where the action potentials of
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Figure 2.4.: Example for Parts-based vs. Holistic Decomposition From [37].

motorneurons control the muscle activity. Although motorneurons are capable of receiving inhibitory
and excitatory neural signals, the inhibition can only be noticed with highly active muscles. Already
inactive muscles can not process further inhibition and will remain in the same state. NMF is more
physiological accurate due to the non-negativity constraint for its components. Neurons can fire action
potentials which translates to a positive signal or remain dormant, waiting for further neural input [23].

2.3.5 Parts-based vs. holistic decomposition

From the non-negativity constraint in NMF comes another interesting topic. Each component of the
decomposition equals only a specific part of the whole data. For a reconstruction all different parts
must be summed. With PCA allowing negative values for its decomposition, a reconstruction would only
be possible by addition and subtraction of different components. To illustrate the idea behind this, the
example of decomposing faces is depicted in Figure 2.4. In a) the PCA components are all eigenfaces with
different properties each. The reconstruction requires different characteristics to be added or subtracted
from a mean face represented by the first principal component. In b) the NMF components are all parts
of the face like eyes or mouth. Reconstructing a face would be done by selecting all required parts and
scaling them to the proper size [23].

While the PCA components can change with different levels of muscle activity, NMF can identify compo-
nents which remain stable over different conditions, while still allowing them to be combined in different
ways, which can be seen as robustness [23]. This was shown during an experiment of postural body sway,
where PCA identified components equivalent to the direction of center of pressure changes which is re-
quired to stabilize the body [38] [39]. In a different experiment concerning standing balance control,
NMF components equal the direction of force applied to stabilize the body [32] [40]. With the addi-
tion of different conditions, the PCA components changed [35], while the NMF components remained
consistent [40] [41].

Adding to the physiological interpretation, the NMF parts-based decomposition is similar to neural rep-
resentations observed in the visual and other sensory encoding systems referring to it as sparse-coding
[42]. The idea is that only a minimum of neurons are active in the particular encoding system using
only parts of all available information to activate only certain parts of the body. While with PCA all the
available information needs to be considered. The property of sparseness can also be applied to motor
systems, reducing the energy consumption with less involved neurons or improving efficiency during
motor adaptation [42] [43] [44].

2.3.6 Working with EMG signals

Only the coordination of muscles in various patterns can result in meaningful components. Hence why
the number of recorded muscles should be high enough to gather different patterns of co-variation. It is
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also important to have sufficient varying conditions for the experiments, else some coordination patterns
could be missed among the muscles. Independent muscle activation patterns will always be uncovered
through component analysis.

The number of extractable components is limited by the number of recorded muscles. It is also critical if
muscles are co-activated during certain conditions or not. If only a few muscles are recorded, it can result
in two worst cases. They either form each a single synergy when all are independently activated, or they
are always co-activated and form only one single muscle synergy.

Making sense of EMG analysis in a physiological context will always rely on the judgment and intuition
of the researcher. The interpretation of gained components must depend on knowledge about physio-
logical and bio-mechanical mechanisms. [23]. The component decompositions are not suitable in every
study. But assuming similar basic principals apply, the comparison of complex muscle coordination with
changing muscle activity over several task and trials fits the technique quite well, as seen in fast and
slow walking [45], or one- and two-legged postural control [41]. Another possibility is to differentiate
between patients with different EMG patterns having similar components with different activation and
patients having additionally different compositions of components [33] [45].

2.3.7 PCA vs. NMF for EMG signals conclusion

Non-negative matrix factorization should be used when working with signals with neural pathways to
induce muscle activity since those are non-negative by nature. Analyzing bio-mechanical mechanisms
excluding muscle activity is the fitting application of principal component analysis due to positive and
negative values [23].
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3 A probabilistic model of EMG signals

Let y, € R? denote a D-dimensional column vector of, e.g., EMG measurements from D channels. The
subscript t denotes a discrete time index. A sequence of T consecutive measurements is denoted by the
matrix Y =[y1,¥,,...,¥r | which is of the dimension R *T.

The goal of a computational model is to approximate the data Y through some function, i.e, ¥ = f(w).
The vector w denotes a set of scalars that can be learned. For example classical principal components
analysis (PCA) [17] and non-negative matrix factorization (NMF) [18] approximate Y through a reduced
feature representation (encoded by w) and classify unseen observations using a Mahalanobis distance
measure on the reconstructed signals, see, e.g., [13, 46, 15]. We follow here a different approach and
model the data Y as a probability distribution.

3.1 Modeling a distribution over EMG signals

We use a multinomial distribution to model the output vector of a function approximator

o=[ylyl...yl]" er>Tx1,

where the upper scrip I denotes the transpose operation and must not be confused with the number of
discrete time steps T. As in [47] we use a Gaussian mixture model approach to represent the vector of
concatenated EMG measurements o with

T
plolw)=AH(olaw,5) =] [#(y ¥ w,5,) . 3.1)

t=1
The matrix Q € RT P*P"K i5 a concatenation of T block diagonal matrices (K is the number of Gaussian

basis functions introduced later), where Q = [¥,,¥,,...,¥;]. The block diagonal matrix ¥, € RP*P'K
is a clever arrangement of basis function vectors for multi-dimensional data,

f¢21 0 ... 0

0 r ... 0
T =9 ) o . . }
[ O 0 O ¢Z:DJ

T

For each dimension denoted by i we use a vector of K scalar basis functions, ie., ¢,, =

T . . . . .
|:¢t,1) Pror---s ¢t,1<] . A popular choice for rhythmic movements are Von-Mises basis functions [48],
whereas for point to point movements Gaussian basis functions are widely used [47],

exp (—0.5(t — ¢;)?)
St eXp(—0.5(t —c)?)
Usually, the means (denoted by ¢;) and the variances of the Gaussian features are kept fixed and only the

parameter vector w € R?K*1 in (3.1) is learned. This parameter vector is a concatenated vector of D

. . T . .
feature vectors, one per dimension, where w = [w lT, wg ey wLT)] . Note that we omitted the variances
in this notation for the sake of brevity.

The covariance matrix %, in 3.1 denotes the measurement noise. We assume Zero mean Gaussian
noise where y, =¥, w + €, where €, is sampled from €, ~ A4'(€,[0,%,).

¢t,k
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3.2 Learning of EMG models

In (3.1) we assumed that the parameter vector w is known. Now for learning the vector w we introduce
a prior distribution p(w). This prior is in the simplest case a Gaussian distribution,

p(w)=AHN(w|w,,%,) , (3.2)

where the generative probabilistic model can be computed in closed form, i.e.,

p(o) = fp(OIW)p(W)dW

= AN(olow, 0%, 0" + %)) . (3.3)

The prior is used to model a distribution over multiple recordings o™, where m denotes the m-th trial or
sample of recorded multi-dimensional EMG signals. Usually the mean w,, and covariance matrix %, are
learned from the data by maximum likelihood with help of, e.g., the Expectation Maximization algorithm
as in [49], which generalizes to more complex hierarchical prior distributions. For our Gaussian prior a
much simpler approach based on least squares regression was proposed [47], i.e.,

wihl=@"a+ 107" Q"!™ . (3.4)

The scalar A denotes a regularization term that is typically set to a small value (we used 1le —6). The

mean and the covariance of p(w) can be estimated by the sample mean and sample covariance of the
[m]>

wlmls,

3.2.1 Deterministic models

The raw trajectories are given by the matrix O = [yT,yI,...,yI]" and are of the dimension RP-T*M
where m =1, ..., M is the number of samples. This matrix is then used for all deterministic models.

Non Negative Matrix Factorization - NMF

The implementation of the NMF algorithm is based on the paper "Algorithms, Initializations, and Con-
vergence for the Non-negative Matrix Factorization" [50]. Calculating the decomposition of the original
data matrix O results in two matrices, a non-negative data matrix V € R?'T*¢ and a weight matrix
H € R°M where C denotes the number of components for each model which needed to be manually
set beforehand.

The iterative algorithm computes V and H in an alternating manner, starting usually with a random
initialization of V. For faster convergence the before mentioned paper proposes various other techniques.
The chosen implementation uses the Random Acol Initialization, which averages 20 random columns of
the original matrix O for each column of initial matrix V(0) used in the first iteration step. The idea is
that this initialization is closer to a desired result than a complete random matrix. This implementation
may also take advantage of regularization parameters, which can be used to control the sparsity of the
matrices or even the sparsity in each column of the matrices. By setting the parameters to zero, the result
matches the standard implementation of NMF (for detailed parameter settings, see Results section).

RD‘TXC RDXTXM

The model parameter is V € , where the reconstruction is given by 0 =V -H €
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Principal Component Analysis - PCA

Standard PCA is applied to the matrix O by subtracting the mean, dividing by the standard deviation,
computing the eigenvectors and eigenvalues of the covariance matrix and selecting the chosen number of
components. Then model matrix V € R¥*€ is saved and from the transformed dataZ = O xV € RP"T*¢
the reconstructed matrix O = Z x VT € RP"T*M can be computed, which gives a good approximation of
the original raw data matrix O, while gaining a reduction in dimensionality.

Wavelet Transformation

The raw trajectory matrix O is also used for standard Wavelet transformation. In this case a predefined
level is chosen which, the higher the level, results in a decreasing number of components (see Result
section for more details). The model matrix V € R? T*C and the reconstructed matrix O € R2 - T*M
have been saved as model parameters.

3.2.2 Probabilistic models

For the probabilistic models, the matrix W € RP?X*M js used. M denotes the number of trials where

W= I:W[l], w2l ., W[M]]. N = DK denotes the number of features.

Mixture Model

Without dimensionality reduction the mean and the covariance of the prior distribution p(w) can be
estimated by computing the mean and the covariance of W. We refer to this technique as mixture model
in the results section.

Probabilistic non-negative matrix factorization - p-NMF

For the p-NMF model two approaches have been applied. First the decomposition of W into V € RP ¥ *¢

and H € R®'M as described in the NMF section but with one difference. Due to the fact that the factors
in the W matrix are not all non-negative, a standard implementation could not be used. Hence, we
applied [50]. This proposition of the algorithm will set all negative values to zero in each iteration of
each factor, which might seem odd but works very well in practice. In addition, instead of computing
the prior statistics directly from W, the mean and the covariance are computed from the approximation
denoted by W =V H € RPK*M,

Probabilistic principal components analysis - p-PCA

The p-PCA model follows the same principal as the p-NMF model. First the standard PCA is computed
and thereby the desired number of components is chosen. Resulting in a low dimensional model of
W € RPK*M oiven by V € RP"X*C which can be used for the deterministic classifiers. While for the
probabilistic classifiers, the mean and the covariance are computed from the approximation W € RP X *M
as show before.

3.3 Classification with EMG models

Given either the data matrix O or W, the goal in classification is assign a new observation to a discrete
class label ce {0,1}. In this binary representation ¢= 0 represents class C; and c= 1 class C,. In
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our case this results in the classes healthy and ill. Deterministic as well as probabilistic classifiers were
evaluated [51].

3.3.1 Deterministic

Five classifiers have been used to test the deterministic models. All are based on an euclidean distance
measure. For NME the calculation is h = V/y where V. € RP'T*¢ js the model and y € R?"T*1 is the test
trajectory [46]. For PCA and Wavelet transformation H = y * V. Here the test trajectory is y € R?'T*M
and the model is V € R¥*¢,

The first classifier tries to exploit the concatenation of all channels choosing the class with the smaller
distance calculated by the norm of h or H respectively. The classifiers two through five use each single
channel for the calculation. For NMF h = V/y where V € RT *¢ and y € RT *!. And for PCA and Wavelet
H=yxV wherey € RT*M and V e RM*¢,

Due to an even number of channels for the EMG data set, a majority vote is not sufficient. That is why
the second classifier finds the smaller distance and weights the found class by its distance to make a
collective decision. The third classifier will calculate the mean of all distances and then find the smallest
mean distance. The fourth classifier calculates the minimum and finds the smallest minimum distance.
And the fifth classifier calculates the maximum to find the smallest maximum distance.

3.3.2 Probabilistic

The learned prior distribution over EMG recordings in (3.2) can be used in a naive Bayes classifier,

o N, T o
p(llw )_ L / / / )
Do OGN (W, B7)

where [ denotes the cluster index and w* is the feature vector under test which was obtained through
applying (3.4) on a unseen test trail. The scalar a; denotes the cluster prior weight. It can account
for a different number samples per cluster. In our experiments, we used balanced training sets, where
for both groups, subjects with and without knee abnormalities, an equal number of trials were selected
(¢ = a, =0.5).

Due to the two approaches both the deterministic and the probabilistic classifiers could be used for the
p-NMF and p-PCA models, since only the dimensions change from D - T to D - K, while NME PCA and
Wavelet could only use the deterministic and the MM could only use the probabilistic classifier.

3.4 Relationship to muscle synergy models

The generative probabilistic model in (3.3) can be related to time-invariant [52] and time-varying [53]
muscle synergy models. Time-invariant synergies are represented as a set of shared synergy vectors v
that is scaled by task dependent time-varying temporal profiles

K
yr=>a(t) v
k=1

Time-varying muscle synergy models [53] generate EMG measurements as weighted sum over time-
shifted synergy profiles

K
vl =D et vle—t)
k=1
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where the activity vector v (t) is shared among m tasks. For simplicity we assumed here equal activations
a;" and time shifts ;" for a D-dimensional vector v.

Both generative laws relate to a single time step prediction in (3.1), where the basis function matrix
W, is shared among tasks (like v;) and the learnable feature vector w becomes task dependent. Such
task dependent feature weights were used in [49] for transfer learning. Note that time shifts and task

dependent activity vectors v;" as used in temporal components can not be modeled in this formulation.

In summary, the proposed model provides a probabilistic formulation of well established muscle synergy
models [53, 52]. However, it utilizes a linear basis function approach where the model parameters can
be learned in a single step (through least squares regression) in contrast to the iterative approaches used
in [53, 52].

3.5 Quality measures

All tests in the results section have been conducted with N = 20 fold cross validation by splitting the
bimodal data set into a training and test set (by drawing samples without replacement). All methods
were evaluated on the test set using three quality criteria: success rate of classification, f-score and
explained variance.

3.5.1 Classification success

The classification measure is simply the ratio of correct classified to wrong classified test samples, i.e.
N

(>, ¢;)/N, where the ¢; are the correct assigned class labels and N is the number of folds.
i=1

3.5.2 F-score

The F —score = 2 . 2recisionRecall voiihy precision = TP/TP + FP and Recall = TP/TP + FN where

Precision+Recall

TP = TruePositive, FP = FalsePositive and FN = FalseNegative [54].

3.5.3 Explained Variance

cumsum(eVal)

For the PCA and p-PCA models, given the matrix of eigenvalues e, the explained variance is = =v=n

The NMF and the Wavelet transformation models used the variance accounted for (VAF). The measure
0-0

is defined by VAF = 1— =5=, where O are the raw trajectories and O denotes the approximation matrix.

For p-NMF and the MM model, the definition of the measure changes to VAF =1 — W%W, where W are

the learned parameters and W denotes the approximation matrix of the learned parameters [55].
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4 Performance of the probabilistic model of
EMG signals

4.1 Data and preprocessing

We evaluated the proposed EMG models on a clinical lower limb data set [56], where 22 subjects had to
perform two exercises. In the first, the subjects were instructed to fully flex their knee while sitting. In
the second set of continuously recorded repetitions, the subjects had to stand up from the sitting position.
Prior to the exercises, a professional diagnosed for 11 subjects some form of knee abnormalities.

For each subject the knee angle and four EMG-channels (rectus femoris, biceps femoris, vastus internus,
and semitendinosus) were recorded in two to six repetitions. Excluding the first and last trial, we could
manually extracted about two to three trajectories per subject, which resulted in 30 samples for each of
the two exercises. The EMG data was rectified and low pass filtered with a 4 pass Butterworth filter with
sampling frequency of 1000 Hz and a cutoff frequency of 2/1000 Hz and eventually normalized. The
normalization was also applied to the knee flexion and consisted of two steps, first removing the baseline
by subtraction of the minimum value of each channel and then divide through the maximum activation
value of each channel.

4.1.1 Dynamic Time Warping

Due to motor variability among the patients and over several trials, all the gathered trajectories of the
knee angles and the muscles signals had various lengths. The manual on- and offset determination
resulted in slightly different samples. For a better comparison an alignment over all repetitions and over
all patients was needed. For that the Dynamic Time Warping algorithm (DTW) [57] was used on the
knee flexion. First the trajectory closest to the average length was determined and used as reference
trajectory. Then the data was scaled down from about 3000 — 11000 steps to T = 300 time steps. DTW
then aligned the trajectories of all repetitions from all patients to the chosen reference trajectory. The
resulting time mapping from original to aligned trajectory was then applied to the EMG signals of the
corresponding repetition for each patient, see Figure 4.1 and 4.2.

Four samples were used for testing in cross validation with 20 sets.

Figure 4.1.: Aligned Trajectories for the knee flexion while sitting exercise (a) Healthy and (b) Ill for all
muscle recodrings and the knee angle.
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Figure 4.2.: Aligned Trajectories for the standing up exercise (a) Healthy and (b) Ill for all muscle reco-
drings and the knee angle.
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Figure 4.3.: Optimal number of components for model NMF on data set for the knee flexion while
sitting exercise NMF1-5 show the different classifier (a) Knee angle only. (b) All four muscle
recordings. (c) Knee angle and the four muscles. (d-f) corresponding explained variance of
the data sets in (a-c).

4.2 Finding the optimal number of components and classifier

Before comparing the models to each other a test was conducted to identify the optimal number of
components and model parameters.

4.2.1 Non-negative matrix factorization - NMF

The optimal number of components was tested first.

Optimal number of components

For the data set with one channel of the knee degree of the knee flexion while sitting exercise show in
Figure 4.3 a) all non concatenated classifiers have the same performance, while two components are
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Knee Degree
EMG
Knee Degree + EMG

Components Best Classifier Classification Rate F-Score Explained Variance
2 NMF2-5 1.0000 1.0000 0.9981
3 NMF1 0.5875 0.5600 0.3529
2 NMF1,5 0.8375 0.8434 0.2667

Table 4.1.: Comparison of NMF components and Classifiers on data set for the knee flexion while sit-
ting exercise, where NMF1 is concatenated while the rest tests each dimension separately
to combine the result as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum

(NMF5)
Components Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 3 NMF1 0.8625 0.8736 0.7793
EMG 3 NMF2 0.5500 0.5610 0.6574
Knee Degree + EMG 3 NMF4 0.6875 0.6032 0.5874

Table 4.2.: Comparison of NMF components and Classifiers on data set for the standing up exercise,
where NMF1 is concatenated while the rest tests each dimension separately to combine the
result as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5)

the optimal choice. On the standing up exercise data set, Figure B.1 a), the concatenated has the best
performance with three components (for one dimension the performance should be the same between
concatenated and non concatenated but due to separate training of the models NMF can yield slightly
different results, all non concatenated classifiers share the same model and yield the same performance
and both the concatenated and non concatenated have the same percentage of explained variance).
Using the EMG data with four channels of the knee flexion while sitting exercise in Figure 4.3 b) the
performance of all classifiers regardless the number of components seems to be around 50 Percent with
the concatenated scoring the best rate with almost 60 Percent. The standing up exercise data set, Figure
B.1 b) has a similar poor performance, but an overall higher explained variance (avg. of 63 vs. 30
Percent, Figure 4.3-B.1 €)).

The combination of both sets to a data set with five channels for the knee flexion while sitting exercise,
Figure 4.3 c), shows a combination of the single results as the knee degree seems to strengthen the
overall prediction. The standing up exercise data, Figure B.1 ¢) confirms that observation since the knee
degree once again improves the combined result. For both data sets it can be noted that, a higher number
of channels, decreases the explained variance, Figure 4.3-B.1 f).

Optimal number of parameters

The implementation of the NMF algorithm has the two parameters, the lambda —W and thelambda —
H € {0, 1} which increase the sparsity of both decomposition matrices with increasing lambda values.
Additional the alpha —W and alpha — H € {0, 1} parameters control the sparsity in each column of the
decomposition matrices.

Clearly visible in Figure 4.4 (8) is that the last parameter set, Set seven from Table 4.3, can not produce
any results better than chance because both classes are not distinguishable anymore. That is why this set
was not used in the following tests. Also visible is that Figure 4.4 b)(7) produce instabilities and simply
collapses, yielding a prediction of 50 Percent.

The data set of one channel for the knee flexion while sitting exercise had a perfect result of 100 percent
correctly classified tests with the standard implementation of the NMF algorithm and two components,
Figure 4.3 a). Changes of the parameters resulted in a similar classification performance except for
parameter set six which can not discriminate between both classes anymore, see Figure 4.5 a). For the
standing up exercise data set the standard NMF with three components had a good classification rate,
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which could be tweaked slightly by using parameter set four (plus 2.5 percent from Figure B.1 a) to B.2
a)).

The set of four channels for the knee flexion while sitting exercise performs very poorly with the standard
NME but adjusting the parameters yields a perfect classification with parameter set two and six, which
is an improvement of more than 40 percent, Figure 4.5 b). The same can be seen with the standing up
exercise data set, Figure B.2 b), while the standard NMF performance is not much better than chance,
parameter set 2 improves the results by almost 70 percent (a plus of 14 percent.

In the data set with all five channels for the knee flexion while sitting exercise once again the strong
results from the one dimensional knee angle data set are reflected in the results of the combination of
both sets for two components. All tested parameters maintain a high classification rate with the optimal
set number three achieving 90 percent correctly classified (a plus of 8.75 percent, see Figure 4.3 c¢) and
4.5 ¢)). The standing up exercise data set can not profit from the parameter optimization and stays about
the same level with all different sets of parameters, see Figure B.2 c).
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Figure 4.5.: Optimal parameter settings with best determined number of components for model NMF
on data set for the knee flexion while sitting exercise NMF1-5 show the different classifier
(a) Knee Angle only with two components. (b) All four muscle recordings with three com-
ponents. (c) Knee Angle and the four muscles with two components. (d-f) corresponding
explained variance of the parameter sets in (a-c).

Components Best Parameter Set Best Classifier ~Classification Rate F-Score Explained Variance

Knee Degree 2 Set 3 NMF1-5 1 1 0.9854
EMG 3 Set 2,6 NMF3,5 1.0000 1.0000 0.37
Knee Degree + EMG 2 Set 3 NMF5 0.9250 0.9189 0.2603

Table 4.4.: Comparison of NMF parameters sets on data set for the knee flexion while sitting exercise,
where NMF1 is concatenated while the rest tests each dimension separately to combine the
result as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5)

Components Best Parameter Set Best Classifier ~Classification Rate F-Score

Explained Variance

Knee Degree
EMG
Knee Degree + EMG

3 Set 4 NMF2-5 0.8875 0.8861 0.8082
3 Set 2 NMF5 0.6875 0.5455 0.7022
3 Set 2 NMF5 0.6750 0.5185 0.5957

Table 4.5.: Comparison of NMF parameter Sets on data set for the standing up exercise, where NMF1 is
concatenated while the rest tests each dimension separately to combine the result as weighted
(NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5)
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Figure 4.6.: Optimal number of components for model PCA on data set for the knee flexion while
sitting exercise PCA1-5 show the different classifier (a) Knee Angle only. (b) All four muscle
recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained variance of
the data sets in (a-c).

Components Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 6 PCA1-5 0.5000 0.6667 1
EMG 6 PCA2 0.7750 0.8085 1
Knee Degree + EMG 6 PCA2 0.7625 0.8000 1

Table 4.6.: Comparison of PCA components and Classifiers on data set for the knee flexion while sit-
ting exercise, where PCA1 is concatenated while the rest tests each dimension separately to
combine the result as weighted (PCA2), mean (PCA3), minimum (PCA4) and maximum (PCA5)

4.2.2 Principal component analysis - PCA

The PCA model had difficulties to discriminate both classes in both data sets independent of the number
of channels. The only exception is the set with four channels of the knee flexion while sitting exercise,
Figure 4.6 b) where one out of five classifiers can produce good results with 77.5 percent correctly
classified. For five channels in Figure 4.6 c), a performance of 76.25 percent was achieved.

4.2.3 Wavelet transformation

Using only one channel for the the knee flexion while sitting exercise data set, the performance is optimal
at wavelet level six with 97.5 percent classification rate for all classifiers, see Figure 4.7 a). For the

Components Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 3 PCA1-5 0.5375 0.6667 0.8894
EMG 3 PCA4 0.5250 0.5250 0.7906
Knee Degree + EMG 3 PCA4 0.5375 0.6667 0.8176

Table 4.7.: Comparison of PCA components and Classifiers on data set for the standing up exercise,
where PCA1 is concatenated while the rest tests each dimension separately to combine the
result as weighted (PCA2), mean (PCA3), minimum (PCA4) and maximum (PCA5)
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Figure 4.7.: Optimal number of components for model WT on data set for the knee flexion while sit-
ting exercise WT1-5 show the different classifier (a) Knee Angle only. (b) All four muscle
recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained variance of
the data sets in (a-c).

Knee Degree
EMG
Knee Degree + EMG

Level 2 Level 3 Level4 Level5 Level 6

57 32 19 13 10
215 111 59 33 20
267 137 72 39 23

Table 4.8.: Number of components for each tested Wavelet Level for the knee flexion while sitting
exercise

Level Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 6 WT1-5 0.9750 0.9744 0.9978
EMG 2 WT5 0.8250 0.8250 1.0000
Knee Degree + EMG 6 WT5 0.9750 0.9744 0.9960

Table 4.9.: Comparison of WT components and Classifiers on data set for the knee flexion while sit-
ting exercise, where WT1 is concatenated while the rest tests each dimension separately to
combine the result as weighted (WT2), mean (WT3), minimum (WT4) and maximum (WT5)

Level Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 2 WT1-5 0.9625 0.9639 0.9997
EMG 4 WT4 0.8875 0.8861 0.9997
Knee Degree + EMG 4 WT4 0.9000 0.9000 0.9987

Table 4.10.: Comparison of WT components and Classifiers on data set for the standing up exercise,
where WT1 is concatenated while the rest tests each dimension separately to combine the
result as weighted (WT2), mean (WT3), minimum (WT4) and maximum (WT5)
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Figure 4.8.: Visualization of wavelet levels two until seven (2-7) compared to original trajectories on
the top (1) (a) All four muscle recordings (b) Knee Angle only

standing up exercise data set the performance is mirrored, having its worst result with level six while all
other levels have at least 95 percent, Figure B.4 a).

With four dimensions the knee flexion while sitting exercise data set in Figure 4.7 b) has the fifth classifier
(WTS5 - maximum) with the best result of 82.5 percent but with less components a declining classification
rate, while the third classifier (WT3 - mean) has a worse rate with a high number of components but
gets better with few components. The standing up exercise has the fourth classifier (WT4 - minimum)
on top of all others with almost 90 percent success of classification, see Figure B.4 b).

Combining both previous tests to a five dimensional data set, the knee flexion while sitting exercise
performs better with decreasing number of components coming to a final result of 97.5 percent at level
six, Figure 4.7 c). The standing up exercise data set performs very similar to the four dimensions having
the best result on the mid level four with exactly 90 percent, Figure B.4 c).

By using higher wavelet levels the performance could not be improved significantly and with the number

of components falling under 20, see Table 4.8, a proper trajectory reconstruction seems to get lost and
under ten the classification rate began to decrease rapidly, which can be seen in Figure 4.8.
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Figure 4.9.: Optimal number of components for model pNMF on data set for the knee flexion while
sitting exercise NMF1-5 and pNMF show the different classifier (a) Knee Angle only. (b) All
four muscle recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained
variance of the data sets in (a-c).

Dimension Components Best Classifier Classification Rate F-Score Explained Variance
deterministic Knee Degree 4 NMF1 0.5500 0.3077 0.9645
probabilistic Knee Degree 2 Naive Bayes 1.0000 1.0000 0.9831
deterministic EMG 3 NMF2 0.5625 0.5783 0.9708
probabilistic EMG 2 Naive Bayes 0.8000 0.8222 0.9477
deterministic | Knee Degree + EMG 2 NMF3 0.5875 0.5217 0.9740
probabilistic | Knee Degree + EMG 2 Naive Bayes 0.7625 0.7912 0.9740
Table 4.11.: Comparison of deterministic vs. probabilistic classifiers Classifiers and different compo-

nents for the pNMF model on the data set for the knee flexion while sitting exercise,
where NMF1 is concatenated while the rest tests each dimension separately to combine the
result as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5) and
pNMF is Naive Bayes

4.2.4 Probabilistic non-negative matrix factorisation - p-NMF

Using the pNMF model in parameter space, the Naive Bayes classifier takes advantage of the learned
variance and outperforms all deterministic classifiers by far.

Optimal number of components

For most cases the Naive Bayes classifier could be used with the lowest dimensional model for best per-
formance while the deterministic classifiers needed more components. Compared to the raw trajectory

space, the e

xplained variance remains high for all channels on both data sets.

Optimal number of parameters

The different parameter sets do not matter in parameter space. The classification rate stays on the same
high level for all channels on both data sets. The only noticeable effect can be seen with parameter set
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Dimension Components Best Classifier Classification Rate F-Score Explained Variance
deterministic Knee Degree 3 NMEF2-5 0.5000 0.3333 0.9798
probabilistic Knee Degree 2 Naive Bayes 1.0000 1.0000 0.9995
deterministic EMG 3 NMF5 0.5500 0.5000 0.9863
probabilistic EMG 3 Naive Bayes 0.9125 0.9157 0.9863
deterministic | Knee Degree + EMG 3 NMF2 0.5750 0.5750 0.9896
probabilistic | Knee Degree + EMG 2 Naive Bayes 1.0000 1.0000 0.9943
Table 4.12.: Comparison of deterministic vs. probabilistic classifiers Classifiers and different compo-
nents for the pNMF model on the data set for the standing up exercise, where NMF1
is concatenated while the rest tests each dimension separately to combine the result as
weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5) and pNMF is
Naive Bayes
ai
—*—NMF1
0.8 NMFZi
@ NMF3
8 0.6 NMF4
= l ——NMF5
L0.4 —=—pNMA
>
0.2
0
1 2 3 4 5 6
gd
S 1
g 0.9 0.9 0.97
8 0.9
' 0.96 0.96
é_ 0.95
Ho.94 0.95
5 0.9
R 0.92 0.93 0.94
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Parameter Set Number Parameter Set Number Parameter Set Number
Figure 4.10.: Optimal parameter settings with best determined number of components for model
pNMF on data set for the knee flexion while sitting exercise NMF1-5 and pNMF show the
different classifier (a) Knee Angle only with two components. (b) All four muscle recordings
with three components. (c) Knee Angle and the four muscles with two components. (d-f)
corresponding explained variance of the parameter sets in (a-c).
Components Best Parameter Set Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 2 Set 1 Naive Bayes 1.0000 1.0000 0.9831
EMG 3 Set 1 Naive Bayes 0.8000 0.8222 0.9708
Knee Degree + EMG 3 Set 1 Naive Bayes 0.7625 0.7912 0.9757
Table 4.13.: Comparison of pNMF parameter Sets on data set for the knee flexion while sitting exer-
cise, where NMF1 is concatenated while the rest tests each dimension separately to combine
the result as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5) and
pNMF is Naive Bayes
Components Best Parameter Set Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 2 Set 1 Naive Bayes 1.0000 1.0000 0.9798
EMG 3 Set 1 Naive Bayes 0.9125 0.9157 0.9863
Knee Degree + EMG 3 Set 1 Naive Bayes 1.0000 1.0000 0.9896
Table 4.14.: Comparison of pNMF parameter Sets on data set for the standing up exercise, where

NMF1 is concatenated while the rest tests each dimension separately to combine the result
as weighted (NMF2), mean (NMF3), minimum (NMF4) and maximum (NMF5) and pNMF is
Naive Bayes
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Figure 4.11.: Optimal number of components for model pPCA on data set for the knee flexion while
sitting exercise PCA1-5 and pPCA show the different classifier (a) Knee Angle only. (b) All
four muscle recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained
variance of the data sets in (a-c).

Dimension Components Best Classifier Classification Rate F-Score Explained Variance
deterministic Knee Degree 3 PCA1-5 0.5000 0.6667 0.7478
probabilistic Knee Degree 2 Naive Bayes 1.0000 1.0000 0.5879
deterministic EMG 3 PCA4 0.5375 0.5934 0.7447
probabilistic EMG 2 Naive Bayes 0.8000 0.8222 0.5978
deterministic | Knee Degree + EMG 3 PCAS5 0.6125 0.6804 0.7472
probabilistic | Knee Degree + EMG 2 Naive Bayes 0.7125 0.7356 0.6014

Table 4.15.: Comparison of deterministic vs. probabilistic classifiers Classifiers and different compo-
nents for the pPCA model on the data set for the knee flexion while sitting exercise, where
PCA1 is concatenated while the rest tests each dimension separately to combine the result as
weighted (PCA2), mean (PCA3), minimum (PCA4) and maximum (PCA5) and pPCA is Naive
Bayes

six, see Table 4.3, where for almost all cases a significant drop off in performance and explained variance
occurs.

4.2.5 Probabilistic principal component analysis - p-PCA

In parameter space the pPCA model performed good with Naive Bayes classifier while the deterministic
classifiers produced inferior performance. The only exception is the concatenated (PCA1) classifier for
the standing up exercise data set which reaches over 70 percent classification rate over four channels,
Figure B.7 b) and over 80 percent in the combined five channels, Figure B.7 c). As was the case with the
PNMF model, the deterministic classifiers all need more components for the optimum performance while
the probabilistic classifier can perform equally well on all complexity levels, with more or less explained
variance. Especially the standing up exercise data set showed a huge difference in components where
the deterministic classifiers needed between two and four more components, Table 4.16, while on the
knee flexion while sitting exercise data set only one more component was needed, see Table 4.15.
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deterministic
probabilistic
deterministic
probabilistic
deterministic

probabilistic

Dimension Components Best Classifier Classification Rate F-Score Explained Variance
Knee Degree 4 PCA1-5 0.5750 0.7018 0.8427
Knee Degree 2 Naive Bayes 1.0000 1.0000 0.5472
EMG 4 PCA1 0.7250 0.7843 0.8282
EMG 2 Naive Bayes 0.8875 0.8889 0.5631
Knee Degree + EMG 6 PCA1 0.8375 0.8602 1
Knee Degree + EMG 2 Naive Bayes 1.0000 1.0000 0.5515

Table 4.16.: Comparison of deterministic vs. probabilistic classifiers Classifiers and different compo-
nents for the pPCA model on the data set for the standing up exercise, where PCA1 is con-
catenated while the rest tests each dimension separately to combine the result as weighted
(PCA2), mean (PCA3), minimum (PCA4) and maximum (PCA5) and pPCA is Naive Bayes
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Figure 4.12.: Optimal number of Gaussians for model GMM on data set for the knee flexion while
sitting exercise pNMF, pPCA and GMM show the different classifier (a) Knee Angle only.
(b) All four muscle recordings. (c) Knee Angle and the four muscles. (d-f) corresponding
explained variance of the data sets in (a-c).

4.2.6 Gaussian mixture model - GMM

For the mixture model a different number of Gaussians were used. We compared it also to the other
probabilistic models p-NMF and p-PCA with the optimal settings and components from the previous
subsections.

For one channel, the knee flexion while sitting exercise data set, Figure 4.12 a), all classifiers make a
huge leap from 20 to 25 Gaussians, while in the standing up exercise data set the same leap happens
between 10 and 20 Gaussians, Figure B.8 a).

With four EMG channels the data set of the knee flexion while sitting exercise and the standing up
exercise are getting the first good results starting at 20 Gaussians, with 80 percent classification rate, see
Figure 4.12-B.8 b).

In the combined five channel data set for the knee flexion while sitting exercise, the curve is not that
steep and the combined result is worse than both previous ones, Figure 4.12 c¢). But for the standing up
exercise data set the combination produces a perfect classification starting at 20 Gaussians.

For both data sets the mixture model produces better results with less Gaussians than pNMF and pPCA,
leading to the optimum of 30 Gaussians for all channels in both data sets. Raising the number of
Gaussians to 35 or above yields no further improvements as the classification rate remains constant.
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Gaussians Best Classifier Classification Rate F-Score Explained Variance

Knee Degree 30 all 1.0000 1.0000 1.0000
EMG 30 all 0.8500 0.8605 1.0000
Knee Degree + EMG 30 PNMF 0.8000 0.8182 0.9757

Table 4.17.: Comparison of GMM number of Gaussians and probabilistic Classifiers on data set for the
knee flexion while sitting exercise, where pNMF, pPCA and GMM are all Naive Bayes

Gaussians Best Classifier Classification Rate F-Score Explained Variance

Knee Degree 20 GMM 1.0000 1.0000 0.9977
EMG 30 pNMF 0.9125 0.9157 0.9844
Knee Degree + EMG 30 pPNMF 1.0000 1.0000 0.9878

Table 4.18.: Comparison of GMM number of Gaussians and probabilistic Classifiers on data set for the
standing up exercise, where pNMF, pPCA and GMM are all Naive Bayes

Comparing Figure B.9 a) the first model with 10 Gaussians, from a single four channel data set, with the
classification rate in Figure 4.12 b) at 10 Gaussians, it becomes clear why the prediction has to fail, since
there is not much separation between both class models, which grows significant larger with a higher
number of Gaussians until it delivers a good classification performance. Figure B.9 b) shows the same
for a one channel case where 10 and 15 Gaussians are not enough to separate the classes far enough for
a high correct classified percentage, as the good results start with 20 Gaussians for the MM, see 4.12 a).

4.3 Performance of probabilistic models vs. deterministic models

In the standing up exercise the three probabilistic approaches outperform standard PCA, NMF and WT,
see Figure 4.14, in one, four and the combined five channels. While in the knee flexion while sitting
exercise the standart NMF would still be outperformed, see Figure 4.5 b) parameter set one, it shows
that in this limited data set and with parameter tuning of the non standard NMF very good results can
be produced, Figure 4.13. A drawback is the tuning of components and parameters. The improvement
of increasing the number of components in deterministic models is not as high as increasing the number
of Gaussians in probabilistic methods. In contrast, the tuning of meta parameters can result in high
improvements for the NMF model, while for the GMM the improvements are smaller. This is when the
optimal number of Gaussians already reached a high level.
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Figure 4.13.: Classification performance of deterministic and probabilistic approaches: Comparison of
the deterministic methods PCA, NMF and WT to the proposed probabilistic variants p-PCA,
p-NMF and MM. Correctly classified subjects for the knee flexion while sitting exercise for:
(a) Knee Angle only (b) All four muscle recordings (c¢) Knee Angle and the four muscles
combined
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Figure 4.14.: Classification performance of deterministic and probabilistic approaches: Comparison of
the deterministic methods PCA, NMF and WT to the proposed probabilistic variants p-PCA,
p-NMF and MM. Classification success rate in percent on data recorded in the standing up
exercise: (a) Knee Angle only (b) All four muscle recordings (c) Knee Angle and the four
muscles combined

4.4 Feature models are less sensitive to measurement noise

We investigated the effect of EMG signal noise on the classification performance. Noise was simulated
through evaluating all six methods with EMG data filtered with an increasing cutoff frequency in the
low-pass filter, see Figure 4.15(a) for sample recordings of the vastus internus.

The methods were optimized for a cutoff frequency of 2 Hz, see results from previous sections. To ensure
the performance of the probabilistic models the number of Gaussians had to be increased with higher
cutoff frequency.

For the cutoff frequency of 8 Hz at the standing up exercise data set the optimal number of Gaussians is
40, see Figure 4.16 a). While for 16 Hz 60 was sufficient since the results didn’t improve after that, Figure
4.16 b) . For the highest tested cutoff frequency of 24 Hz 100 Gaussians had to be used, Figure 4.16
). In the knee flexion while sitting exercise data set the number of Gaussians for the cutoff frequencies
have been 60, 45 and 40 respectively. All tests with 2 Hz have been kept at the before mentioned 30
Gaussians.

With increasing number of Gaussians the variance of the MM decreases, which can be seen in Figure
4.17 from a) to c).

In the standing up exercise, Figure 4.15 ¢) the MM is not only superior to the deterministic models in
the strongest filtered case, see Figure 4.14, but also outperforms the other three feature based methods
(WT, p-NME p-PCA) with increasing cutoff frequency.

The knee flexion while sitting exercise data set shows in Figure 4.15 b), what can already be seen in the
other data set, that the performance of the NMF model remains constant through all tested frequencies,
even without optimizing it for the higher frequencies. Remember that the standard NMF algorithm
delivers classification results hardly better than chance, Figure 4.3 b), and with a constant performance
for all cutoff frequencies it would be inferior to all other models and finding the optimal settings needs
by far more computational time.

The vastly different outcomes on this limited data sets show that for significant results investigations on
larger data sets are necessary.

4.5 Principle components of the models

It is interesting to plot the first two principal components in a 2D plot. With that we can identify the
potential of a seperating hyperplane for classification. All visualizations shown have been conducted
with the knee flexion while sitting exercise data set. Analysis on the standing up exercise revealed no
further insight and are not shown.
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Figure 4.18.: Visualization of Components for the knee flexion while sitting exercise data set with the
NMF model The first two components are show for: (a) Knee Angle only (b) All four muscle
recordings (c) A single recoding from the rectus femoris muscle where the testdata is from
healthy patients and d)-f) the testdata is from ill patients.

4.5.1 Principal components of the deterministic models

To extract the principal components for the deterministic models, the matrix of the raw trajectories
0 € RP"T*M have been used, where M is the number of samples, D the number of channels and T the
length of the trajectories.

Non negative matrix factorization - NMF

While in the data set of one channel the prediction works perfectly, see legend in Figure 4.18 a) and d),
it can not discriminate between the classes in the muscle recordings with the NMF model, Figure 4.18 b)
and e). However, in theory a separation should be possible with a linear classifier, Figure 4.18 c) and f).

Principal component analysis - PCA

In opposite to the NMF example the predictions fail in the case of one channel, Figure 4.19 a) and d) but
succeeds for four channels 4.19 b) and e), which is also shown with a single recording4.19 c) and f).

4.5.2 Principal components of the probabilistic Models

For the extraction of the principal components of the probabilistic methods the matrix of the learned
parameters W € RPX*M was used. M denotes the number of trials and N = DK denotes the number of
features.

Probabilistic non-negative matrix factorization - p-NMF

In parameter space the NMF model fails to predict all shown examples. While with one channel Figure
4.20 a) and d) the data is clearly separated and the test data fits right in those two classes and could be
predicted correctly with a different classifier like linear discriminant analysis or support vector machines,
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Figure 4.19.: Visualization of Components for the knee flexion while sitting exercise data set with the
PCA model The first two components are show for: (a) Knee Angle only (b) All four muscle
recordings (c) A single recoding from the biceps femoris muscle where the testdata is from
healthy patients and d)-f) the testdata is from ill patients.

it becomes clear that in both four channel cases, Figure 4.20 b)-c) and e)-f) the two classes are not
separated and can hardly be predicted properly.

Probabilistic principal component analysis - p-PCA

The p-PCA model in parameter space shows a better example than the p-NMF model. Here both, the one
and four channel cases get predicted correctly, 4.21 a) and b) being healthy and are predicted healthy,
while d) and e) being ill are predicted ill. The single recording in ¢) and f) shows that one of the
four channels can not be distinguishable while the prediction still works overall when all four muscle
recordings form a prediction together.

Visualisation of the Gaussian mixture model

In both data sets, Figure 4.22 a) and b) can hardly be assigned to a class in the first half of the model
trajectories, but then the healthy trajectories subside much slower than the ill, which separates both
classes well.
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Figure 4.20.: Visualization of Components for the knee flexion while sitting exercise data set with the
PNMF model The first two components are show for: (a) Knee Angle only (b) All four
muscle recordings (c) A single recoding from the rectus femoris muscle where the testdata
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Figure 4.21.: Visualization of Components for the knee flexion while sitting exercise data set with the
pPCA model The first two components are show for: (a) Knee Angle only (b) All four muscle
recordings (c) A single recoding from the biceps vastus internus where the testdata is from
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5 Conclusion & Future Work

5.1 Conclusion

Electromyography (EMG) signals in, for example prosthetic and rehabilitation tasks [4, 58, 9, 59] are
typically corrupted by sensor noise, the surface electrodes position might change, and even for the same
executed movement different EMG patterns are observed (this is known as motor variability), see Section
2.2. While the first issue can be circumvented through averaging, the other two require EMG models
that represent the variance of the data.

We presented a probabilistic model that maps EMG signals to a feature space using Gaussian basis
functions. The Gaussian means and the variances are fixed while the amplitudes are scaled by learnable
features. The probabilistic model implements Bayesian linear regression in fixed basis functions [51] and
was previously used as part of a movement representation in robotics [47]. It can be trained through
least squares regression or variational inference and scales to more complex hierarchical Bayesian models
[49] relevant for EMG applications.

Most works concerning EMG signals use wavelet transformation as a first step of dealing with the mea-
sured data, followed or sometimes preceded by dimensionality reduction techniques. Instead of wavelet
transformation we used learned Gaussian features. We extended the model by applying principal compo-
nents analysis (PCA) [17] and the non-negative matrix factorization (NMF) [18]. In our results we show
that those commenly used techniques give no further advantage to our proposed probabilistic model, see
Subsection 2.3.

We evaluated the resulting approaches in a clinical lower limb data set [56] with the task of predicting
knee abnormalities. Both used exercises, flexing the knee from a sitting position and standing up from
a sitting position, can be seen as coordinated motor activity causing predictable biomechanical motion,
Subsection 2.2.

We found that the proposed models outperform standard PCA, NMF and wavelet transformation [19]
in terms of classification performance in the standing up exercise, see Figure 4.14, since they can cap-
tures the correlation over multiple channels (space) and time. Drawbacks of these approaches are the
increased run-time of the learning of the model and additional the tuning beforehand.

On the other side stands the supreme classification performance of the NMF model in the knee flexion
while sitting exercise. By using an improved implementation of NMF on EMG Signals where the sparsity
of both factors could be controlled by several parameters, a connection could be drawn to the sparse
coding found in sensory systems. This relationship is discussed in Subsubsection 2.3.5.

Our proposed Gaussian Mixture model is less sensitive to measurement noise. It automatically filters
the data through the Gaussian representation, Figure 4.15 b) and c). NMF shows its ability to identify
components which are stable across different conditions, Section 2.3.5.

5.2 Future work

The good results in spite of working with a limited data set only show how much potential our proposed
methods can have when analyzing EMG signals. Therefore we can discuss several extensions.
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Figure 5.1.: Example for a recording of 12 muscles with varying shapes [60]

5.2.1 Increasing the dimension

As pointed out in Section 2.3.6, the recording of more than four muscles can help improving the results
significantly. The number of extracted components suffers under few recorded muscles and the question
of independently activated versus always coactivated muscles remains as well. The improvement for
deterministic models would be by finding better fitting synergies and for probabilistic models a higher
correlation over space and time.

5.2.2 Different shapes of EMG

Furthermore the shape of our tested EMG signals over all four muscles is very similar, see Figure 4.1. In
the standing up exercise data set the shapes are less similar, which results in an improved classification
performance from 85 percent, Figure 4.13 to 91.25 percent, Figure 4.14. Having a data set with different
shapes of muscles like in Figure 5.1, should further improve classifications. This becomes even more
critical for patients with various disease where one specific muscle has no activity at all, compared to high
activity in healthy patients, and all other muscles are relatively the same. In such cases discrimination
becomes easier in that single dimension and can influence the overall prediction dramatically.

5.2.3 Additional features

During the creation of the data set, its possible to integrate different kinds of information, similar to data
stored on health insurance cards, e.g., the eGK (Elektronische Gesundheitskarte) [61]. Knowing little
things like the age of the patient might aid the classification. Is a person just old and has less strength
and weaker signals, or is the person young and ill? Had the patient any pain before? Like a knee injury
or some muscle damage, or other seemingly unrelated injuries? There may be different kinds of patients
who may be clustered differently even inside an existing class.

Additionally, EMG model parameters could be an extension of health insurance cards.

5.2.4 Testing more classifiers and methods

As seen in Section 4.5 on the visualization of the models, some results could be improved by the use
of different classifiers like linear discriminant analysis or support vector machines [51]. It would also
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Figure 5.2.: eGK (Elektronische Gesundheitskarte) [62]

be possible to further extending the proposed model in the same way as p-NMF and p-PCA, applying
wavelet transformation in Gaussian feature space to either use the wavelet features or working with the
wavelet reconstruction of the parameters.

5.2.5 Latent variables

Based on the model in [49], the proposed Gaussian mixture model could be exploited even further by
utilizing the latent variables. This would enable to not only classify a patient with a disease but also to
determine the severity or progress of an illness. It is also easy to imagine to find variations of diseases
inside a certain class of a medical condition.

5.2.6 Discrimination of different movements

Introducing a new way of EMG analysis could also help the classification of various movements. This
would be applicable for support of an exoskeleton which could relieve a worker from heavy lifting or
enhancing strength and endurance during walking [63] [64]. Or more general the amplification of
motions to compensate for a disease like amyotrophic lateral sclerosis (ALS).

EXOSKELETON

HUMAN AUGMENTATION FOR THE 2157 CENTURY

ENDURANCE

8
9 REOUCE MUSCLE FATIGLE
BY 300 PERCENT
SR

N
PROOLUCTIVITY

INCREASE WORK RATE
BY 2 TO 27 TIMES

(a) Example from [65] (b) Example from [66]

Figure 5.3.: Exoskeleton examples
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Figure B.1.: Optimal number of components for model NMF on data set for the standing up exercise
NMF1-5 show the different classifier (a) Knee angle only. (b) All four muscle recordings. (c)
Knee angle and the four muscles. (d-f) corresponding explained variance of the datasets in

(a-c).

Knee Degree
EMG
Knee Degree + EMG

Level 2 Level 3 Level4 Level5 Level6

46 26 16 11 9
171 89 48 27 17
212 109 58 32 19

Table B.1.: Number of components for each tested Wavelet Level for the standing up exercise
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Figure B.2.: Optimal parameter settings with best determined number of components for model NMF
on data set for the standing up exercise NMF1-5 show the different classifier (a) Knee Angle
only with three components. (b) All four muscle recordings with three components. (c) Knee
Angle and the four muscles with three components. (d-f) corresponding explained variance
of the parameter sets in (a-c).
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Figure B.3.: Optimal number of components for model PCA on data set for the standing up exercise
PCA1-5 show the different classifier (a) Knee Angle only. (b) All four muscle recordings. (c)
Knee Angle and the four muscles. (d-f) corresponding explained variance of the data sets in

(a-c).
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Figure B.4.: Optimal number of components for model WT on data set for the standing up exercise
WT1-5 show the different classifier (a) Knee Angle only. (b) All four muscle recordings. (c)
Knee Angle and the four muscles. (d-f) corresponding explained variance of the data sets in

(a-c).
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Figure B.5.: Optimal number of components for model pNMF on data set for the standing up exercise
NMF1-5 and pNMF show the different classifier (a) Knee Angle only. (b) All four muscle
recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained variance of

the data sets in (a-c).

48



a i b C 1
——NMF1 T~
0.9 NMF2
o NMF3 0.8
§0.8 —»—mg
@ —=—pNMF 0.6; .
- 0.7 P L~ R
N -
0.6 0.4
O.SA—‘ 0.2
1 2 3 4 5 6 1 2 3 4 5 6
od e f
1 1
EO 99
o 0.99 0.9
i 0.99
o 0.98 0.9
s 0.98
o 0.97, 0.9
fin
w 09 0.96 0.9
£ 0.975 0.95 0.95
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Parameter Set Number Parameter Set Number Parameter Set Number

Figure B.6.: Optimal parameter settings with best determined number of components for model pNMF
on data set for the standing up exercise NMF1-5 and pNMF show the different classifier (a)
Knee Angle only with three components. (b) All four muscle recordings with three compo-
nents. (¢) Knee Angle and the four muscles with three components. (d-f) corresponding
explained variance of the parameter sets in (a-c).
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Figure B.7.: Optimal number of components for model pPCA on data set for the standing up exer-
cise PCA1-5 and pPCA show the different classifier (a) Knee Angle only. (b) All four muscle
recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained variance of
the data sets in (a-c).
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Figure B.8.: Optimal number of gaussians for model MM on data set for the standing up exercise

PNMF, pPCA and MM show the different classifier (a) Knee Angle only. (b) All four muscle
recordings. (c) Knee Angle and the four muscles. (d-f) corresponding explained variance of
the data sets in (a-c).
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Figure B.9.: Visualisation of the MM with healthy and ill trajectories and their variance for 10,15, 20, 25
and 30 gaussians from top to bottom. All from the knee flexion while sitting exercise data
set with: (a) single muscle recording from the biceps femoris muscle (b) knee angle recording
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Figure B.10.: Visualization of the MM and the split of model data vs test data for the knee flexion while
sitting exercise data set of the biceps femoris muscle: (a) Healthy model and model data (b)
Healthy model and ill test trajectories (c) lll model and model data (b) Il model and ill test
trajectories
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Figure B.11.: Visualization of the MM and the split of model data vs test data for the standing up exercise

data set of the semitendinosus muscle: (a) Healthy model and model data (b) Healthy model
and ill test trajectories (c) lll model and model data (b) Il model and ill test trajectories
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