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Abstract
For controlling robots with many actuators, most stochastic optimal control algorithms use

approximations of the system dynamics and of the cost function (e.g., using linearizations

and Taylor expansions). These approximations are typically only locally correct, which might

cause instabilities in the greedy policy updates, lead to oscillations or the algorithms diverge.

To overcome these drawbacks, we add a regularization term to the cost function that punishes

large policy update steps in the trajectory optimization procedure. In the first part of this

thesis, we applied this concept to the Approximate Inference Control method (AICO), where

the resulting algorithm guarantees convergence for uninformative initial solutions without

complex hand-tuning of learning rates. We evaluated our new algorithm on two simulated

robotic platforms. A robot arm with five joints was used for reaching multiple targets while

keeping the roll angle constant. On the humanoid robot Nao, we showed how complex skills

like reaching and balancing can be inferred from desired center of gravity or end effector

coordinates.

In these tasks we assumed a known forward dynamic model. Typically, inaccurate model

predictions have catastrophic effects on the numerical stability of SOC methods. In particular,

if the model predictions are poor, the SOC method should not further explore but collect

more data around the current trajectory. Therefore, we investigated in the second part of this

thesis how to learn such a forward dynamics model with Gaussian processes in parallel to

movement planning. The trade off between exploration and exploitation can be regularized

with the model uncertainty, which was introduced as an additional objective in AICO. We

evaluated the simultaneous model learning and movement planning approach on a simple

pendulum toy task. We achieved safe planning and stable convergence even with inaccurate

learned models. The planned trajectories, torques and end effector positions converges to

local optimal solutions during the learning process. The model prediction error of the forward

dynamics model converges to zero.
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1 Introduction
Planning whole body motor control tasks of humanoid robots, like reaching for objects while

walking, avoiding obstacles during motion, or maintaining balancing during movement exe-

cution, is necessary for robots that can interact with us humans. Humanoid robotic platforms,

like Nao1 or iCub2 in Figure 1.1, have many actuators and the sensor readings are noisy. Con-

trolling these robots that have to fulfil these multiple objectives (e.g., balancing and walking)

is challenging. It is not obvious how to solve such kind of problems. Therefore, it becomes

crucial to develop robust methods, which can handle multiple objective problems.

Most real robotic applications involve interactions with the physical world, where the planned

policy of our robot is hard to predict due to noise and model errors. One way to fix this issue

is to use a feedback control law that tries to follow the computed trajectory as close as possi-

ble. However, a more promising way is to model such uncertainties, i.e. it is not known what

will happen in the future when certain actions are applied. To achieve our plan under these

uncertainty we have to make an optimal decision for every state. The planning problem be-

comes a decision-making-problem, which is computed by our policy π. This policy makes use

of the observations at the current state and chooses an (optimal) action. Thus, a plan can be

formulated as a sequence of decision problems. Futhermore, for multiple objective problems,

the planning problem can be characterized as an optimization problem with multiple criteria

of optimality or objectives. The objectives may be specified in the robot’s configuration space

(e.g., joint angles, joint velocities and base reference frame), in task space (where objectives

such as desired end effector coordinates or center of gravity positions are specified), or in

combinations of both.

1.1 Robust movement planning

In this thesis, we consider control problems in nonlinear systems with multiple objectives

in combinations of these spaces. Unfortunately, many planning algorithms tend to diverge

with multiple task objectives, high-dimensional state space and in particular under the as-

sumption of a analytical known forward dynamics models. Moreover, they do not provide

a feedback controller which becomes necessary for controlling compliant robots. Therefore,

it is important to develop robust control methods with guaranteed convergence, which can

achieve these goals and computes a feedback controller. In this thesis, we use a Bayesian

inference approach. In this approach, a distribution over trajectories and control sequences

is computed, where the trajectory that maximizes the probability of receiving a reward is de-

fined as policy. These rewards are coupled with our objectives (e.g. achieving a desired end

effector position). This has the advantage that multiple objectives can be defined in arbitrary

spaces. However, we assume knowledge about the kinematic models that map objectives to

states (e.g., end effector Cartesian coordinates to joint positions).

1 The source of the picture is www.aldebaran.com
2 The source of the picture is www.ias.tu-darmstadt.de
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Figure 1.1.: Two examples of humanoid robotic platforms. In (A), the humanoid robot Nao is
shown with 25 degrees of freedom. Nao is equipped with two cameras, four direc-
tional microphones, sonar rangefinder, two IR emitters, one inertial board, nine
tactile sensors, and eight pressure sensors. Nao was used for two experiments,
namely the arm-reaching task and the balancing task. In (B), the humanoid robot
iCub with 53 degrees of freedom is depicted. iCub is equipped with actuated
cameras for stereo-vision, inertial sensor, whole-body skin, tactile elements on the
fingertips, 6 axis force/torque sensors, and variable-impedance actuation in the
legs.

1.2 Simultaneous movement planning and model learning

As mentioned, the assumption of a good known forward dynamics model is often hard to

fulfil, e.g., to define such a model analytically is often impossible. However, using a learned

forward dynamics model during the planning process can have catastrophic effects if the

model error is high and the prediction is wrong due to an insufficient learned model. There-

fore, it becomes crucial to consider the model uncertainty to regulate the policy update steps,

which is the reason why we use Gaussian processes. In our Bayesian inference approach we

introduce the model uncertainty as an additional objective. By that the tradeoff between

exploration and exploitation can be controlled in a principal manner. The goal is to have a

robust planning method for multiple objective problems with stable convergence properties,

using imprecise models.

1.3 Outlook of this thesis

In Section 2, existing approaches to solve multiple objective planning problems are discussed

and we outline differences to our approach. We introduce in Section 3 the probabilistic
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planning method Approximate Inference Control (AICO), analyze its convergence properties

in a reaching task in a light-weight robot arm and introduce the proposed regularization on

the policy updates. The resulting algorithm is evaluated on the humanoid robot Nao, where

in first results, arm reaching and balancing skills are inferred from desired center of gravity or

end effector coordinates. In Section 4, we describe how to learn a forward dynamics model

with Gaussian processes and how to consider the model uncertainty as feature. We evaluate

the model learning and movement planning algorithm in a simple pendulum toy task. The

computational time of our approach was considered in a light-weight robot arm. In Section

5, we conclude.
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2 Related work
This thesis focuses on movement planning in high-dimensional nonlinear systems and simul-

taneous movement planning with model learning. The following Subsection 2.1 describes

current approaches for movement planning. Thereafter, existing approaches for model learn-

ing are discussed in Subsection 2.2.

2.1 Existing approaches for movement planning

A common strategy to whole body motor control is to separate the redundant robot’s config-

uration space into a task space and an orthogonal null space. Objectives or optimality criteria

of motion are implemented as weights or priorities [2] to the redundant solutions in the null

space. While these approaches have been successfully applied to a variety of tasks, including

reaching, obstacle avoidance, walking and maintaining stability [5],[25],[8],[17], the appli-

cation of these methods is typically limited to one step motor control, where information

about future actions is not considered.

Alternatively, in Stochastic Optimal Control (SOC) problems [24],[3],[27],[32], a movement

policy is optimized with respect to a cost function, which combines the different criteria of

optimality in the form of different weights. For nonlinear systems, SOC methods use ap-

proximations of the system dynamics and of the cost functions, e.g., through linearizations

and 2nd order Taylor expansions. These approximations are only locally correct and the

updates of the policy may become unstable if the minima is not close to the points of the

linearizations, or may oscillate in the case of multiple solutions. On the other hand, global

planning does not need any initial solution but has much higher computational demands [12].

Many SOC methods address this issue and implement regularizations on the algorithmic

level. E.g., in the iLQG method [28] a diagonal regularization term is added to the con-

trol cost Hessian1, and in an extension [26], it was suggested to penalize deviations from the

state trajectory used for linearization rather than controls. A drawback of this approach is

that the additive regularization term needs rapid re-scaling to prevent divergence and accu-

rate fine-tuning of a learning rate to find good solutions, which is challenging and increases

the computational time of the algorithm.

Probabilistic planning methods that translate the SOC problem into an inference problem

[10], typically implement learning rates in their belief updates [29] or in the feedback con-

troller [22]. However, in nonlinear systems, both strategies are suboptimal in the sense that

even with a small learning rate on the beliefs the corresponding control updates might be

large and vice-versa, respectively.

We propose to regularize the policy updated on the cost function level for probabilistic plan-

1 The update step in the trajectory optimizer corresponds to a Gauss-Newton Hessian approximation [26]
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ning. We also penalize large distances between two successive trajectories in the iterative

trajectory optimization procedure. In [26], the regularization term is only used for the con-

trol gains and not for the updates of the value function. However, the deviation from the

linearization point can still be high if small regularization terms are used. In our approach,

we always want to stay close to the linearization point as the used approximations are only

locally correct. Hence, using too large update steps by greedily exploiting the inaccurate mod-

els might again be dangerous, leading the instabilities or oscillations. The scaling parameter

of our punishment term serves as step size of the policy update. Due to the use of probabilis-

tic planning, the need of an additional learning rate and complex update strategies of this

learning rate can be avoided. Moreover, we will demonstrate that this type of regularization

results in more robust policy updates in comparison to [26]. We choose the Approximate

Inference Control (AICO) algorithm as probabilistic planning method [29] to discuss and an-

alyze the proposed regularization, however, the same “trick” can be applied to large variety

of SOC methods.

2.2 Existing approaches for model learning

To define a correct analytical forward dynamics model is often impossible or challenging for

high-dimensional robots. Therefore, learning approaches can be used to learn such a forward

dynamics model.

Model learning combined with dynamic programming was done by [23], where the forward

dynamics was learned with Bayesian locally weighted regression. The approach is based on

stochastic dynamic programming in discretized spaces. The model uncertainty was treated

as noise. However, as this approach discretizes the state space and is only applicable to low-

dimensional systems.

Model learning with AICO was used in [35], where the forward and inverse dynamic are

learned with locally weighted projection regression (LWPR). The evaluation was done for a

seven degrees of freedom (DOF) robot, where the trajectory was planned in joint space. How-

ever, to tune the parameters in LWPR is not easy. In addition, AICO deverges if the prediction

is bad, gets slow with many data points as it stores and compares to all points.

To overcome these drawbacks, we use for movement planning in task space our new regu-

larized version of AICO with Gaussian Processes for model learning. As Gaussian processes

estimate the model uncertainty, we integrate in the planning as an additional feature.

In [6] Gaussian processes are used to learn a forward dynamics model, where again the

model uncertainty is treated as noise. PILCO (Probabilistic Inference for Learning Con-

trol) is a model-based policy search method that uses approximate inference for long-term

predictions and policy evaluation. The analytical policy gradients are used for the policy im-

provement. It was shown that PILCO learns in a few seconds a swing-up in a cart-pole task,

which is a continuous state-action planning problem. A further successful experiment was

done in a five degree of freedom robot with a state space of twelve dimensions and a control

space of two dimensions.

In our approach, we regularize how to explore in uncertain regions by using the model un-

certainty as an additional feature. By setting the desired model variance to zero we directly
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learn the task and by increasing the desired model uncertainty the algorithm starts to explore.

Thus, the executed movements are in areas with a known model uncertainty. We apply our

approach in a simple pendulum toy task and in the biorobo platform, which has a state space

of ten dimensions (position and velcoity are included) and a control space of five dimensions.

However, it is not clear how to executed movements in known areas or how to define a model

uncertainty feature in PILCO.
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3 Robust policy updates for stochastic
optimal control

Controlling high-dimensional robots can be formalized as solving a stochastic optimal con-

trol problem (SOC), which is done in Subsection 3.1. Deriving an analytical optimal solution

requires certain assumptions, namely Linear system dynamic, Quadratic costs, and Gaus-

sian noise (LQG). The classical way to solve a SOC problem in the LQG case is described in

Subsection 3.2. Another approach to solve a SOC problem can be implemented in the prob-

abilistic inference framework. The relation of these approaches is considered in Subsection

3.3. Unfortunately, the convergence of this approach is not guaranteed, which is shown in

Subsection 3.4. Therefore, we add in Subsection 3.5 a regularization term that punishes large

policy update steps in the trajectory optimization procedure. The evaluation for the resulting

algorithm on for two tasks is shown in Subsection 3.6.

3.1 Problem formulation as a stochastic optimal control problem

For optimal decision making we consider finite horizon Markov Decision Processes (MDP)1.

Finite horizon means that the length of the movement trajectory is finite. A MDP is com-

pletely defined by its state space qt ∈ Q, its action space ut ∈ U, its transition dynamics

P(qt+1|qt ,ut), its cost function Ct(qt ,ut) ∈ R1, and its initial state probabilities P(q0).

Let qt ∈ Q denote the current robot’s state in configuration space (e.g., a concatenation

of joint angles, joint velocities and reference coordinates in floating base systems) and let

vector xt ∈ X denote task space features like end effector positions or the center of gravity of

a humanoid (these features will be used to specify a cost function later). At time t, the robot

executes the action ut ∈ U according to the movement policy π(ut |qt)
2. The chosen action at

the current state is evaluated by the cost function Ct(qt ,ut) ∈ R1 and results in a state transi-

tion characterized by the probability P(qt+1|qt ,ut). In stochastic optimal control (SOC), the

goal is to find a optimal stochastic policy π∗ that minimizes the expected cost. Therefore, we

define the expected cost as a value function given the policy, the initial state distribution, and

the transition dynamics. Obviously, for the last time step T we cannot perform any action,

i.e. our value function is JT (qT ) = CT (qT ). For the previous time steps we can use dynamic

programming and iterate backwards in time, i.e. our value function is

Jπt (qt) = Ct(qt ,ut) +EP

�

Jπt+1(qt+1)|qt ,ut

�

.

1 Note that the same principle of regulating the update steps in trajectory optimization can also be applied to
planning algorithms in infinite horizon problems such as [9, 32]

2 Note that the policy is time-dependent because we are in the finite horizon case. Hence, the reward function
and the probabilistic transition model are also time-dependent.
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But as described above, the optimal policy minimizes the expected cost. To do so, the optimal

value function is computed by taking the optimal action at each time step. This leads to

Jπ
∗

t (qt) = argmin
ut

�

Ct(qt ,ut) +EP

�

Jπ
∗

t+1(qt+1)|qt ,ut

��

, (3.1)

= argmin
ut

�

Ct(qt ,ut) +

∫

qt+1

P(qt+1|qt ,ut) J
π∗

t+1(qt+1)dqt+1

�

. (3.2)

Now the problem is to solve the expectation and the minimization operator. Only under

special assumption we can solve analytically the stochastic optimal control problem, which is

described in the next subsection.

3.2 Solving a SOC problem for the Linear-Quadratic-Gaussian case

Solving Equation (3.2) analytically requires special assumptions, namely Linear system dy-

namic, Quadratic costs, and Gaussian noise (LQG). To do so, the system dynamic becomes

P(qt+1|qt ,ut) =N (qt+1|Atqt + at +Btut ,Qt),

where At is called state transition matrix, at is the linear drift term, Bt the control matrix,

and N denotes a normal distribution. In addition, we assume quadratic a cost function

Ct(qt ,ut) = qT
t Rtqt − 2rT

t qt + uT
t Htut .

This results in a quadratic value function for the following time step

Jπ
∗

t+1(qt+1) = qT
t+1Vt+1qt+1 − 2vT

t+1qt+1.

With these assumptions it is possible to reformulate Equation (3.2)

Jπ
∗

t (qt) = argmin
ut

�

Ct(qt ,ut) +

∫

qt+1

P(qt+1|qt ,ut) J
π∗

t+1(qt+1)dqt+1

�

,

= argmin
ut

�

qT
t Rtqt − 2rT

t qt + uT
t Htut+

∫

qt+1

N (qt+1|Atqt + at +Btut ,Qt) (q
T
t+1Vt+1qt+1 − 2vT

t+1qt+1)dqt+1

�

,

which can be solved in closed form (c.f Appendix B). Note that the optimal trajectory is

only independent of the model noise Qt , if the maximum a posteriori solution is used. These

results in the Riccaty Equations, where the optimal value function is

Jπ
∗

t (qt) = qT
t Vtqt − 2vT

t qt ,
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with the following entries

Vt = Rt +
�

AT
t −K

�

Vt+1At ,

vt = rt +
�

AT
t −K

�

(vt+1 −Vt+1at) ,

K = AT
t Vt+1

�

Vt+1 +BtH
−1
t BT

t

�−1
.

Another way to solve a stochastic optimal control problem is discussed in the next Subsection.

3.3 Probabilistic inference approach to solve a SOC problem

An interesting class of algorithms to SOC problems have been derived by reformulating the

original Bellman formulation in Equation (3.2) as a Bayesian inference problem [30],[7],

[31], [11]. Instead of minimizing costs, the idea is to maximize the probability of receiving a

reward event (zt = 1) at every time step

P(zt = 1|qt ,ut)∝ exp{−Ct(qt ,ut)}. (3.3)

Note that the idea of turning the cost function in Equation (3.3) into a reward signal was also

used in operational space control approaches [18], [19]. In general, minimizing the expected

cost is not equivalent to maximizing the probability of receiving a reward as

log P(z0:T = 1) = logEq0:T ,u0:T−1

�

P(z0:T = 1|q0:T ,u0:T−1)
�

,

(1)
≥
Eq0:T ,u0:T−1

�

log P(z0:T = 1|q0:T ,u0:T−1)
�

,

= −Eq0:T ,u0:T−1

�

Ct(q0:T ,u0:T−1)
�

.

Note that (1) is applicable with Jensen’s inequality3. Only in the LQG case they are coincide,

i.e.

log P(z0:T = 1) = −Eq0:T ,u0:T−1

�

Ct(q0:T ,u0:T−1)
�

.

In the probabilistic framework, we want to compute the posterior over state and control

sequences, conditioning on observing a reward at every time step

P(q0:T ,u0:T−1|z0:T = 1) = P(q0)
T−1
∏

t=0

π(ut |qt)P(qt+1|qt ,ut)
T
∏

t=1

P(zt = 1|qt ,ut),

where P(q0) is the initial state distribution, P(qt+1|qt ,ut) the state transition model, and the

policy π(ut |qt) chooses the control ut for a given state qt . For efficient implementations

of this inference problem, a number of algorithms have been proposed that apply iterative

policy updates assuming that all probability distributions can be modeled by an instance of

the family of exponential distributions [29],[20], [34]. We will restrict our discussion on the

Approximate Inference Control (AICO) algorithm with Gaussians [29]. A more detailed de-

3 Jensen’ inequality f (E(X )) ≥ E( f (X )) is applicable for an expectation if the function f is concave and X is
a integrable real-valued random variable.
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scription of message passing in general factor graphs is given in [36],[16],[15].

Most real robotic systems are non-LQG and therefore our assumptions are violated. Hence,

in AICO (with Gaussians), the system dynamics are linearized through 1st order Taylor ex-

pansion, where the state transition matrix At , the linear drift term at and the control matrix

Bt are often computed with derivatives simulated through finite differences. The numerical

stability of AICO depends on the accuracy of the linearized model, we will therefore addi-

tionally compare to an approximation of the system dynamics, where controls ut correspond

directly to joint accelerations (compare Appendix C). We will refer to this approximation as

pseudo-dynamic model. We propose to add a regularization term to the cost function. Before

explaining the regularization term in more detail, we briefly discuss how different objectives

are implemented in AICO. In the simplest case, the task-likelihood function in Equation (3.3)

can be split into separate state and a control dependent terms, i.e.,

P(zt = 1|qt ,ut) =N [qt |rt ,Rt]N [ut |ht ,Ht] , (3.4)

where, for analytical reasons, the Gaussians are given in canonical form, i.e.,

N [ut |ht ,Ht]∝ exp(−1/2uT
t Htut + uT

t ht).

By inserting Equation (3.4) in Equation (3.3) we obtain the quadratic costs,

Ct(qt ,ut) = qT
t Rtqt − 2rT

t qt + uT
t Htut − 2hT

t ut . (3.5)

The state dependent costs, encoded byN [qt |rt ,Rt], can be defined in configuration space, in

task space, or even in combinations of both spaces [31]. To be precise, reaching a goal state

g∗ ∈ Q in configuration space can be encoded by rt = Rtg
∗ ,where the precision matrix Rt

scales the importance of different dimensions. In task space, let be x∗ ∈ X a desired end effec-

tor position and let x = f (q) be the forward kinematics mapping and J(qt) = ∂ f /∂ q|q = qt

its Jacobian. We can now obtain a Gaussian task likelihood by approximating the forward

kinematics by its linearization through the Jacobian, i.e., x ≈ f (q0) + J(q − q0). The pa-

rameters of the Gaussian are then given by rt = JT C
�

f (q0)− x∗
�

and Rt = JT CJ, where the

diagonal elements of the matrix C specify the desired precision in task space.

On the algorithmic level, AICO combines forward messages and backward messages to

compute the belief over trajectories. We represent these Gaussian forward messages by

N[qt |st ,St], the backward messages by N[qt |vt ,Vt], and the belief by N[qt |bt ,Bt]. The

recursive update equations are given in [29] and in [22], where an implementation which

additionally implements control constraints (otherwise ht = 0) is given.

We can also compute the most likely action given the task constraints. By doing so, in

the case of AICO with Gaussians, we obtain a time-varying linear feedback controller with

time-varying offset

u[n]t = ot +Otqt , (3.6)
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Figure 3.1.: A 5-degree-of-freedom robot arm has to reach for a via-point (the posture on the
left in A) and return to its initial pose (the posture on the right in A). The reaching
task is encoded in four task objectives, i.e., three cartesian coordinates and the
roll angle of the end effector. The inferred trajectories for the y coordinate and
the roll angle, including the objectives, are shown in (B).

where ot is an open loop gain and Ot denotes the feedback gain matrix (n denotes the

iteration). The gains are given with

ot =M−1
t

�

BT
t V∗V̄

−1
t+1v̄t+1 −BT

t V∗at + ht

�

,

Ot = −M−1
t BT

t V∗At .

The controller can be computed in closed form, where the solution is given in the Appendix

D. Also the derivation of AICO is listed in the Appendix D.

3.4 Evaluation of the convergence properties of AICO

To investigate the convergence properties of AICO, we use a simulated light-weight robot

arm [13] with five joints. The robot has to reach a desired end effector position in cartesian

space and subsequently has to return to its initial pose. To increase the complexity, we define

a second task, where the robot should additionally keep the roll angle of the end effector

constant. For this task, we used the cost function

Ct(qt ,ut) =

(

104(xi − xt)T (xi − xt) + 10−2uT u if t = T i

10−2uT u else
, (3.7)

where xi denotes the desired robot postures in task space at times T 1 = 500 and T 2 = 103

(the planning horizon is 2 seconds with a time step of 2ms) with x1 = [1,−0.4, 0,0,π/2,0]T

and x2 = [1,0, 0,0,π/2, 0]T . Note that we do not assume any initial solution to initialize the

planner, solely the initial posture of the robot in configuration space is used as initial ‘trajec-

tory’. An example movement is shown in Figure 3.1.

Using the pseudo-dynamics approximation of the system dynamics, the convergence rate of

the costs per iteration of both tasks are shown in Figure 3.2A,B. For the simple task in Figure
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Figure 3.2.: Comparison of the convergence properties of iLQG, AICO and our regularized
variant, where the rate of convergence is controlled via the parameter α. In the
top row (A-B), the model of the forward dynamics was approximated by a pseudo
dynamics model [33]. In the bottom row, an analytic forward dynamics model of
a 5-degree-of-freedom robot arm was used. The panels in the first column denote
the costs of the planning algorithms applied to a simple task, where the robot arm
has to reach for an end effector target and return to the initial state. In the second
column (B,D), the robot has to keep additionally the roll angle constant (at π/2).
Shown are the mean and the standard deviations for 10 initial states ‘q0 sampled
from a Gaussian with zero mean and a standard deviation of 0.05.

3.2A the inferred cost values converge fast for all algorithms, with the standard AICO algo-

rithm showing the best performance. However, the fast convergence also comes with the costs

of a reduced robustness of the policy update as can be seen from the results in the second

scenario illustrated in Figure 3.2B, where AICO is unstable and cannot infer solutions with

low costs. When we used the analytic forward dynamics model (where the linearizations

are computed through finite differences) instead of the pseudo dynamics model, comput-

ing the messages in AICO became numerically unstable and no solutions could be inferred.

Therefore, the panels in Figure 3.2C,D do not include results of AICO. We also evaluated the

iLQG method [28] that implements an adaptive regularization schedule and line search to

prevent divergence [26]. While the iLQG algorithm performed well for the pseudo dynamcis

model, the learning rate was automatically decreased to almost zero for the analytical dy-

namics model. Our regularization method for AICO, that we will present in the next Section,

considerably outperformed both competing methods.
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Algorithm 1: Approximate Inference Control with Regularized Update Steps

Data: initial state q0, parameter α[0], threshold θ
Result: feedback control law o0:T−1 and O0:T−1

1 initialize q[0]1:T = q0, S0 = 1e10 · I, s0 = S0q0, n= 1
2 while not converged do

3 q[n−1]
0:T = q[n]0:T

4 for t ← 1 to T do
5 linearize model: At ,at , Bt
6 compute: Ht ,ht , Rt , rt
7 update: st , St , vt , Vt , bt , and Bt

8 if ‖bt − q[n]t ‖> θ then
9 repeat this time step

10 t ← t − 1
11 end

12 q[n]t = B−1
t bt

13 end

14 for t ← T − 1 to 0 do
15 ..same updates as above...
16 end

17 for t ← 0 to T − 1 do
18 compute feedback controller: ot , Ot

19 u[n]t = ot +Otqt

20 q[n]t+1 = Atq
[n]
t + at + Btu

[n]
t

21 end

22 n= n+ 1
23 α[n] = α[n−1]γ

24 end
25 return o0:T−1 and O0:T−1

3.5 Regulating the policy updates in AICO

To regularize the policy update steps in Equation (3.2), we add an additional cost term to the

task-likelihood function, i.e.,

P(zt = 1|q[n]t ,u[n]t )∝ exp{−Ct(q
[n]
t ,u[n]t )−α

[n](q[n]t − q[n−1]
t )T (q[n]t − q[n−1]

t )} , (3.8)

which punishes the distance of the state trajectories of two successive iterations of the algo-

rithm (n denotes the iteration). The parameter α controls the size of the update step. For

large α, the trajectory update will be conservative as the algorithm will stay close to the pre-

vious trajectory that has been used for linearization. For small α values, the new trajectory

will directly jump to the LQG solution given the linearized dynamics and the approximated

costs. Hence, α is inverse proportional to the step size. The value of α is updated after each

iteration according to α[n] = α[n−1]γ. For α[0] ≥ 1 and γ > 1, convergence is guaranteed as

the regularization term will dominate with an increasing number of iterations.

The algorithm is listed in Algorithm 1. An interesting feature of this algorithm is that no
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learning rate is needed as α is used directly to implement a step size. In the original formu-

lation of AICO the learning rate is either applied to the state update (in Line 13 in Algorithm

1) [29] or to the feedback controller (in Line 18 in Algorithm 1) [22]. However, neither im-

plementation can guarantee convergence in nonlinear systems or in tasks with costs inducing

a nonlinear mapping from Q to X.

We evaluate the resulting algorithm on the same robot arm reaching tasks. For both tasks,

the cartesian planning task in Figure 3.2A,C and the extension with the additional roll angle

objective in Figure 3.2B,D, we evaluated AICO with the regularization parameter α ∈ {1,10}
(we did not increase α and γ = 1). For both models of the system dynamics, the pseudo-

dynamics approximation (shown in Figure 3.2A,B) and the analytic model (illustrated in Fig-

ure 3.2C,D), AICO benefits from the regularization term and the costs decay exponentially

fast. Interestingly, without “good” initial solutions, the differential dynamic programming

method iLQG [26] that implements a sophisticated regularization scheme cannot generate

movement policies with low costs when using the analytic model. This is shown in Fig-

ure 3.2C,D. To proof our new algorithm we investigate more complex tasks. Therefore, we

develop two further task on the Nao platform, which are desribed in the next Subsections.

3.6 Results of R-AICO in humanoids

We evaluated the proposed planning method in simulation with the humanoid robot Nao. The

Nao robot has 25 degrees-of-freedom. In first experiments, we investigated the performance

of the planner with a pseudo-dynamics model of the robot. The humanoid had to reach for an

end effector target using the right arm while maintaining balance. In a second experiment,

Nao had to shift the x-coordinate of the center of gravity while maintaining balance.

3.6.1 Arm Reaching with a Humanoid Robot

The humanoid has to reach for the end effector target x∗ = [0,0.2, 0.06]T , where only the

y- and the z-Cartesian coordinates are relevant. Additionally, the robot has to maintain bal-

ance, which is implemented as deviation of the center of gravity vectors from its initial values

xCoG(t = 0), i.e., we specify the desired center of gravity as x∗CoG = xCoG(t = 0). The same cost

function as in the experiments for the light weight robot arm in Equation (3.7) is used. For

this task, however, only a single via-point is defined that is used for the desired end effector

target and the center of gravity, i.e., x1 = [x∗T ,x∗CoG
T ]T .

Only by specifying two scalars in x∗ (the scaling parameters in (3.7) are constants that

take the values 104 or 10−2), the planning algorithm infers 50-dimensional state trajecto-

ries (the state qt at time t encodes the joint angles and the joint velocities, ignoring the base

frame). This is shown in Figure 3.3A for the proposed planning algorithm with the regulariza-

tion parameter α= 1. As in the robot arm experiments, the Approximate Inference Control

algorithm (AICO) benefits from the regularization. As can be seen in Figure 3.3B, AICO can-

not infer movement solutions with low costs without regularization.

Interestingly, to maintain balance, the humanoid utilizes its head and its left arm for which no

objectives were explicitely specified. This effect is a feature of model-based planning methods
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Figure 3.3.: Reaching task with the humanoid robot Nao. The robot has to reach a desired end
effector position with the right arm while maintaining balance. Eight snapshots
of the inferred movement are shown in (A). In (B), the convergence of the costs
of the optimization procedure is shown, where we compare iLQG, the standard
implementation of AICO and the regularized variant. The mean and the standard
deviations for 10 initial states ‘q0 are sampled from a Gaussian with zero mean
and a standard deviation of 0.05. The movement objectives for the right arm are
shown in (C). To counter balance, the robot moves its left hand and the head,
which is shown in (D).

that consider the coupled dynamics and is best illustrated in Figure 3.3C,D, where the end

effector trajectories of both arms and the desired target values are shown.

3.6.2 Balancing with a humanoid

In this task the humanoid has to balance on one foot by moving its center of gravity. In

this experiment, we specify three desired via-points for the center of gravity, i.e., xi = xi
CoG

with i = 1, ..., 3. The last via-point is set to the initial center of gravity xCoG(t = 0). The

first via-point has an offset of 0.1m in the x-coordinate of xCoG(t = 0) to force the robot to

move its center of gravity to the right. The second viapoint has the same negative offset in

the x-direction to exhibit a movement to the left. The planning horizon was three seconds

(T 1 = 100,T 2 = 200 and T 3 = 300 with τ = 10ms) and the distance matrix C in (3.7) was

scaled with the importance weights [106, 10, 10]T for the x,y, and z coordinate of xi
CoG.
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Figure 3.4.: Balancing task in the humanoid robot Nao. The robot should swing its hips, which
is encoded by adding an offset scalar to the x-coordinate of the center of gravity
vector. In (A) 10 snapshots of the resulting movement for an increasing planning
horizon are shown for α = 1. The convergence properties of iLQG, the standard
AICO and its regularized variants are shown in (B). The mean and the standard
deviations for 10 initial states ‘q0 are sampled from a Gaussian with zero mean
and a standard deviation of 0.05. In (C) the x-coordinate of the center of gravity
of the Nao is illustrated. The large dots denote the objectives.

For α = 1, the resulting movement is illustrated in Figure 3.4A. Illustrated are 10 snap-

shots. Nao first moves its hip to the right (with respect to the robot frame) and thereafter to

the left. This movement is the result of an inference problem encoded in mainly two scalars,

i.e., the offsets.

The standard implementation of AICO was not able to infer successful balancing solutions,

which is illustrated in Figure 3.4B. In contrast, the regularized variant using α ∈ {1,10}
converged after 25 iterations of the trajectory optimization procedure. For α = 1, the x-

coordinate of the center of gravity and the implemented objectives are shown in 3.4C.
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Computational time of R-AICO

The computational time of the proposed planning algorithm is the same as for the standard

implementation of AICO. If the algorithm is implemented in C-code it achieves real time

performance in humanoid planning problems [29]. However, for our experiments we used a

Matlab implementation on a standard computer (2.4GHz, 8GB RAM), where, e.g., the compu-

tation of the balancing movements in Figure 3.4 took less then 50 seconds (which includes all

25 iterations of the optimization process). The movement duration of the executed trajectory

was three seconds.
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4 Simultaneous movement planning and
model learning

In Section 3 we assumed a known analytical forward dyanmics model. For real robotic sys-

tems it is hard to define a sufficient accurate forward dynamics model, especially for compli-

ant robots. Section 3 showed that even with an analytical model planning algorithms tend to

diverge, e.g. AICO and iLQG. Because they have to deal with noisy data, high-dimensional

space and many objectives. In this section we want to learn a forward dynamics model that

can be used for planning with few data points and an inaccurate model. Therefore, we dis-

cuss how to learn a model, how we treat the model uncertainty and how to collect new data.

In our model learning with parallel movement planning approach the initial model is learned

through motor babbling. Hence, the Subsection 4.1 discusses how to generate such initial

data points. In addition, we explain in Subsection 4.2 how we learn a model with Gaussian

processes that estimate the model uncertainty. Subsection 4.3 explains how the model uncer-

tainty is incorporated in AICO as an additional objective. The approach is evaluated on the

simple pendulum as toy task in Subection 4.4 and on the biorob platform in Subsection 4.5.

4.1 Generating initial data points with motor babbling

Learning an initial forward dynamics model requires initial data points, which we collect

through motor babbling. Starting in a stable initial robot posture with zeros torques we com-

pute some random trajectories. In the simple pendulum setup the initial posture is the stable

equilibrium point.

For the simple pendulum toy as task, we used as analytical forward model

q̈ = −
1

m · l2
(µq̇−mgl sin q+ u) ,

where µ = 1 is the friction term, m = 1kg the mass, l = 1m the length, and g = 9.81m/s2

the gravity. Runge-Kutta-Integration was used for the computation of the acceleration. The

torques are computed with a PD-Controller

ut = KP(qdes,t − qt) + KD(q̇des,t − q̇t),

where the control gains are KP = 50 and KD = 5. Note that this PD-Controller is only used

for motor babbling. If we execute a planned movement, we use the feedback controller in

Equation (3.6). However, for both cases the controls are limited to ±10, where we defined

control limits as additional objective in AICO [21]. In addition, the computed states are

restricted to the range [0,2π]. For a single random generated trajectory we get tuples in
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form of (qt , q̇t , q̈t , ut) for every time step t. For learning an initial model, we used 15 data

points, which is dicussed in the next subsection.

4.2 Model learning with Gaussian processes

AICO uses a linearization of the transition dynamics

P(qt+1|qt ,ut) =N (qt+1|Atqt + at +Btut ,Qt),

through 1st order Taylor expansion. Therefore, we have to specify the state transition matrix

At , the control matrix Bt , and the linear drift term at becomes

at =

�

ft −
∂ ft

∂ qt
∆t −

∂ ft

∂ ut
∆t

�

∆t,

At =

�

I+
∂ ft

∂ qt
∆t

�

,

Bt =
∂ ft

∂ ut
∆t,

where ft is the forward dynamics model, with q̈= f (qt , q̇t ,ut) = ft . The time step is denoted

by t. We want to learn the forward dynamics model ft with Gaussian processes. The training

inputs are defined as tuples x̂t = (qt , q̇t ,ut) ∈ R2D+F . The number of DOF is denoted by D

and F is the dimension of the torques. The training target is defined as q̈t ∈ RD. A Gaus-

sian process is completely defined by a mean function and a positive semidefinite covariance

function. We use zero mean and the squared exponential covariance function

k(x̂p, x̂q) = σ
2
f exp

�

−
1
2
(x̂p − x̂q)

TΛ−1(x̂p − x̂q)
�

+δpqσ
2
w.

The hyper-parameters θ are the length-scales li , signal variance σ2
f , and noise variance σ2

w

with Λ = diag([l2
1 , ..., l2

2D+F ]). The hyper-parameter optimization was done by maximizing

the log likelihood function ln P(y|θ ). Given N data points (which can represent several tra-

jectories), the training set is defined as X = [x̂1, ..., x̂N ] and y = [q̈1, ..., q̈N ]. For a new input

x∗, the mean and variance of the GP prediction are

m(x̂∗) = k(X, x̂∗)
T
�

K+σ2
wI
�−1

y,

var(x̂∗) = k(x̂∗, x̂∗)− k(X, x̂∗)
T
�

K+σ2
wI
�−1

k(X, x̂∗),

where K is the kernel matrix with entries Kpq = k(x̂p, x̂q). We train for every output dimension

a single GP. AICO uses a linearization of the transition dynamics it is also necessary to compute

the derivative of the predicted mean,

∂m(x̂∗)
∂ x̂∗

= −2(Λ−1







x̂1 − x̂∗
...

x̂N − x̂∗






� k(X, x̂∗))

T
�

K+σ2
wI
�−1

, (4.1)
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where � is a pointwise product. The derivatives ∂ ft/∂ qt and ∂ ft/∂ ut can be computed with

Equation (4.1). A derivation of Equation (4.1) can be found in the Appendix E.

4.3 Model uncertainty as additional objective in R-AICO

In AICO, it is possible to define objectives in arbitrary spaces. To incorporate the model

uncertainty σt as an additional objective. To do so, it is necessary to define a mapping

σt = g(x̂t) and its Jacobian J(x̂t) = ∂ g/∂ x̂t with x̂t = (qt , q̇t ,ut). For a new point x̂∗ the

function g is given by the predicted variance var(x̂∗) and its Jacobian is given by the derivative

of the predicted variance

∂ var(x̂∗)
∂ x̂∗

= −2(Λ−1







x̂1 − x̂∗
...

x̂N − x̂∗






� k(X, x̂∗))

T
�

K+σ2
wI
�−1

. (4.2)

The additional objective is incorporated by reformulation rt ,Rt with

r̂t = rt + JT Cσ (σ
∗ − g(x̂t)) ,

R̂t = Rt + JT CσJ.

The same cost function as in the experiments for the light weight robot arm in Equation (3.7)

was used with the following extension

Ĉt(qt ,ut) = Ct(qt ,ut) + (σ
∗ − g(x̂t))

T Cσ (σ
∗ − g(x̂t)) , (4.3)

where the diagonal elemets of the matrix Cσ specify the desired precision and σ∗ specifies the

desired model uncertainty. The tradeoff between exporation and exploitation can be adjust

by the desired model uncertainty σ∗, i.e. AICO tries to match this defined value. This is

evaluated on a simple pendulum as toy task in Subsection 4.4. Note that a derivation of

Equation (4.2) can be found in the Appendix E.

4.4 Results on the simple pendulum task

The simple pendulum has to reach for the end effector target x∗ = [0, 1]T , which represents

the upright posture. The desired model uncertainty σ∗ was evaluated for the values {0,0.2, 1}
and without model uncertainty feature. The cost function, which was described in Equation

(4.3) was used. The precision matrix was set to Cσ = diag(w1, ..., wD]) with diagonal ele-

ments wi , which are evaluated for the values 10−2 and 102. The planning horizon was 300

ms with a time step of 2 ms. Note that we do not assume any initial solution to initialize the

planner, solely the initial posture of the pendulum in configuration space was used as initial

’trajectory’, which was used for every evaluation. The proposed regularization parameter in

Equation (3.8) was set to α = 0, i.e. fast convergence and allowing the risk of jumps. Note
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Figure 4.1.: Swing-Up of the simple pendulum as toy task, where the best solution was found
with model uncertainty feature and σ∗ = 0. The reach the upper stable posture,
the algorithm has to plan several swings to the left - and right direction.

that the original implementation of AICO was not able to find an appropriate solution, with-

out specifying additional objectives such as via-points.

In the following preliminary results are discussed, where we interpret results from a sim-

ple pendulum planning task. The best solution of the swing-up is illustrated in Figure 4.1,

which was obtained with the model uncertainty feature and σ∗ = 0. To reach the upper stable

posture, the algorithm has to plan several swings to the left - and right direction. Conver-

gence is guaranteed for all desired model uncertainty values if the diagonal elements of the

precision matrix Wσ are small enough, which is shown in Figure 4.2A,B. In Figure 4.2A, the

prediciton error of the Gaussian processes is shown and in (B) the root mean squared error

(RMSE) of the task performance is shown, i.e. the RMSE of the planned and executed tra-

jectory. The influence of the different desired model uncertainty values can be seen in Figure

4.2B, where for a small σ∗ = 0 the convergence is faster than for a higher σ∗ = 1. As said,

allowing the risk of jumps with a regularization parameter α = 0 is obtained for no model

uncertainty feature, compare Figure 4.2B. The algorithm explores to much if the diagonal

elements of the precision matrix Wσ are 102 for σ∗ = 1 and σ∗ = 0.1. However, for small

precision weights the planned trajectories, torques and end effector positions converges to

the optimal during the learning process and the model prediction error converges to zero.

Evaluations on multiple planning tasks are part of ongoing work.
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Figure 4.2.: Convergence properties of the simple pendulum task. In (A) and (B), the pre-
diction error of the Gaussian processes and the RMSE of the task performance
converges for all desired model uncertainty values with the weight w = 10−2. In
(C) and (D), convergence is guaranteed for the model uncertainty value σ∗ = 0
and if no model uncertainty feature was used. For a high weight and the model
uncertainty values σ∗ = 1 and σ∗ = 0.2 the algorithm explores to much.

4.5 The computational time issue

Gaussian processes tend to be slow with a large number of training points. To investigate the

computational time we used a simulation of the robot platform biorob, which has to reach a

end effector target x∗ = x0 + [0.5,0, 0.5]T , where x0 was the initial posture. The same cost

function as in the experiments for the light weight robot arm in Equation (3.7) was used.

The planning horizon is 1 second with a time step of 2 ms. Note that we do not assume

any initial solution to initialize the planner, solely the initial posture x0 of the pendulum

in configuration space was used as initial ’trajectory’. After a planning evaluation, AICO was

initialized with the last planned trajectory. The proposed regularization parameter was α= 2.

The resulting planned movement is shown in Figure 4.3A, which was obtained after 20

evaluations. The prediction of the Gaussian processes are depicted in Figure 4.3B for two

hyper-parameter optimization procedures, where the optimization was done after each eval-

uation (denoted by 1:1), or after adding more than 100 hundret data points (denoted by

>100). The prediction error of the Gaussian processes is for both cases similar. But the com-

putation time differs, which is depicted in Figure 4.3C. The algorithm achieves to reach the

desired end effector position, what is shown in Figure 4.3D. Thus, the computational time
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Figure 4.3.: Reaching task in the biorob platform. The robot has to reach a desired end effec-
tor position. Eight snapshots of the inferred movement are shown in (A). In (B),
the convergence of the Gaussian processes prediction is shown, where the hyper-
parameter optimization was done after each evaluation (denoted by 1:1) or after
adding of more than 100 data points (denoted by >100). In (C), the computation
time is shown for the different hyper-parameter optimization procedures. The
resulting end effector trajectory including the constraints is depicted in (C).

can be decreased in this experiment using a simple heuristic achieving the same performance

of the predicted Gaussian process error.
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5 Conclusion
Stochastic Optimal Control (SOC) methods are powerful planning methods to infer high-

dimensional state and control sequences [28],[26],[29], [20]. For real time applications in

humanoids, efficient model predictive control variants have been proposed [26]. However,

the quality of the generated solutions heavily depends on the initial movement policy and on

the accuracy of the approximations of the system dynamics. Most methods use regularization

to prevent numerical instabilities, but typically greedily exploit the approximated system dy-

namics model. The resulting trajectory update might be far from the previous trajectory used

for linearization.

As the linearizations are only locally valid, we explicitly avoid large jumps in the trajecto-

ries by punishing large deviations from the previous trajectory. This is achieved by adding

an regularization term as an additional objective. We demonstrated in this thesis that SOC

methods can greatly benefit from such a regularization term. We used such regularization

term for the Approximate Inference Control (AICO) algorithm [29]. Due to the regulariza-

tion term, which implicitly specifies the step size of the trajectory update, no learning rate as

in the standard formulation of AICO is needed. Our experiment shows that the used regular-

ization term considerably outperforms existing SOC methods that are based on linearization,

in particular if highly non-linear system dynamics are used.

We also investigate a combination of SOC and model learning. Typically, inaccurate model

predictions have catastrophic effects on the numerical stability of SOC methods. In particu-

lar, if the model predictions are poor, the SOC method should not further explore but collect

more data around the current trajectory. We showed that even with bad model predictions

we achieved convergence in multiple objective planning problems. The tradeoff between ex-

ploration and exploitation was controlled via an additional task objective that is the distance

to the desired model uncertainty. We tested the concept of simultaneous movement planning

and model learning on a simple pendulum as toy task, where we achieved stable convergence

even under insufficient learned models. The effect of the hyperparameter optimization on the

computational time was investigated on a five link robot arm called biorob.

5.1 Future work

In future work we would like to test the presented approach on real robots. With the Nao

platform, we would like to learn to walk with the center of gravity as input information. On

the biorob platform we would like to study the proposed model uncertainty feature. For a

high-dimensional robot platform, like the iCub, it is necessary to improve the computation

speed and robustness due to the model uncertainty feature.

The assumption of known task objectives is not obvious and to infering the task objective

from demonstrations could be future work. This could be done, e.g., with inverse reinforce-

ment learning or with bayesian inverse reinforcement learning methods [1],[4].

28



The computation time of our proposed simultaneous movement planning with model learn-

ing could be reduced, e.g. through parallelization, or faster hyper-parameter optimization

procedures, or the approach introduced in [14], where exploration solely based on empirical

estimates of the learner’s accuracy and learning progress. The idea is that not every data

point increases the certainty about the learned model, e.g. if the transition dynamics change

over time.
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B Solving a SOC problem for the LQG Case

The derivation of Equation (3.2) is given by

Jπ
∗

t (qt) = argmin
ut

�

Ct(qt ,ut) +

∫

qt+1

P(qt+1|qt ,ut) J
π∗

t+1(qt+1)dqt+1

�

,

= argmin
ut

�

qT
t Rtqt − 2rT

t qt + uT
t Htut+

∫

qt+1

N (qt+1|Atqt + at +Btut ,Qt) (q
T
t+1Vt+1qt+1 − 2vT
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�

Atqt + at +Btut

�T
Vt+1

�

Atqt + at +Btut

�

−2vT
t+1

�

Atqt + at +Btut

�

+ tr(Vt+1,Qt)
�

,

= argmin
ut

�

qT
t

�

Rt +AT
t Vt+1At

�

qt − 2
�

rT
t + (vt+1 −Vt+1at)

T At

�

qt + uT
t

�

Ht +BT
t Vt+1Bt

�

ut

+2uT
t BT

t

�

Vt+1(Atqt + at)− vt+1

�

+ aT
t Vt+1at − 2vT

t+1at + tr(Vt+1,Qt)
�

.

Minimize with respect to ut by setting the gradient to zero yields in

0=∇ut
Jπ
∗

t (qt) = 2
�

Ht +BT
t Vt+1Bt

�

u∗t + 2BT
t

�

Vt+1(Atqt + at)− vt+1

�

,

u∗t = −
�

Ht +BT
t Vt+1Bt

�−1
BT

t

�

Vt+1(Atqt + at)− vt+1

�

.

Note that the optimal control path is independent of Qt . Insert this result back into the value

function results in the Ricatty Equations

Jπ
∗

t (qt) = qT
t Vtqt − 2vT

t qt ,

Vt = Rt +
�

AT
t −K

�

Vt+1At ,

vt = rt +
�

AT
t −K

�

(vt+1 −Vt+1at) ,

K = AT
t Vt+1

�

Vt+1 +BtH
−1
t BT

t

�−1
.
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C Derivation of different pseudo-dynamic
models

This section shows different derivations of pseudo-dynamic models. The most common nu-

merical methods for solving an ordinary differential equation (ODE) are inter alia Eulers

method, backward Euler method, and Heuns method, which will be discussed in the follow-

ing subsections. We compared all methods, and could not find any significant difference in

terms of accuracy. However, for our experiments we used the backward Euler method, as it is

computationally the most efficient.

C.1 Eulers method

Assume we have a full controlled system and qt = [qt , q̇t]T . With Eulers method, our state

transitions are given by

P(qt+1|q̇t , qt) =N (qt+1|qt +τq̇t , W1),

P(q̇t+1|q̇t , qt) =N (q̇t+1|q̇t +τut , W2),

where τ denotes the time step. Then we obtain the following reformulation

qt+1 = Atqt + at +Btut ,
�

qt+1

q̇t+1

�

=

�

1 τ

0 1

��

qt

q̇t

�

+

�

0

τ

�

ut .

C.2 Backward Eulers method

Assume we have a full controlled system and qt = [qt , q̇t]T . With backward Eulers method,

our state transitions are given by

P(qt+1|q̇t , qt) =N (qt+1|qt +τq̇t+1, W1),

P(q̇t+1|q̇t , qt) =N (q̇t+1|q̇t +τut , W2),
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where τ denotes the time step. It is possible to transform the state transitions as follows

P(qt+1|q̇t , qt) =N (qt+1|qt +τq̇t+1, W1),

P(qt+1|q̇t , qt , ut) =N (qt+1|qt +τ(q̇t +τut), W1) ,

P(qt+1|q̇t , qt , ut) =N (qt+1|qt +τq̇t +τ
2ut , W1).

Then we obtain the following reformulation

qt+1 = Atqt + at +Btut ,
�

qt+1

q̇t+1

�

=

�

1 τ

0 1

��

qt

q̇t

�

+

�

τ2

τ

�

ut .

C.3 Heuns method

Assume we have a full controlled system and qt = [qt , q̇t]T . With Heuns method, our state

transitions are given by

P(qt+1|q̇t , qt) =N
�

qt+1|qt +
τ

2
(q̇t + q̇t+1), W1

�

,

P(q̇t+1|q̇t , qt) =N (q̇t+1|q̇t +τut , W2),

where τ denotes the time step. It is possible to transform the state transitions as follows

P(qt+1|q̇t+1, q̇t , qt) =N
�

qt+1|qt +
τ

2
(q̇t + q̇t+1), W1

�

,

P(qt+1|ut , q̇t , qt) =N
�

qt+1|qt +
τ

2
(q̇t + q̇t +τut), W1

�

,

P(qt+1|ut , q̇t , qt) =N
�

qt+1|qt +τq̇t +
τ2

2
ut , W1

�

.

Then we obtain the following reformulation

qt+1 = Atqt + at +Btut ,
�

qt+1

q̇t+1

�

=

�

1 τ

0 1

��

qt

q̇t

�

+

�

τ2

2

τ

�

ut .

An interessting issue is that for all proposed methods only the Bt matrix changes in the upper

entries.
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D Derivation of approximate inference
control algorithm

For all derivation steps we used the rules in Gaussian identities1 associated with their num-

bers. As described, we want to maximize the probability of receiving a reward, Equation (3.3)

becomes

P(zt = 1|qt ,ut)∝ exp{−(qT
t Rtqt − 2rT

t qt + uT
t Htut)},

=N [qt |rt ,Rt]N [ut |0,Ht],

= P(zt = 1|qt)P(ut),

where the reward probability is factorized into a state dependent term and P(zt = 1|qt) =
N [qt |rt ,Rt] and the action prior P(ut) = N [ut |0,Ht]. Before starting with the message

parsing we have to marginalize out the controls in the state transition model

P(qt+1|qt) =

∫

ut

N (qt+1|Atqt + at +Btut ,Wt)N [ut |0,Ht]dut ,

=N (qt+1|Atqt + at +Btut ,Wt +BtH
−1
t BT

t ).

This is an uncontrolled state space model, where we can use massage parsing. But first of all,

we sum up our assumptions. Therefore, we have an initial state distribution

P(q0) =N (q0|a0,Q0),

a state transition model

P(qt+1|qt) =N (qt+1|Atqt + at ,Qt),

and an observation model

P(zt |qt) =N (zt |Dtqt + dt ,Ct).

To compute the posterior over state and control sequences, conditioning on observing a re-

ward at every time step P(q0:T ,u0:T−1|z0:T = 1) we can use Bayes’ Theorem and it turns

out that we need to compute the probability P(qt). In Gaussian Network, this probability is

the product of the forward message αt(qt), the backward massage βt(qt), and the observa-

tion message ρt(qt), which is illustrated in Figure D.1(b). Therefore, we define as forward

message αt(qt) = N [qt |, st ,St], the backward message as βt(qt) = N [qt |,vt ,Vt], and the

1 http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
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⇢
t
(q

t
)

(c) Backward Message

Figure D.1.: The influence of different Gaussian messages are depicted in this Figure. The for-
ward -, backward -, and observation message are necessary to compute the belief
P(qt), which is depicted in Figure D.1(b). The observation message is given by
the cost function. Figure D.1(a) shows the dependencies of the forward message,
which are the previous forward message and the corresponding dependencies
of the state transition model, namely P(qt |qt−1) and P(zt−1|qt−1). Figure D.1(c)
shows the similar dependencies of the backward message.

observation message ρt(qt) =N [qt |rt ,Rt], which are all Gaussians. In the next subsections

describe the derivations of these messages. We end up with,

P(qt) =N [qt |bt ,Bt] =N [qt |st ,St]N [qt |rt ,Rt]N [qt |vt ,Vt],
(21)
∝ N (qt |st + rt + vt ,St +Rt +Vt),

=N [qt |bt ,Bt],

where Bt = (St+Rt+Vt)−1 and bt = Bt(st+rt+vt). We can also compute the optimal feedback

controller, which can be done by the conditional distribution P(ut |qt) = P(ut ,qt)/P(qt).
Hence, we need to compute the joint state-control posterior

P(ut ,qt) = P(ut ,qt),

=

∫

qt+1

αt(qt)ρt(qt)P(qt+1|qt ,ut)P(ut)βt+1(qt+1)ρt+1(qt+1)dqt+1,

= P(qt)P(ut)

∫

qt+1

P(qt+1|qt ,ut)N [qt+1|v̄t+1, V̄t+1]dqt+1.

The solution of the conditional distribution is

P(ut |qt) =N [qt |M
−1
t

�

BT
t V∗

�

V̄−1
t+1v̄t+1 −Atqt − at

�

+ ht

�

,M−1
t ],

where V∗ = (Qt + V̄−1
t+1)

−1 and Mt = BT
t V∗Bt +Ht . This can be reformulate to a time-varying

linear feedback controller

ut = ot +Otqt ,

where the gains are

ot =M−1
t

�

BT
t V∗V̄

−1
t+1v̄t+1 −BT

t V∗at + ht

�

,

Ot = −M−1
t BT

t V∗At .
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D.1 Update equations for forward message parsing

The dependencies to compute the forward message αt(qt) are depicted in Figure D.1(a),

which are the dependency of the previous state P(qt |qt−1), the corresponding task depen-

dency P(zt−1|qt−1), and the the forward message αt−1(qt−1) of state qt−1. Integrating out the

previous state qt−1 results in

αt(qt) =

∫

qt−1

P(qt |qt−1)P(zt−1|qt−1)αt−1(qt−1)dqt−1,

De f .
=

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N
�

zt−1|Dt−1qt−1 + dt−1,Ct−1

�

N
�

qt−1|st−1,St−1

�

dqt−1,

=

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N
�

Dt−1qt−1|zt−1 − dt−1,Ct−1

�

N
�

qt−1|st−1,St−1

�

dqt−1,

(35)
∝

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N



qt−1|D
T
t−1C−1

t−1 (zt−1 − dt−1)
︸ ︷︷ ︸

=rt−1

,DT
t−1C−1

t−1Dt−1
︸ ︷︷ ︸

=Rt−1



N
�

qt−1|st−1,St−1

�

dqt−1,

(21)
∝

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N



qt−1| st−1 + rt−1
︸ ︷︷ ︸

=r̄t−1

,St−1 +Rt−1
︸ ︷︷ ︸

=R̄t−1



dqt−1,

=

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N
�

qt−1|s̄t−1, S̄t−1

�

dqt−1,

(3)
=

∫

qt−1

N
�

qt |At−1qt−1 + at−1,Qt−1

�

N
�

qt−1|S̄
−1
t−1s̄t−1S̄−1

t−1

�

dqt−1,

(37)
= N

�

qt−1|at−1 +At−1S̄−1
t−1s̄t−1,Qt−1 +At−1S̄−1

t−1AT
t−1

�

,

(4)
= N

�

qt−1|st ,St

�

,

with St =
�

Qt−1 +At−1S̄−1
t−1AT

t−1

�−1
and st = St

�

at−1 +At−1S̄−1
t−1s̄T

t−1

�−1
. Reformulating St

and st to be numerical stable leads to the AICO forward messages

St =
�

A−T
t−1 −Ks

�

S̄t−1A−1
t−1,

st =
�

A−T
t−1 −Ks

� �

s̄t−1 + S̄t−1A−1
t−1at−1

�−1
,

Ks = A−T
t−1S̄t−1

�

S̄t−1 + Ā−T
t−1Qt−1A−1

t−1

�−1
.
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D.2 Update equations for backward message parsing

The dependencies to compute the backward message βt(qt) are depicted in Figure D.1(c),

which are the dependency of the next state P(qt+1|qt), the corresponding task dependency

P(zt+1|qt+1), and the the backward message βt+1(qt+1) of state qt+1. Integrating out the next

state qt−1 results in

βt(qt) =

∫

qt+1

P(qt+1|qt)P(zt+1|qt+1)βt+1(qt+1)dqt+1,

where we can use the same first rules as in the derivation of the forward message and begin

with

compareD.1
∝

∫

qt+1

N
�

qt+1|Atqt + atQt

�

N



qt+1|D
T
t+1C−1

t+1 (zt+1 − dt+1)
︸ ︷︷ ︸

=rt+1

DT
t+1C−1

t+1Dt+1
︸ ︷︷ ︸

=Rt+1





N
�

qt+1|vt+1,Vt+1

�

dqt+1,

(21)
∝

∫

qt+1

N
�

Atqt |qt+1 − at ,Qt

�

N



qt+1| rt+1 + vt+1
︸ ︷︷ ︸

=v̄t+1

,Rt+1 +Vt+1
︸ ︷︷ ︸

=V̄t+1



dqt+1,

(35)
∝

∫

qt+1

N
�

qt |A
−1
t

�

qt+1 − at

�

,A−1
t QtAt

�

N
�

qt+1|v̄t+1, V̄t+1

�

dqt+1,

(3)
=

∫

qt+1

N
�

qt |A
−1
t

�

qt+1 − at

�

,A−1
t QtAt

�

N
�

qt+1|V̄
−1
t+1v̄t+1V̄−1

t+1

�

dqt+1,

(37)
= N

�

qt | −A−1
t at +A−1

t V̄−1
t+1v̄t+1,A−1

t QtAt +A−1
t V̄−1

t+1A−T
t

�

,

=N
�

qt |A
−1
t

�

V̄−1
t+1v̄t+1 − at

�

,A−1
t

�

Qt + V̄−1
t+1

�

A−T
t

�

,

(4)
= N

�

qt |vt ,Vt

�

,

with Vt =
�

A−1
t

�

Qt + V̄−1
t+1

�

A−T
t

�−1
and vt = VtA

−1
t

�

V̄−1
t+1v̄t+1 − at

�

. Reformulating Vt and vt

to be numerical stable leads to the AICO backward messages

Vt =
�

AT
t −Kv

�

V̄t+1At ,

vt =
�

AT
t −Kv

� �

v̄t+1 − V̄t+1at

�

,

Kv = AT
t V̄t+1

�

V̄t+1 +Qt

�−1
.
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E Gradient derivation of the predicted
mean and the variance of the Gaussian
process

The mean and the variance of the GP prediction are

m(x∗) = k(X,x∗)
T
�

K+σ2
wI
�−1

y,

var(x∗) = k(x∗,x∗)− k(X,x∗)
T
�

K+σ2
wI
�−1

k(X,x∗).

For the derivations it is helpful to derivate first of all the squared exponential kernel

k(xp,xq) = σ
2
f exp

�

−
1
2
(xp − xq)

TΛ−1(xp − xq)
�

,

for both input arguments xp

∂ k(xp,xq)

∂ xp
=
∂

∂ xp

�

σ2
f exp

�

−
1
2
(xp − xq)

TΛ−1(xp − xq)
��

,

=
∂

∂ xp

�

−
1
2
(xp − xq)

TΛ−1(xp − xq)
�

k(xp,xq),

= −
1
2
∂

∂ xp

�

xT
pΛ
−1xp − xT

qΛ
−1xp − xT

pΛ
−1xq + xT

qΛ
−1xq

�

k(xp,xq),

= −
1
2

�

2Λ−1xp − 2Λ−1xq

�

k(xp,xq),

= −Λ−1
�

xp − xq

�

k(xp,xq),

and xq

∂ k(xp,xq)

∂ xq
=
∂

∂ xq

�

σ2
f exp

�

−
1
2
(xp − xq)

TΛ−1(xp − xq)
��

,

=
∂

∂ xq

�

−
1
2
(xp − xq)

TΛ−1(xp − xq)
�

k(xp,xq),

= −
1
2
∂

∂ xq

�

xT
pΛ
−1xp − xT

qΛ
−1xp − xT

pΛ
−1xq + xT

qΛ
−1xq

�

k(xp,xq),

= −
1
2

�

−2Λ−1xp + 2Λ−1xq

�

k(xp,xq),

= Λ−1
�

xp − xq

�

k(xp,xq),
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which are nearly similar except the minus. Now the derivation of the mean and the variance

becomes easier. We start with the derivation of the mean

∂m(x∗)
∂ x∗

=
∂

∂ x∗

�

k(X,x∗)
T
�

K+σ2
wI
�−1

y
�

,

=
∂

∂ x∗

�

k(X,x∗)
T
� �

K+σ2
wI
�−1

y,

= (Λ−1







x1 − x∗
...

xN − x∗






� k(X,x∗))

T
�

K+σ2
wI
�−1

y,

where � is a pointwise product. The derivation of the variance is given by

∂ var(x∗)
∂ x∗

=
∂

∂ x∗

�

k(x∗,x∗)− k(X,x∗)
T
�

K+σ2
wI
�−1

k(X,x∗)
�

,

= −
∂

∂ x∗

�

k(X,x∗)
T
�

K+σ2
wI
�−1

k(X,x∗)
�

,

= −2(Λ−1







x1 − x∗
...

xN − x∗






� k(X,x∗))

T
�

K+σ2
wI
�−1

.
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3.3. Reaching task with the humanoid robot Nao. The robot has to reach a desired
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shots of the inferred movement are shown in (A). In (B), the convergence of

the costs of the optimization procedure is shown, where we compare iLQG, the
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3.4. Balancing task in the humanoid robot Nao. The robot should swing its hips,

which is encoded by adding an offset scalar to the x-coordinate of the center of

gravity vector. In (A) 10 snapshots of the resulting movement for an increasing

planning horizon are shown for α = 1. The convergence properties of iLQG,

the standard AICO and its regularized variants are shown in (B). The mean and

the standard deviations for 10 initial states ‘q0 are sampled from a Gaussian

with zero mean and a standard deviation of 0.05. In (C) the x-coordinate of the
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diction error of the Gaussian processes and the RMSE of the task performance
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much. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3. Reaching task in the biorob platform. The robot has to reach a desired end

effector position. Eight snapshots of the inferred movement are shown in (A).

In (B), the convergence of the Gaussian processes prediction is shown, where

the hyper-parameter optimization was done after each evaluation (denoted by

1:1) or after adding of more than 100 data points (denoted by >100). In (C),

the computation time is shown for the different hyper-parameter optimization

procedures. The resulting end effector trajectory including the constraints is

depicted in (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.1. The influence of different Gaussian messages are depicted in this Figure. The

forward -, backward -, and observation message are necessary to compute the

belief P(qt), which is depicted in Figure D.1(b). The observation message

is given by the cost function. Figure D.1(a) shows the dependencies of the

forward message, which are the previous forward message and the corre-

sponding dependencies of the state transition model, namely P(qt |qt−1) and

P(zt−1|qt−1). Figure D.1(c) shows the similar dependencies of the backward

message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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