
Modeling and Learning of
Complex Motor Tasks: A Case
Study with Robot Table Tennis
Modellierung und Lernen von komplexen motorischen Aufgaben anhand von Fallstudien in
Roboter-Tischtennis
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Dipl.-Inf. Katharina Mülling aus Prenzlau
Juni 2013 — Darmstadt — D 17

Fachbereich Informatik
Intelligente Autonome Systeme



Modeling and Learning of Complex Motor Tasks: A Case Study with Robot Table Tennis
Modellierung und Lernen von komplexen motorischen Aufgaben anhand von Fallstudien in
Roboter-Tischtennis

Genehmigte Dissertation von Dipl.-Inf. Katharina Mülling aus Prenzlau

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Tamim Asfour

Tag der Einreichung: 11. Juni 2013
Tag der Prüfung: 23. Juli 2013

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-35576
URL: http://tuprints.ulb.tu-darmstadt.de/35576

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/



Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 11. Juni 2013

(K. Mülling)

i





Abstract

Most tasks that humans need to accomplished in their everyday life require certain motor skills. Although
most motor skills seem to rely on the same elementary movements, humans are able to accomplish
many different tasks. Robots, on the other hand, are still limited to a small number of skills and depend
on well-defined environments. Modeling new motor behaviors is therefore an important research area
in robotics. Computational models of human motor control are an essential step to construct robotic
systems that are able to solve complex tasks in a human inhabited environment. These models can be
the key for robust, efficient, and human-like movement plans. In turn, the reproduction of human-like
behavior on a robotic system can be also beneficial for computational neuroscientists to verify their
hypotheses. Although biomimetic models can be of great help in order to close the gap between human
and robot motor abilities, these models are usually limited to the scenarios considered. However, one
important property of human motor behavior is the ability to adapt skills to new situations and to learn
new motor skills with relatively few trials. Domain-appropriate machine learning techniques, such as
supervised and reinforcement learning, have a great potential to enable robotic systems to autonomously
learn motor skills.

In this thesis, we attempt to model and subsequently learn a complex motor task. As a test case
for a complex motor task, we chose robot table tennis throughout this thesis. Table tennis requires a
series of time critical movements which have to be selected and adapted according to environmental
stimuli as well as the desired targets. We first analyze how humans play table tennis and create a
computational model that results in human-like hitting motions on a robot arm. Our focus lies on
generating motor behavior capable of adapting to variations and uncertainties in the environmental
conditions. We evaluate the resulting biomimetic model both in a physically realistic simulation and on
a real anthropomorphic seven degrees of freedom Barrett WAM robot arm.

This biomimetic model based purely on analytical methods produces successful hitting motions, but
does not feature the flexibility found in human motor behavior. We therefore suggest a new framework
that allows a robot to learn cooperative table tennis from and with a human. Here, the robot first
learns a set of elementary hitting movements from a human teacher by kinesthetic teach-in, which is
compiled into a set of motor primitives. To generalize these movements to a wider range of situations
we introduce the mixture of motor primitives algorithm. The resulting motor policy enables the robot to
select appropriate motor primitives as well as to generalize between them. Furthermore, it also allows
to adapt the selection process of the hitting movements based on the outcome of previous trials. The
framework is evaluated both in simulation and on a real Barrett WAM robot. In consecutive experiments,
we show that our approach allows the robot to return balls from a ball launcher and furthermore to
play table tennis with a human partner.

Executing robot movements using a biomimetic or learned approach enables the robot to return
balls successfully. However, in motor tasks with a competitive goal such as table tennis, the robot not
only needs to return the balls successfully in order to accomplish the task, it also needs an adaptive
strategy. Such a higher-level strategy cannot be programed manually as it depends on the opponent and
the abilities of the robot. We therefore make a first step towards the goal of acquiring such a strategy
and investigate the possibility of inferring strategic information from observing humans playing table
tennis. We model table tennis as a Markov decision problem, where the reward function captures the
goal of the task as well as knowledge on effective elements of a basic strategy. We show how this
reward function, and therefore the strategic information can be discovered with model-free inverse
reinforcement learning from human table tennis matches. The approach is evaluated on data collected
from players with different playing styles and skill levels. We show that the resulting reward functions

iii



are able to capture expert-specific strategic information that allow to distinguish the expert among
players with different playing skills as well as different playing styles.

To summarize, in this thesis, we have derived a computational model for table tennis that was
successfully implemented on a Barrett WAM robot arm and that has proven to produce human-like
hitting motions. We also introduced a framework for learning a complex motor task based on a library
of demonstrated hitting primitives. To select and generalize these hitting movements we developed
the mixture of motor primitives algorithm where the selection process can be adapted online based
on the success of the synthesized hitting movements. The setup was tested on a real robot, which
showed that the resulting robot table tennis player is able to play a cooperative game against an human
opponent. Finally, we could show that it is possible to infer basic strategic information in table tennis
from observing matches of human players using model-free inverse reinforcement learning.

iv Abstract



Zusammenfassung

Menschen üben motorische Fähigkeiten, wie das Greifen einer Kaffeetasse oder das Fangen eines Gegen-
standes mit großer Leichtigkeit aus. Sogar schwierigere und komplexe Aufgaben wie Fahrrad fahren
oder Tischtennis spielen sind oft bis zu einem gewissen Grad schnell zu erlernen. Auch wenn viele dieser
Fähigkeiten nur auf einer kleinen Anzahl elementarer Bewegungen beruhen, ist der Mensch dennoch in
der Lage eine Vielzahl unterschiedlicher Aufgaben zu bewältigen. Roboter hingegen sind immer noch
festgelegt auf eine bestimmte Anzahl motorischer Abläufe, die in wohl definierten Arbeitsumgebungen
ausgeführt werden. Die Modellierung und das Lernen motorische Fähigkeiten ist daher ein wichtiger
Aspekt in der Robotik. Mathematische Modelle der motorischen Kontrolle des Menschen können daher
genutzt werden um Roboter zu entwickeln, die in der Lage sind komplexe Aufgaben in einem von
Menschen bewohnten Umfeld zu bewältigen. Solche Modelle können der Schlüssel zu robusten, effi-
zienten und menschenähnlichen Bewegungsabläufen sein. Im Gegenzug kann die Reproduktion von
menschenähnlichen Bewegungsverhalten auf Robotern auch nützlich sein, um diese mathematischen
Modelle zu verifizieren.

Auch wenn biomimetische Modelle eine große Hilfe sein können, um die Lücke zwischen Mensch
und Roboter zu schließen, stellen sie dennoch einen fixen Plan dar, der auf eine bestimmte Anzahl von
Szenarien begrenzt ist. Eine wichtige Eigenschaft des Menschen ist jedoch die Fähigkeit, motorische
Abläufe an neue Gegebenheiten anzupassen und neue Bewegungen mit relativ wenigen Versuchen
zu lernen. Domänenspezifische Verfahren des maschinellen Lernens, wie überwachtes Lernen und
Reinforcement-Learning (Lernen durch Versuch und Fehlschlag), haben ein großes Potential um in der
Robotik das autonome Lernen von motorischen Fähigkeiten zu ermöglichen.

Das Ziel dieser Doktorarbeit ist es eine komplexe motorische Aufgabe zu modellieren und anschließend
zu lernen. Als Fallbeispiel verwenden wir Tischtennis. Im Tischtennis kommt es nicht nur darauf an,
eine Bewegung bis zur Perfektion zu erlernen. Vielmehr besteht die Aufgabe aus mehreren zeitkritischen
Bewegungen, die aufgrund spezifischer Reize der Umgebung ausgewählt, kombiniert und an neue
Anforderungen angepasst werden müssen.

In dieser Arbeit analysieren wir zunächst Charakteristiken der menschlichen Bewegungskoordination
im Tischtennis und erstellen anhand dessen ein mathematisches Modell, welches in der Lage ist
menschenähnliche Schlagbewegungen auf einem Roboterarm zu erzeugen. Unser Fokus liegt dabei auf
der Erzeugung von Bewegungsabläufen, die mit verschiedenen Variationen und Unsicherheiten der
Umgebung umgehen können. Das resultierende biomimetische Modell wird sowohl in einer physikalisch
realistischen Simulation, als auch auf einem realen antropomorphischen Barrett WAM Roboterarm mit
sieben Freiheitsgraden getestet.

Das biomimetische Modell ist in der Lage menschenähnliche Schlagbewegungen zu produzieren,
berücksichtigt jedoch nicht die Lernfähigkeit von Menschen. Um diese Anforderung zu erfüllen, zeigen
wir in dieser Arbeit, dass die motorischen Fähigkeiten in einer so komplexen Aufgabe wie Tischten-
nis mittels Imitation und Reinforcement Learning gelernt werden können. Dafür verwenden wir die
Erkenntnis, dass Menschen komplexe Bewegungsabläufe aus einer kleinen Anzahl einfacher genera-
lisierbarer Bewegungsprimitive zusammensetzen. Dadurch können einzelne Schlagbewegungen dem
Roboter demonstriert und mittels Imitationslernen reproduziert werden. Da sich die einzelnen Schlag-
bewegungen entsprechend der relativen Entfernung des zu schlagenden Balles vom Roboter, sowie
vom Geschwindigkeitsprofil des Balles unterscheiden, muss der Roboter in der Lage sein aus einer
kleinen Anzahl von Beispielen die Schlagbewegung zu generalisieren. Dafür entwickeln wir in dieser
Arbeit einen neuen Algorithmus, genannt Mixture of Motor Primitives. Der Mixture of Motor Primitives
Algorithmus ermöglicht es, basierend auf einer Bibliothek von Bewegungsprimitiven die richtigen Schlag-
bewegungen, abhängig von der vorherrschenden Situation auszuwählen und zu generalisieren. Der

v



Selektionsprozess der Schlagbewegungen kann dabei selbstständig vom System mittels Reinforcement
Learning erlernt werden. Das Framework wurde sowohl in Simulation als auch auf einem realen Barrett
WAM Roboter getestet. Dafür lernt der Roboter zunächst eine kleine Anzahl von Schlagbewegungen
von einem menschlichen Lehrer durch kinesthetic teach-in. Diese Bewegungen werden dann in eine
Bibliothek von Bewegungsprimitiven übersetzt. Wir zeigen, dass diese Bewegungen mit Hilfe unseres
Algorithmuses zu einem breiteren Spektrum von Situationen verallgemeinert werden können. Unser
Verfahren erlaubt dem Roboter dadurch, Bälle von einer Ballkanone erfolgreich zurück zu spielen sowie
gegen einen menschlichen Gegner zu spielen und sein eigenes Verhalten dabei online zu verbessern.

Die Ausführung von Bewegungen auf dem Roboter mit Hilfe des biomimetischen und gelernten Ansat-
zes, ermöglicht dem Roboter zugespielte Bälle zurückzuspielen. Motorische Aufgaben mit kompetetiven
Zielstellungen wie im Tischtennis erfordern jedoch zusätzlich eine Strategie, um das Spiel zu gewinnen.
Solch eine Strategie kann nur schwer von Hand implementiert werden, da diese sowohl vom Gegner
als auch von den Fähigkeiten des Roboter abhängig ist. In dieser Arbeit wird ein Grundstein gelegt um
eine solche Strategie erlernen zu können. Im Detail wird die Möglichkeit strategische Informationen aus
der Beobachtung von menschenlichen Tischtennisspielen zu extrahieren diskutiert. Dafür modellieren
wir Tischtennis als Markov-Entscheidunsproblem, in welchem die Belohnungsfunktion das Ziel sowie
das Wissen um die elementaren strategischen Elemente enthalten sind. Wir zeigen wie diese Beloh-
nungsfunktion und damit die strategischen Informationen unter Zuhilfenahme von modellfreien Inverse
Reinforcement Learning Methoden aus Daten von Tischtennis spielenden Menschen extrahiert werden
können. Diese Daten haben wir von Spielern mit unterschiedlichen Spielweisen und Spielfähigkeiten
gesammelt. Wir zeigen, dass die resultierenden Belohnungsfunktionen in der Lage sind expertenspe-
zifische strategische Informationen zu erfassen und zwischen den unterschiedlichen Spielweisen und
Spielfähigkeiten der Versuchspersonen zu unterscheiden.

vi Zusammenfassung



Acknowledgements

Many people crossed my way during the last years and most of them have contributed in one or the
other way to this thesis. I especially thank Prof. Dr. Jan Peters who supervised me over the last five
years. He was a wonderful supervisor, whose guidance, support and encouragement I highly appreciate.
I am also indebted to Prof. Dr. Bernhard Schölkopf and Prof. Dr. Stefan Schaal for giving me the
opportunity to work at such a great place as the Max-Planck-Institute in Tübingen and who created an
inspiring research environment. I am grateful to my thesis referees, Prof. Dr. Jan Peters and Prof. Dr.
Tamim Asfour for evaluating this thesis, Prof. Dr. Oskar von Stryk for heading the thesis committee,
and Prof. Dr. Ulf Brefeld and Prof. Dr. Stefan Roth for participating in the defence. I also thank my
coauthors Dr. Abdeslam Boularias, Dr. Jens Kober, Oliver Kroemer, and Dr. Betty Mohler for contributing
to my publications. I can recommend you all as co-authors to anyone! I would also like to thank my
lab colleagues Dr. Abdeslam Boularias, Tatjana Fomina, Dr. Jens Kober, Oliver Kroemer, Timm Meyer,
Dr. Duy Nguyen-Tuong, and Zhikun Wang for all the discussions and feedback, but also for being my
ball boy (or girl) and being my button monkeys ;). In particular I want to thank Timm Meyer for
proofreading parts of this thesis and being my subject in order to test the various tapes for fixing the
VICON markers to the skin! A big thank you goes also to Oliver Kroemer for proofreading this thesis
and all the resulting publications. Another thanks goes to Ekaterina Volkova for her support with the
calibration and advise for the motion suits and VICON system, as well as to Dr. Tobias Meilinger for his
helpful comments on the psychological part of the human table tennis experiments. I am thankful to
Finja Büchel for taking her time to proofread the German abstract of this thesis. I also appreciate the
kind comments by the reviewers, whoever they are. Their comments and remarks were crucial to my
work and I am thankful for the time they invested. Finally, I would like to thank Volker Grabe for his
love, continuous encouragement, for the weekends and nights he spend with me in the office, helping
me proofread my papers, and giving me a hand when two hands were not enough.

vii





Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Abbreviations xi

1 Introduction 1
1.1 Modeling Complex Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning Complex Behaviors with Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Table Tennis – An Example for a Complex Motor Task . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Modeling Robot Table Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Learning Table Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A Biomimetic Approach to Robot Table Tennis 9
2.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Modeling Human Striking Movements in Table Tennis . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Striking Movement Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Initiation of Hitting Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Extracting Essential Context Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Movement Stages of a Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes . . . . . . . . . . . . 16
2.3.1 Overview of the Biomimetic Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Dynamics Model of the Table Tennis Ball . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Determining the Goal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Translating Virtual Hitting Points into Configurations . . . . . . . . . . . . . . . . . 21
2.3.5 Movement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Movement Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Evaluation against a Ball Launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Accuracy of the Ball Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Comparison to Human Behavior and Performance . . . . . . . . . . . . . . . . . . . 27

2.5 Discussion and Conclusion of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Learning to Select and Generalize Striking Movements for Robot Table Tennis 31
3.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Learning and Generalizing Motor Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Learning a Motor Task using the Mixture of Motor Primitives . . . . . . . . . . . . . 34
3.2.2 Computation of the Augmented State . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



3.2.3 Representation of Behavior with Movement Primitives . . . . . . . . . . . . . . . . . 37
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Robot Table Tennis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Computing the Meta-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Mixture of Motor Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion and Conclusion of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning 49
4.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Modeling Human Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Learning the Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Computational Model for Representing Strategies in Table Tennis . . . . . . . . . . 55

4.3 Experiments and Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Experimental Setup and Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusion of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion and Future Work 67
5.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Modeling Complex Motor Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Learning Complex Motor Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Extension of the Table Tennis Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Learning Complex Motor Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Learning Higher-Level Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Conference and Seminar Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

Appendix 83

List of Figures 87

List of Algorithms 91

List of Tables 93

Curriculum Vitæ 95

x Contents



Abbreviations and Glossary

In this thesis we use the following mathematical notation.

Notation Description
x= [x1, x2, ..., xn] a vector
x i the ith component of the vector x
x T the transpose of vector
A a matrix
AT the transpose of a matrix
A−1 matrix inverse
A† matrix pseudo-inverse
Pr(x) probability density of x
E(x) expectation of x

The following symbols are used in this thesis.

Symbol Description
t time
∆t time step
T overall time
x, ẋ, ẍ task space position, velocity and acceleration
θ , θ̇ , θ̈ joint space position, velocity and acceleration
q quaternion
s state
s̃ augmented state
a action
r reward
k(s, s) kernel
π policy
Vπ expected return of policy π

Throughout this thesis we use the following abbreviations.

Abbreviation Description
CrKR Cost regularized Kernel Regression
EKF Extended Kalman filter
IRL Inverse reinforcement learning
ITTF International Table Tennis Federation
GMP Generalized Motor Programs
GPU Graphics Processing Unit
GMM Gaussian Mixture Model
HMM Hitten Markov Model
MDP Markov Decision Problem
MM Maximum Margin
MMG Maximum Margin for Game Values

xi



Abbreviation Description
MMS Maximum Margin for State Values
MoMP Mixture of Motor Primitives
MP Motor Primitives
DoF Degrees of Freedom
DMP Dynamical system Motor Primitive
PoMPD Partially observable Markov Decision Problem
RE Relative Entropy
RMSE Root mean squared error
SD Standart deviation

Here, we will give a short glossary for the terms in this thesis.

action a Vector of variables that change the state of the system. These
actions can refer to motor commands, but also to higher-
level movement parameters such as where and how to return
the ball.

augmented state s̃ Parameter vector consisting of the state s and a set of pa-
rameters that describes the characteristics of the current
task.

hitting manifold The part of state-space that defines the ball-racket contacts.
meta-parameters δ The movement goal, duration and amplitude of a movement

described by a motor policy.
motor behavior The study of all neuronal and muscular processes underlying

observable motor responses due to internal and external
environmental stimuli.

motor control Study of the processes underlying the production of coordi-
nated movements of the central nervous system.

motor policy π(s̃) Function that maps the state s of a movement system and
the internal parameters w to a control vector that defines
the executable motion. Here, we use the augmented state s̃
instead of the state of the system s.

motor skill Sequence of smooth movements executed in order to master
a particular task.

motor task An assignment that requires one or more motor skills in
order to be concluded.

movement goal The finite state of the desired movement.
movement library Database of movement primitives stored as motor policies.
movement primitive A sequence of motor commands executed to accomplish a

given motor task.
policy π Function that maps the state of the system to a control vector.
state of the system s Vector of variables necessary to describe the system.
strategy A high-level plan of actions to accomplish a specific goal.
virtual hitting point The point in time and space where the player plans to inter-

cept the ball.

xii Abbreviations and Glossary



1 Introduction

The everyday life of an adult human is dominated by his ability to control his motor system in various
ways: walking to work, grasping a cup of coffee, riding a bike, or playing a game of soccer. Humans are
able to adapt their motor skills to new situations and learn new tasks based on only a small number of
trials. These tasks are performed with apparently little effort and without active attention. Nevertheless,
only little is understood of the mechanisms underlying these skills. It is still unknown how and why
a particular movement plan is chosen, how perceptional information is integrated, movements are
generalized or new skills can be acquired.

How little is known about human motor control is also reflected in the current abilities of robots.
Robots are still limited to a small number of pre-defined manipulation tasks. These tasks are usually
manually hard-coded after carefully analyzing the task and the environment. Thus, robots are still not
able to adapt their movements to unforeseen situations or to autonomously learn new motor tasks. As a
result, robots can usually only be used in well defined environments separated from humans.

Despite their limitations, humans still envision robots that are able to perform various tasks similar
to human beings. Indeed, robots could be of great help for the society. Catastrophic events, such as
the Fukushima Daiichi nuclear disaster or the Deepwater Horizon oil spill, revealed the need for robots
that can perform complex tasks which would be too dangerous or even impossible to be performed by
humans. Aside from those scenarios, robots could also be of great value in our everyday life. Especially
in an ageing society, robots can act as helpers in various household tasks, be a companion, and alert
medical services in case of an emergency. Furthermore, robots can be used in health care. It has been
shown that the use of humanoid robots can help autistic children to develop social learning skills [Ricks
and Colton, 2010, Dautenhahn and Werry, 2004]. Other studies are conducted in rehabilitation of
stroke patients [Gomez-Rodriguez et al., 2011] or on the effect of long-term interaction of humanoid
robots and children in a hospital that are engaged in a diabetes management course [The ALIZ-E project
team, 2013].

Although Simon [1965] claimed already in the early sixties that machines will be able to perform tasks
similar to humans within twenty years, today’s robots are still far behind their fictional counterparts.
There are many reasons for this gap between fiction and reality such as inappropriate mechanics and
power supplies, computational load, and unsuitable sensing abilities of the environment. Even if these
problems were solved, robots might still not be able to perform complex task such as to take out
our trash. In order to create such skilled machinery, we need to know how robots can generate task
specific motor behavior in an efficient and robust, but at the same time also flexible and safe manner.
Computational models of human motor control can be used in order to get one step closer to this goal,
as many properties of humans are essential for future robots working in human inhabited environments.
Most of these computational models of human motor control are able to explain characteristics of motor
behavior to a certain extent, but do not include how this behavior is learned. Here, domain-appropriate
machine learning techniques could fill this gap. This thesis therefore focuses on both modeling and
learning of motor behavior.

A motor behavior is always directed towards a certain goal one wants to achieve. This goal can
be rather simple to accomplish such as an unconstrained reaching tasks towards a static object, but
it could also be more complex such as striking a ball in a table tennis game. Complex motor tasks
are characterized by different time critical movements that have to be sequenced and chosen due to
environmental stimuli. Furthermore, they have to be executed in an accurate way and need to be
adapted to unpredictable changes in the environment. The goal of this thesis is therefore to model
and learn such a complex motor task. As a test case, we use table tennis throughout this thesis. We
create a computational model of table tennis that can be implemented on a robotic system. The model

1



is inspired by hypotheses from the literature in human motor control. To account for the requirement
of flexible systems that are able to adapt to unforeseen situations and learn new motor skills, we also
investigate domain-appropriate machine learning approaches for robotic systems. Therefore, we present
new algorithms in order to deal with the complexity of the task, and test existing algorithms on this
new challenging task. We evaluate the resulting robot table tennis player in simulation as well as on a
real Barrett WAM arm.

1.1 Modeling Complex Behaviors

The term modeling complex behavior refers in this thesis to the development of computational models
based on findings in human motor control and sport science. Understanding how humans solve
such complex tasks is essential when constructing robotic systems that exhibit natural movement
characteristics. Human-like motor behavior can be the key to robust, efficient and human-like movement
plans for anthropomorphic robots. Reproducing human behavior can also be beneficial for human-robot
interaction, as it allows humans to identify with and, as a consequence, to accept and interact with the
robot. On the other hand, using computational models of motor control and creating human-like motor
behavior on robotic systems can also be beneficial for computational neuroscience or sport science to
verify their hypotheses.

Numerous theories and hypotheses exist describing observed movement characteristics such as
the speed-accuracy trade-off [Fitts, 1954], the ability to reach goals reliably and repeatedly while
still exhibiting variability [Todorov and Jordan, 2002], or bio-mechanical redundancy [Bernstein,
1967]. These observations lead to many possible explanations which are often captured in the form of
computational models allowing to predict and explain human motor behavior. For example, different
cost functions were proposed in order to account for observed patterns in movement trajectories such as
a bell-shaped velocity profile [Bryson and Ho, 1975, Hogan, 1984, Harris and Wolpert, 1998]. Besides
those general models of movement generation, task specific studies from sport science can be used
to derive the desired model. However, these task specific studies are usually not explicitly defined in
the form of a general mathematical model and rather describe the observed differences between naive
subjects and experts in a specific sport.

This thesis focuses on how humans generate fast and accurate movements, initiate these movements,
select important visual information, and on how individual striking movements can be structured.
Although using models based on human motor control has many advantages, it is also necessary to
account for the differences between humans and robotic systems. Therefore, we have to adapt those
models to the needs of robotic systems. We create such a computational model and evaluate it on a real
robot arm.

1.2 Learning Complex Behaviors with Robots

The ability of humans to learn new and often complex motor skills while adapting their skills to new
situations and tasks with a reasonable amount of trials can still not be explained by neuroscientists or
reproduced by robots. Reinforcement learning [Sutton and Barto, 1998] has provided a mathematical
formulation for learning control problems based on the concept of a reward function which also
influenced computational neuroscience [Kawato and Samejima, 2007]. In reinforcement learning, the
considered problem is learned by trial and error. It enables the system to autonomously self-improve its
behavior by interacting with its environment. Reinforcement learning has been successfully applied to
tasks like Backgammon [Tesauro, 1994] and Go [Chan et al., 1996]. However, when learning motor
tasks directly with reinforcement learning on a real robot, it suffers from slow convergence rates due to
the high dimensional problems and the real time constraints [Schaal, 1999, Kober et al., accepted].

2 1 Introduction



Learning from demonstration can provide a good starting point for learning a behavior with rein-
forcement learning [Schaal et al., 2003a, Argall et al., 2009]. Here, the robot tries to reproduce the
behavior of a teacher, similar to humans. Learning motor tasks with a combination of imitation and
reinforcement learning allowed to learn tasks like Ball-in-a-cup [Kober et al., 2008], T-ball swings
[Peters and Schaal, 2006], pancake-flipping [Kormushev et al., 2010], pouring water [Tamosiunaite
et al., 2011] and drumming [Pongas et al., 2005]. As impressive as these examples of robot learning
are, often only a single movement template is used. In complex tasks however, humans as well as robots
have to acquire several movements that need to be chosen and executed depending on the current
context.

Furthermore, if the reward signal used by the artificial system is unknown or wrong, the system
will not be able to learn the correct behavior. The reward is crucial as it defines the goal and the
knowledge to solve this task. Usually, it is assumed that the reward function is known. However, in
complex tasks and especially when human behavior is involved or higher-level strategies should be
modeled, it is hard to design the reward function manually beforehand. Instead of pre-defining the
reward function, it can also be inferred from an expert demonstrating the task. This process is known
as inverse reinforcement learning or inverse optimal control [Boyd et al., 1994, Ng and Russel, 2000].
Inverse reinforcement learning therefore offers a way to analyze human behavior, as the reward function
describes the reasoning behind this behavior. This knowledge can then be transferred to an artificial
system.

In this thesis, we discuss each of these aspects. We investigate how the different movements learned
from demonstration can be chosen based on the current situation and how this selection process can be
adapted using reinforcement learning. Subsequently, we also discuss how the reward function for a
higher-level strategy can be inferred from observing a real game of human table tennis.

1.3 Table Tennis – An Example for a Complex Motor Task

Table tennis as a particularly difficult task has fascinated roboticists since 1983. A striking motion in
table tennis does not only consist of just one specific movement that has to be perfected, but is composed
of different phases, each using different movements: the preparation of the stroke by moving the arm
backwards, the hitting of the ball at the desired point in time and space, and the movement of bringing
the arm back to a neutral position [Ramanantsoa and Durey, 1994]. The hitting movement itself varies
depending on the point of impact relative to the player, the time available, and the kind of stroke that
should be performed. Furthermore, the involved movements are fast and need to be executed with high
precision. Small inaccuracies in timing can lead to large deviations in the final bouncing point of the
returned ball and result in an unsuccessful attempt to return the ball to the opponent’s court.

In order to define the point and time of impact, the player has to predict the trajectory of the ball,
decide on a suitable hitting point and estimate the time until impact. The movements must be timed
such that the ball can be hit by the racket. Therefore, the hitting movement needs to be chosen
and adapted due to uncertainties and changes in the ball trajectory. Furthermore, table tennis is a
competitive game. That means, a player does not only has to return an incoming ball back, he also
needs to decide where and how the ball should be returned to the opponent’s court. This decision is
defined by a higher-level strategy and does not only depend on the trajectory of the ball and the position
of the player, but also on the opponent. The hitting movement should be chosen such that there is a
high probability to successfully return the ball as well as to make the task harder for the opponent.
Based on this information, a player is able to choose and generate suitable hitting movements.

1.3 Table Tennis – An Example for a Complex Motor Task 3



1.4 Contributions

In this thesis, we introduce new approaches and algorithms for modeling and learning robot table tennis.
The work presented in this thesis contributes to the fields of motor control and machine learning in
robotics, but also gives further evidence for some hypotheses in human motor control. In the following,
we discuss the contribution of each chapter individually. The contributions and their belonging to the
different research fields are also summarized in Figure 1.2.

1.4.1 Modeling Robot Table Tennis

Research on robot table tennis started already in 1983 with the announcement of a robot ping pong
competition [Billingsley, 1983]. Research continued until the end of this competition in 1993 and
resulted in several publications [Andersson, 1988, Knight and Lowery, 1986, Hartley, 1987, Hashimoto
et al., 1987, Fässler et al., 1990]. A few groups continued to work on this topic until today [Acosta
et al., 2003, Miyazaki et al., 2006]. Most of these early approaches relied on hardware tailored for this
specific task only and were used in a well defined environment optimized for reliable ball recognition.
However, if one wants to create robotic systems that are able to perform various tasks in a human
inhabited environment, one will have to move away from engineered hardware approaches that are
applied in structured environments free of visual disturbances. Instead, one should focus on robust
movement generation that is able to compensate for uncertainties in the environment.

The model of robot table tennis inferred and implemented in this thesis therefore differs in three
ways from previous work: Firstly, instead of using hardware specifically designed for this task, we
use a redundant anthropomorphic seven Degree of Freedom (DoF) robot arm. Secondly, instead of
applying a vision system in an uncluttered environment, our vision system operates in a semi-structured
human inhabited environment. Thirdly, we concentrate on generating smooth movements that properly
distribute over the different DoF to reduce the stress on individual joints.

As humans still outperform robots that are specifically designed for this task, we study human motor
control and derive a computational model for table tennis to yield a robust movement generation. We
show that using different hypotheses of human motor control and sport science, such as the virtual
hitting point hypothesis [Ramanantsoa and Durey, 1994], cost functions to resolve the redundancy
[Cruse, 1986] or structuring of the hitting motion into four stages [Ramanantsoa and Durey, 1994]
enable us to create a computational model that produces successful human-like hitting motions on a
robot.

1.4.2 Learning Table Tennis

The goal of the second part of this thesis is to investigate domain-appropriate machine learning
algorithms in order to enable the robot to learn complex motor tasks. Previous work on learning robot
table tennis focused on predicting the hitting point with supervised learning techniques [Miyazaki
et al., 2006, Lai and Tsay, 2011]. None of these approaches concentrated on learning robust hitting
movements that are able to compensate for perturbations in the environment, inaccuracies in the impact
point and time, or learning efficient strategies for winning the game.

Selecting and Generalizing Striking Movements
In order to ensure a movement representation which can be learned and optimized by the robot, we

use Dynamical system Motor Primitives (DMP, Ijspeert et al. [2002]). DMPs allow to represent arbitrarily
shaped smooth movements for many different tasks. The original formulation of Ispeert’s DMPs were
adapted by Kober et al. [2010] to allow additionally for arbitrary target velocities in order to represent

4 1 Introduction



Figure 1.1: Overview of the thesis and its contributions. This figure shows the contributions of this
thesis (red), how different aspects are connected with each other and their belonging to the
different research fields.

hitting movements. We refine this formulation in this thesis to remove drawbacks such as infeasible
acceleration profiles in Chapter 3. Most of the applications on learning and self-improving DMPs used
only individual movement primitives to represent the whole motor skill at once. In complex motor
tasks however, motor primitives not only need to be adapted to a constantly changing goal, these motor
primitives should be chosen based on the environmental stimuli and their usage needs to be adapted
to their performance. In Chapter 3, we therefore present a framework that enables the robot to learn
basic cooperative table tennis from demonstration and interaction with a human player. We develop an
algorithm called Mixture of Motor Primitives (MoMP) that selects and generalizes movements from a
movement library based on environmental stimuli. The selection process can be autonomously adapted
based on the performance of the hitting movement generated with the MoMP algorithm. We show (i)
that the resulting framework is able to select movement primitives from a library based on the current
task context instead of using only a single demonstration and (ii) that the adaptation of the selection
process during a table tennis game improves the performance of the robot player. The setup is tested on
a real robot in a match against a human opponent and with a ball launcher.

This work has been recognized by Dr. Muster, honorary member of the German table tennis coaches
club (Verband deutscher Tischtennis Trainer, Muster [2013]). In his opinion the demonstration of
multiple hitting motions to the robot and the subsequent association of situations and suited hitting
motions is further support to the differential training method in table tennis [Schöllhorn, 2000, 2003].

Inferring Strategical Information
Even after acquiring the necessary motor skills for a complex motor tasks, a strategy is required

to choose how the ball should be returned to the opponent’s court in order to win the game. The
data-driven identification of basic strategies in interactive tasks, such as table tennis, is a largely
unexplored problem. Most existing work concentrates on identifying the frequencies and effectiveness
of specific movement patterns. Those approaches usually require a large video library in which the
strategic elements are labelled manually by experts. Furthermore, they do not allow to model the

1.4 Contributions 5



Figure 1.2: Outline of the thesis. The thesis is divided into two parts: Modeling complex motor behavior
and learning complex motor behavior. Learning complex table tennis can be further divided
into selecting and generalizing striking movements and learning higher level strategies.

reasoning behind those decisions and, as a consequence, to transfer the knowledge to artificial systems.
In Chapter 4, we therefore model the decision process for choosing actions by players in a match
of table tennis from a computational point of view. Thus, it is not only possible to use the learned
model for artificial systems, such as table tennis robots, but also to yield a better insight into the
reasons for a human player to choose an action in a certain state. We model the table tennis game
as a Markov decision problem [Puterman, 1994] and extract expert knowledge on effective elements
of a basic strategy in the form of a reward function using model-free inverse reinforcement learning.
To accomplish this step, we collect data from humans playing table tennis under different conditions.
The resulting reward function is evaluated on real table tennis data. We also show that our system is
able to distinguish the expert among players with different skill levels and different playing styles in a
leave-one-subject out testing scheme, as well as to capture expert-specific strategic information.

1.5 Organization of this Thesis

The individual chapters of this thesis can be read independently from each other. The outline of the thesis
is illustrated in Figure 1.2. It is divided into two parts. The first part consists of Chapter 2, "A biomimetic
approach to robot table tennis", and concentrates on modeling robot table tennis. In this chapter, we first
discuss the aspects of skilled performance for fast interactive tasks, such as table tennis, and models of
how a striking movement is organized. Based on these biological hypotheses, a computational model of
robot table tennis is created and consequently implemented on an anthropomorphic seven DoF robot

6 1 Introduction



arm. We evaluate the model in a physically realistic simulation as well on a real Barrett WAM arm. In
this chapter, we also provide a review of existing robot table tennis approaches. This chapter is based
on [Muelling et al., 2011].

The second part of the thesis includes Chapter 3 and Chapter 4 and discusses learning algorithms
for motor behavior. In Chapter 3, "Learning to Select and Generalize Striking Movements for Robot Table
Tennis", we present our framework to learn striking movements in robot table tennis based on imitation
and reinforcement learning. In this chapter, we first show how suitable movement templates can be
selected and mixed from a movement library using the MoMP algorithm, and how the selection process
can be adapted during the table tennis match. Subsequently, we show in simulation and on a real robot
that this system is able to learn striking movements from real demonstrations and that the framework is
able to autonomously adapt the selection process in order to increase the performance in a game of
table tennis. This chapter is based on [Muelling et al., 2013].

In Chapter 4, "Learning Strategies in Table Tennis using Inverse Reinforcement Learning", we show how
strategic elements for winning a game can be inferred from observing humans playing table tennis using
model-free inverse reinforcement learning. Therefore, we first present how to model table tennis as
a Markov decision problem. Three model-free inverse reinforcement learning approaches are used to
infer the reward function to capture the expert knowledge on effective elements of a basic strategy. We
show how the data is collected from humans playing table tennis with different playing skills and styles.
Finally, we present the results for evaluating all reward functions obtained by the different model-free
inverse reinforcement learning techniques on real human data. This chapter is based on [Muelling et al.,
under review].

We summarize the presented contributions in Chapter 5 and give an overview over potential future
work in continuation of this thesis.

1.5 Organization of this Thesis 7





2 A Biomimetic Approach to Robot Table Tennis

Robots are still limited in their motor abilities and far behind their fictional counterparts in books and
movies. These limitations of robots lead to the question of how humans are able to produce robust and
flexible motor behaviors. Studies on human motor control have not been able to solve this question
yet, but resulted in several computational models that attempt to explain specific aspects of human
motor behavior. These studies and computational models of human motor control are an inspiration for
implementing robust motor behavior in robotics. The following chapter is based on [Muelling et al.,
2011] and consists of two parts. First, we present a review of robot table tennis and the biological
background on human motor control with a focus on table tennis. In the second part, we present the
implementation of an analytical robot table tennis player based on the biological findings presented in
the first part. Furthermore, we show that the resulting table tennis player setup produces human-like
hitting motions on a real Barrett WAM robot arm.

2.1 Prologue

Humans perform complex tasks relying on little feedback with long latencies and have strong limits
on their movement execution. Additionally, they suffer from inaccurate sensory information in largely
unmodeled environments. Interception tasks, as table tennis, require fast and accurate movements that
are precisely coordinated with the visual information of the ball and the opponent. However, the human
central nervous system has little time to process feedback about the environment and has to rely largely
on feed-forward components [Wolpert et al., 1998] such as accurate task models as well as predictions
about the opponent and the ball. Nevertheless, human beings outperform table tennis and baseball
robots, which are tailored for these tasks. This performance gap is to a significant part due to the way in
which humans perform robust movements.

Computational models of motor control and learning that describe human motion generation can
be useful for neuroscientists to verify hypotheses on human motor control. These models can also be
useful in robotics to create robot systems that are able to perform a wide variety of movements robustly
and adapt these movements to unexpected environmental conditions and new requirements.

Table tennis has long fascinated roboticists as a particularly difficult task. Significant research on
robot table tennis started around 1983 [Billingsley], and was followed by a period of enthusiastic
research until 1993 [Andersson, 1988, Knight and Lowery, 1986, Hartley, 1987, Hashimoto et al., 1987,
Fässler et al., 1990]. A few groups continue to work on this problem [Miyazaki et al., 2006, Matsushima
et al., 2005, Acosta et al., 2003], as detailed in Section 2.1.1. These early approaches used hardware
engineering solutions to avoid inherent problems in high speed anthropomorphic movement generation
and vision in a human inhabited environment.

In contrast to previous approaches, we use an anthropomorphic robot arm with seven degrees
of freedom (DoFs) and concentrate on generating smooth movements that properly distribute the
forces over the different DoFs. To cope with the resulting challenges of this approach, we present a
biomimetic approach for trajectory generation and movement adaptation based on theories pertaining
to human motor control in table tennis. Our goal is to generate human-like striking movements on an
anthropomorphic robot arm with seven DoFs. We investigate the problem of determining joint angles
and joint velocities for a redundant robot arm at the interception point. Furthermore, we study the
planing of arm trajectories for returning an incoming ball towards a desired point on the opponent’s
court. The resulting trajectories can be adapted to new environmental conditions. The presented robot
table tennis player is able to return balls served by a ball cannon on an International Table Tennis

9



Federation (ITTF) standard sized table. The system works well both in simulation and on a real Barrett
WAM.

2.1.1 Related Work

Research on robot table tennis started with robot ping pong competitions initiated by Billingsley [1983].
Billingsley developed a special set of rules for the competition. In contrast to human table tennis, the
table is only 0.5 m wide and 2 m long and the net has a height of 0.25 m. Wire frames were attached to
each end of the table and the net. For a shot to be valid, the ball has to pass through all three frames.
Thus, the maximum ball speed is limited to 10 m/s. Several early systems were presented by Knight and
Lowery [1986], Hartley [1987], Hashimoto et al. [1987] and others. For this early work, the major
bottleneck was the lack of fast real-time vision.

An important breakthrough was achieved when Andersson [1988] presented the first robot ping pong
player capable of playing against humans and machines. Andersson and his team also employed the
simplified robot table tennis rules suggested by Billingsley. He used a high-speed video system and a six
DoF PUMA 260 arm with a 0.45 m long stick mounted between table tennis racket and robot. Andersson
implemented an expert system-based controller that chooses the strategy as a response to the incoming
ping pong ball. The system was later reproduced by Harrison et al. [2005].

In 1993, the last robot table tennis competition took place and was won by Fässler and his team of
the Swiss Federal Institute of Technology [Fässler et al., 1990]. Although the competitions ceded to
exist, the problem was by no means solved, but the current limits were met in terms of robot hardware,
algorithms, and vision equipment. The focus in that period was mainly on designing better hardware
rather than finding robust algorithms that can compensate for lower-quality hardware.

Nevertheless, interest in robot table tennis did not wane completely and groups continued to work on
it. Acosta et al. [2003] constructed a low-cost robot showing that a setup with two paddles is sufficient
for playing if the ball is just reflected at the correct angle by a stationary paddle. Zhang and Tau [2010]
and Huang et al. [2011] concentrated on vision and trajectory prediction while Miyazaki et al. [2006]
and Lai and Tsay [2011] concentrated on the prediction of the spacial and temporal prediction of the
hitting point. Miyazaki et al. [2006] were able to show that a slow four DoF robot system consisting of
two linear axes and a two DoF pan-tilt unit suffices if the right predictive mappings are learned. The
group applied locally weighted regression to predict the impact time, ball position and velocity. Lai
and Tsay [2011] proposed a setup to estimate the ball trajectory using fuzzy adaptive resonance theory
network and learn the orientation angles of the racket using Self-organizing maps. See Table 2.1 for an
overview of the major contributions in robot table tennis so far.

All systems were tailored for the table tennis task and relied heavily on high-gain feedback, over-
powered motors (no saturation), linear axes (easy to control), and light-weight structures (no torque
saturation, little moving inertia). They were engineered in such a way that they could execute any
straight movement towards the ball at a rapid pace with the right approach angle. The important
problems of generating smooth movements that properly distribute the forces over the arm’s different
DoFs was usually avoided.

2.1.2 Our Contributions

Instead of focusing on engineering a hardware solution specifically designed for robot table tennis, we
aim to realize human striking behavior using an anthropomorphic robot arm. Therefore, our setup
differs in three ways from the work existing up to now. First, instead of using a hardware approach
that simplifies the motion generation, we use an anthropomorphic redundant seven DoF robot arm.
The robot has revolute joints, and large inertia, for example, the wrist alone has a mass of 2.5 kg
weight at the elbow. Thus, we have strong constraints on the joint velocities and accelerations. Second,

10 2 A Biomimetic Approach to Robot Table Tennis



Author Vision System Robot System Comments

Andersson [1988] Four high speed cam-
eras, 60 Hz

Puma 260, 6 degree of
freedom (DoF), 45 cm
stick between robot and
racket.

First robot ping pong
player able to play
against humans and
robots.

Fässler et al. [1990] Two CCD cameras,
50 Hz.

Light weight aluminum
structures, 6 DoF (3 lin-
ear, 3 rotation).

Won the last robot ping
pong competition in
1993.

Acosta et al. [2003] Single CCD video
camera, 40 Hz.

Lightweight robot with
two paddles, 5 DoF (2
prismatic, 3 revolution).

Engineered for table ten-
nis, just reflecting the
ball at the correct angle
on a small table.

Angel et al. [2005] Single Sony XC_HC
50 camera, placed on
the end-effector.

Parallel robot, 4 DoF,
maximum end-effector
speed 4 m/s.

Focus on visual control
of the robot.

Miyazaki et al. [2006] Quick MAG System 3,
60 Hz.

Robot mounted on the
table, 4 DoF (2 DoF lin-
ear + 2 DoF pan-tilt
unit).

Learned input-output
maps to predict the im-
pact time, ball position
and velocity.

Table 2.1: This table shows a few robot table tennis systems as examples. Note that most systems include
linear axes to achieve the necessary speed or have an additional stick mounted between
racket and the robot’s palm.

our vision system operates in a semi-structured and human-inhabited environment. The third aspect
is the application of a biomimetic approach. Humans still outperform robots that are specifically
designed for the specific task of robot table tennis. We must therefore investigate how humans control
their movements and why their motions are more efficient. Hence, we derive a computational model
for human motor control in table tennis and implement this model on a robot. We employ known
hypotheses on the movement structure in table tennis, the identification of a virtual target, the timing
of interception tasks and the resolution of redundancy.

In this chapter, we will proceed as follows. In Section 2.2, we present knowledge on modeling a table
tennis stroke based on biological hypotheses such that we are able to obtain a trajectory of a table tennis
stroke in Section 2.3. In Section 2.4, we present the evaluation of our system in simulation as well as on
a real Barrett WAM showing that our setup is able to return incoming volleys to desired points on the
opponent’s court. Finally, we summarize our work as well as our results.

2.2 Modeling Human Striking Movements in Table Tennis

To create an anthropomorphic table tennis playing robot, we rely on hypotheses on human motor control
in table tennis. Hence, in this section, we present background information on modeling table tennis
from a racket sports’ perspective. In particular, we focus on movement generation, movement initiation,
the selection of important visual information, and the movement stages in table tennis. Finally, we will
outline computational concepts that arise from the biological hypotheses.

2.2 Modeling Human Striking Movements in Table Tennis 11



2.2.1 Striking Movement Generation

To perform complex movements, the human brain has to determine a proper sequence of muscle activa-
tion, the integration of sensory information, and the generation of motor commands to produce coherent
motor behavior. There exist many theories on how humans control coordinated movements, which
describe characteristics observed in human motor control as the speed-accuracy trade-off [Woodworth,
1899, Fitts, 1954], the ability to reach goals reliably and repeatedly while still exhibiting variability
in the movement of the individual degrees of freedom [Todorov and Jordan, 2002], goal-directed
corrections [Elliott et al.], and biomechanical redundancy [Bernstein, 1967]. In order to find generative
principles underlying movement generation, neuroscientists often employ concepts from optimal control
and, thus, use cost functions to evaluate the performance of the system [Bryson and Ho, 1975, Hogan,
1984, Harris and Wolpert, 1998, Todorov and Jordan, 2002]. Another important theory is the so-called
motor program, a memory-based representation of movement patterns [Henry and Rogers, 1960, Keele,
1968, Schmidt, 1975].

Cost Functions for Resolving the Redundancy in Striking Movements

The human body employs approximately 650 major muscles to control its joints [Scott and Fong, 2004].
However, although human beings have many DoF, only a few DoF are actually required for a movement.
There exist an infinite number of configurations of joints and muscles in the arm that all accomplish the
same task. Such biomechanical redundancy makes the system flexible, but also difficult to control.

One possible generative principle underlying movement generation is the concept of optimal con-
trol [Bryson and Ho, 1975]. Here, it is postulated that movement patterns for the task are chosen such
that a specific cost J

min
w

J =
1

2

ˆ T

0
c(w)d t,

is minimized, where T is the movement duration and w the parameters describing the movement. The
cost function c measures the cost of the movement with respect to an undesirable feature, such as jerk
or the amount of metabolic energy used for the movement.

Most studies on cost functions focus primarily on reaching and pointing movements [Uno et al.,
1989, Hogan, 1984, Flash and Hogan, 1985, Harris and Wolpert, 1998] where one can observe a
bell-shaped velocity curve [Morasso, 1981], as well as a clear relationship between movement duration
and amplitude [Flash and Hogan, 1985, Roitman et al., 2004]. However, these relationships do not
hold in striking sports as shown by the work of Bootsma and van Wieringen [1990]. Energy-optimality
[Alexander, 1997, Kuo, 2005] does not appear to explain striking movements, as it would result in
movements that are awkward both for human beings and robots. Cruse et al. [1986, 1990] suggested
that the comfort of the posture may play a major role in arm movement generation and, hence, it may
be part of the cost function of striking movements. According to Cruse [1986], the cost is induced by
proximity to a fixed comfort posture in joint-space. This implies that the cost will be minimal if the
joint angles are the same as for the comfort posture, and increases with the distance from this posture.
Mathematically interpreted this cost function can be understood as minimizing

∑N
i ci(‖θ ∗i −θi‖), where

θ ∗i and θi are the optimal and current joint values respectively, ci(·) is a sensitivity function that is
attached to this joint and N is the number of DoF. We therefore employ this cost function and resolve
the redundancy of the arm accordingly (see Section 2.3.3).

12 2 A Biomimetic Approach to Robot Table Tennis



Motor Programs for Striking Movements

Humans are likely to use a set of pre-structured movement commands, often referred to as motor
programs [Henry and Rogers, 1960, Keele, 1968, Schmidt, 1975, Schmidt and Wrisberg, 2000]. Motor
programs determine the order and timing of muscle contractions and, hence, define the shape of the
action. Sensory information can modify motor programs to generate rapid corrections for environmental
changes, as found in table tennis by Bootsma and van Wieringen [1990].

Schmidt [1988], Schmidt and Wrisberg [2000], Schmidt [2003] proposed the concept of Generalized
Motor Programs (GMP), which are stored in memory and contain elementary movements that may
be used as actions. Such actions contain several movements that have similar invariant features such
as relative timing and the sequence of the components. These invariant features are consistent when
performing the action. A specific movement can be adapted to environmental conditions by altering the
parameters of the GMP, such as movement time, amplitude and the goal position of the movement.

As a possible theory on how GMPs could generate coordinated movements, Schmidt [1975, 2003]
suggested the motor schema theory. A schema is a set of rules that is developed by extracting information
from related experience. The schema provides the parameters for the GMP and, thus, allows it to
adapt to new situations and environmental context. According to the theory of Schmidt [1975, 2003],
performing an action involves first selecting the appropriate motor program from the memory and,
subsequently, setting the adjustable parameters according to the rules defined by the motor response
schema.

The validity of this framework for explaining human striking behaviors in table tennis is supported by
experimental evidence of Tyldesley and Whiting [1975]. Their experiments demonstrated consistent
spatial and temporal movement patterns for expert ping pong players. Tyldesley and Whiting [1975]
concluded that a professional player chooses a movement program for which the execution time is
known from their repertoire, and then decides when to initiate the drive. This observation is known as
operational timing hypothesis. For more information about the timing of movements see Section 2.2.2.

For the table tennis robot, we represent the movement program for each degree of freedom involved
in striking a table tennis ball as 5th order splines.

2.2.2 Initiation of Hitting Movements

While spatial planning of the trajectory is necessary for any movement, striking a moving object relies
critically on accurate and precise timing to achieve the desired interception. An important component of
the visual information, which is used to control the timing in an interception task, is the time-to-contact
[Hecht, 2004]. Time-to-contact is the time until the object reaches the observer or a point in space where
it can be intercepted by the observer. Therefore, two essential questions need to be addressed. First,
how to specify the time-to-contact and, second, how to coordinate the timing of the action accordingly.
Several hypotheses have been suggested to address these questions and the most common ones are
discussed below.

Tau Hypothesis

A possible time-to-contact estimation strategy employs the speed and distance of the approaching
object. However, this approach cannot explain why humans are able to estimate the time to contact for
unknown objects. Lee and Young [1985] hence suggested that the temporal information on the ball’s
arrival is defined by an optic variable τ. This variable is specified as the relative inverse rate of dilation
of the object image on the retina.

The critical value that triggers a specific action is called the tau margin. Lee and Young [1985]
suggested that humans direct their actions towards the tau margin rather than to the real time to contact.

2.2 Modeling Human Striking Movements in Table Tennis 13



Bootsma and van Wieringen [1988] presented experimental evidence that the initiation of the drive in
table tennis may indeed be based on the tau-margin.

Stroke Timing Strategies

Hubbard and Seng [1954] concluded from their experiments with professional baseball players that the
duration of the swing was constant and independent of the speed of the pitched ball. This consistency
in swing duration indicates that the batters adjusted the initiation of their swings according to the tau-
margin. Such behavior, hence, always results in the same timespan required for each swing, irrespective
of the ball’s speed.

Tyldesley and Whiting [1975] proposed the operational timing hypothesis independently of the
work of Hubbard and Seng [1954]. Tildesley and Whiting conducted an experiment with amateur,
intermediate and expert table tennis players. The subjects were asked to perform a forehand drive
to a designated target area on the table. While expert players and, to a lesser extent, intermediate
players achieved a high degree of spatial consistency, novice players failed to do so. The results provided
support for the concept of consistent motor programs and lead to the assumption that these motor
programs just need to be initiated at the right time. The operational timing hypothesis hence states that
expert players reduce the interception task to the problem of determining when to initiate the action.

Bootsma and van Wieringen [1990] investigated the validity of the operational timing hypothesis
using five expert table tennis players. As expected, they found that the subjects performed consistent
movement patterns. However, in contrast to Tildesley and Whiting, they concluded that the small
variations in the temporal movement pattern are functional, and not the result of noise. They measured
the standard deviation in the timing of the stroke initiation and the ball-racket contact. The initial time
accuracy was defined as the variability of the tau-margin. The contact timing accuracy was defined as
the variability of the travel direction of the racket at the hitting point. According to the operational
timing hypothesis, the variations at the stroke initiation should be less than those at the hitting point.
Instead they found a standard deviation in timing of 2 – 5 ms for the moment of contact while having
5 – 21 ms at initiation. However, their experiments showed a decrease in variability. This finding,
therefore, contradicts the operational timing hypothesis.

In later work, Bootsma and Wiering suggested a continuous perception-action model with a funnel-
like type of control, in which the participant has to initiate his swing within a fixed spatio-temporal
bandwidth [Bootsma and Peper, 1992, Williams and Starkes, 2002]. The drive can be aligned according
to perceptual information available during the swing, which would cause an increasing accuracy during
the moment of initiation and the moment of ball-racket contact.

In the robot table tennis setup, we will therefore initiate the hitting movement when the time-to-
contact is below a threshold value.

2.2.3 Extracting Essential Context Parameters

To return an approaching ball successfully to the opponent’s court, humans have to extract the necessary
context parameters from observations of their environment. Knowledge of the gaze behavior can yield
information about which parts of the ball flight are important for planning the striking movement.

Studies by Ripoll and Fleurance [1988] and Rodrigues et al. [2002] revealed that expert table tennis
players track the ball only at the beginning of its trajectory. The duration of the ball tracking depends
on the characteristics of the stroke. For example, balls moving to the player’s body are tracked for a
longer period than balls which moving lateral to the players body [Ripoll and Fleurance, 1988] due to
the difference in measurement accuracy. In contrast to beginners, skilled players exhibit an earlier ball
tracking onset [Rodrigues et al., 2002]. The final part of the ball trajectory starts with the last bounce
of the ball, and ends when the ball and racket make contact. In this time period, head and eyes are

14 2 A Biomimetic Approach to Robot Table Tennis



fixed on the estimated area of ball-racket contact [Ripoll and Fleurance, 1988]. Ripoll and Fleurance
concluded from their studies that it is not necessary for expert players to track the ball throughout the
entire trajectory. In contrast to the experts, beginners track the ball over the whole trajectory.

The observation of the ball during the first parts of the ball flight allows the player to obtain
necessary information on the location of the bounce and for planning the striking motion. The eye-
head stabilization in the period before ball-racket contact increases the sensitivity of the moving ball’s
peripherical image [Ripoll and Fleurance, 1988, Rodrigues et al., 2002]. This uncertainty reduction
may be crucial for an accurate stroke generation.

Similar to the predictive eye-saccades towards a post-bounce position found in table tennis by Ripoll
and Fleurance [1988] and Rodrigues et al. [2002], predictive eye-saccades towards the bouncing point
was also found in cricket [Land and McLeod, 2000], squash [Hayhoe et al., 2012] and virtual racquetball
[Diaz et al., 2013]. Moreover, Diaz et al. [2013] could show that these predictive eye movements do not
only depend on visually available information of the pre-bounce ball trajectory such as the ball speed
but also on non-visual information such as the elasticity of the ball. The authors argue further, that
it is possible that player incooperate physical properties such as the coefficient of restitution in their
predictions.

2.2.4 Movement Stages of a Stroke

Table tennis exhibits a regular, modular structure that has been studied by Ramanantsoa and Durey
[1994]. They analyzed a top player and proposed four movement stages with respect to certain ball
events, that is, bouncing, net crossing, and striking. According to their hypothesis, the following four
stages can be distinguished during a match of expert player. For clarity, we have labeled them according
to their functionality.

Awaiting Stage. The ball moves towards the opponent who returns it towards the net. The player’s
own racket is moving downwards. The player decides to use either a forehand or backhand stroke.
At the end of this stage, the racket will be in a plane parallel to the table’s surface.

Preparation Stage. The ball moves towards the player, has already passed the net, and will bounce off
the table during this stage. The racket is moving backwards in order to prepare the stroke. For
forehand strokes, the racket remains in the same plane as in the awaiting phase. The amplitude of
the lateral displacements in the preparation stage depends on the ball’s flight direction relative to
the body’s position when the ball crosses the net. The player chooses a point where he plans to
intercept the ball. Ramanantsoa and Durey [1994] refer to this point as the virtual hitting point.

Hitting Stage. The ball moves towards the virtual hitting point where the player intercepts it. In a first
substage, final adjustments are made. The precision of the stroke depends on the time available
for the execution of this substage. During the second substage, the racket moves towards the
virtual hitting point until it hits the ball. For expert players, the temporal duration of this phase
appears to be constant and lasts approximately 80 ms.

Finishing Stage. After having been hit, the ball moves towards the opponent while the racket is moving
upwards to a stopping position. This stage ends with the ball crossing the net and the velocity of
the racket tending to zero.

We have verified the stages suggested by Ramanantsoa and Durey [1994] in a VICON motion capture
setup with two naive players where each of the stages can be observed distinctly (see Figure 2.1). Color

2.2 Modeling Human Striking Movements in Table Tennis 15



(a) Awaiting Stage (b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Figure 2.1: This figure illustrates the four movement stages of Ramanantsoa and Durey [1994] recorded
in a VICON motion capture system where (a) shows the Awaiting Stage in which the opponent
is observed, (b) the Preparation Stage in which the stroke is prepared, (c) the Hitting Stage in
which the ball is intercepted, and (d) the Finishing Stage. The red and blue arrow show the
movement of the ball and the racket, respectively, in each stage.

coded trajectories of the racket for one hitting motion starting with the awaiting stage can be seen in
Figure 2.2. Note that for expert table tennis players the temporal and spacial timing would be more
pronounced.

From a computational point of view, this model corresponds to a finite state automaton. By encoding
such a sequence in the internal states of the policy, similar movements can be generated artificially.

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes

To evaluate and use the observation-based model presented in Section 2.2, we have developed a
computational realization that is suitable for real-time execution on a robot. We proceed as follows:
First, we discuss the system’s key elements in an overview. Subsequently, we explain how to determine
the goal parameters of table tennis, that is, the time-to-contact and the virtual hitting point. Furthermore,
we describe the realization of the movement generation for the striking motion, which includes the
resolution of redundancy by minimizing the discomfort as described in Section 2.2.1.

16 2 A Biomimetic Approach to Robot Table Tennis



Figure 2.2: This figure shows different trajectories of intermediate table tennis players for one hitting mo-
tion. The trajectories are color coded according to the stages suggested by Ramanantsoa and
Durey. The awaiting stage is colored in blue, the preparation stage in magenta, the hitting
stage in green and the follow through stage in red. Colored circles show the corresponding
position on the ball and arm trajectory respectively.

2.3.1 Overview of the Biomimetic Player

We adopt the movement stages of the model by Ramanantsoa and Durey [1994] as outlined in
Section 2.2.4, and use a finite state automaton to represent this model. Subsequently, we have to plan
the arm’s movement for each of the four stages.

We decided to plan the trajectories in the robot’s joint space. Planning in joint space has a variety of
advantages over planning in task space. A joint-space trajectory can be directly controlled and does not
require an intermediate inverse kinematics mapping. Thus, we avoid an additional nonlinear component
in the control loop. In order to realize the movement program, we rely on a spline-based representation
to encode the trajectory for each stage and each DoF. More details are given in Section 2.3.6.

To generate the arm’s trajectories, we have to determine constraints for the movements of each DoF.
While desired final joint configurations suffice for the awaiting, preparation and finishing stages, the
hitting stage requires a well-chosen movement goal. To determine the goal parameters, that is, the
position, velocity and orientation of the end-effector, we rely on the virtual hitting point hypothesis
[Ramanantsoa and Durey, 1994]. The goal parameters are chosen before the hitting motion begins.
Therefore, the system has to first choose a point xtable on the opponent’s court where the ball will
be returned to. The choice of xtable is part of a higher level strategy. Second, the system needs to
determine the interception point of the ball and racket trajectories, which specifies the virtual hitting
point xhp. The hitting point is the intersection point of the ball with the virtual hitting plane of the
robot. The fixed virtual hitting plane used in our setup is illustrated in Figure 2.3. Given xtable and xhp,
we can compute the batting position and velocity of the racket. Unfortunately, there are still infinitely
many arm configurations that correspond to the desired racket position and velocity. To resolve this
ambiguity problem, the system minimizes the distance to a comfort posture in joint space as proposed
by Cruse et al. [1990] for human motor control. Doing so, we are able to find the orientation of the
end-effector at the hitting point closest to the desired posture (see Section 2.3.3). The corresponding
joint configuration for the virtual hitting point can then be computed using a quaternion-based inverse
kinematics (see Section 2.3.4).

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes 17



x   hp

virtual hitting

plane

x y

z

Figure 2.3: This figure illustrates the virtual hitting plane in the table tennis setup. The intersection point
of the ball trajectory with the virtual hitting plane defines the virtual hitting point xhp. The x
direction of the world coordinate system is parallel to the net, the y direction is parallel to
the long side of the table and the z direction goes upwards.

The hitting movement is initiated when the time thp to the intersection of the ball with the virtual
hitting plane is below a threshold. This step requires the system to predict when the ball is going to
reach the virtual hitting plane. The expected hitting time can be estimated by predicting the trajectory
of the ball using a model of the ball’s dynamics, which is described in Section 2.3.2. Following the
suggestion of Bootsma and van Wieringen [1988] that some online adaptation of the movement can
be performed, the virtual hitting point is updated during the execution of the movement. As a result,
the movement generation for the hitting and finishing stages is adapted to the new hitting point up to
100 ms before the predicted interception. This time period corresponds approximately to the human
visuomotor delay [Abbs and Cole, 1987].

In order to realize these four stages, the system needs to detect the ball and determine its position xb.
The vision system consists of two stereo cameras with Prosilica GE640C Gigabit Ethernet cameras and
a GPU-based 60 Hz blob detection. Due to noise on the sensor level, the visual information is filtered
using an extended Kalman filter (EKF) [Sorenson, 1985]. The system’s equations used for the EKF are
given in Equation (2.1). The resulting algorithm is described in Algorithm 1.

2.3.2 Dynamics Model of the Table Tennis Ball

To predict the position and velocity of the ball at time t j+1 based on the state at time t j, we have to
model the aerodynamics of the ball and the physics of the ball’s bounces on the table. The ballistic
flight model needs to incorporate air drag, gravity, and spin. As the latter is hard to observe from visual
measurements, our model neglects spin. For table tennis balls, we can assume that the air drag is
proportional to the square of the velocity of the ball. Using symplectic Euler integration, we can model
the ball movement in discrete time form by

ẍ j+1
b = g− C‖ẋ j

b‖ẋ
j
b, ẋ j+1

b = ẋ j
b + ẍ j+1

b ∆t, x j+1
b = x j

b + ẋ j+1
b ∆t, (2.1)

where ẍb, ẋb, and xb denote the acceleration, velocity, and position vector of the ball respectively, g the
gravity vector and ∆t the time difference. The air resistance scale factor C = cwρA/(2m) is determined
by the drag coefficient cw, the density of the air ρ, the size of the ball’s cross-sectional area A and the
mass of the table tennis ball m. For the bouncing behavior of the ball on the table, we assume velocity
changes in all three directions. This change in velocity ẋ j+1

b = εT ẋ j
b is determined by the coefficient

εT = [εT x ,εT x ,−εTz]T where εT x is the coefficient of friction on the table and εTz is the coefficient of
restitution.

18 2 A Biomimetic Approach to Robot Table Tennis



2.3.3 Determining the Goal Parameters

After estimating the virtual hitting point, we need to determine the orientation and velocity of the
end-effector. Therefore, the system chooses the height znet at which the returning ball should pass over
the net, as well as the position xtable where the ball should bounce on the opponent’s court. The choice
of these variables belongs to the strategy of the system. A first step towards such a strategy can be found
in Chapter 4. For the purpose of demonstration, we will chose znet and xtable independently from sets of
possible values according to a uniform distribution. To determine the goal parameters, we have to first
compute the desired outgoing velocity o of the ball that is, the velocity of the ball at the moment after
the ball-racket impact. Directly from it, we can determine the required velocity and orientation of the
racket.

Desired Outgoing Velocity

To compute the velocity o of the ball after the ball-racket impact at xhp, we need to know which
requirements the resulting trajectory has to fulfil. First, the ball has to pass the net at a certain height
znet. Second, the ball has to bounce at the desired target xtable on the opponent’s court. These two
constraints lead to the following nonlinear equations

xnet = xhp+ ox tnet− 0.5Cvoxt
2
net

znet = zhp+ oz tnet− 0.5Cvozt
2
net

xtable = xhp+ ottab− 0.5Cvot2
tab

where xnet = [xnet, znet]T , xhp = [xhp, yhp, zhp]T , xtable = [x t , yt , zt]T , o = [ox , oy , oz]T , xnet is the x-

position of the net, zt is the height of the table, and v=
Æ

o2
x + o2

y + o2
z . The time variables tnet and ttab

correspond to the time at which the ball passes over the net and reaches the target of the opponent
court respectively. Since these equations are nonlinear in the variables of interests, we have to solve the
problem numerically. Therefore, we use a globally convergent solver for nonlinear equation systems,
which combines the Newton-Raphson update with a modification for global convergence [Dennis and
Schnabel, 1983].

Racket Orientation

The orientation of the end-effector is specified as a rotation that transforms the normal vector of the
end-effector ne to the desired normal vector ned. To define ned, we have to compute the desired normal
direction of the racket nrd that results in the desired outgoing vector o of the ball given the velocity
vector i at the hitting point before impact (see Figure 2.4).

If we assume only a velocity change o − i in the normal direction of the racket nrd, we obtain
o− i= nrd(o||− i||), where o|| and i|| denotes the components of o and i, respectively, which are parallel
to the desired racket normal. Note, that if we assume the absence of spin, all changes in velocity occur
in this component. Hence, ‖o− i‖= o||− i||. Thus, we can determine the desired racket normal by

nrd =
o− i

‖o− i‖
. (2.2)

The rotation of ne to ned, which defines the orientation, is represented in terms of quaternion
qed = qrdqre where qre is the quaternion that describes the rotation from the racket to the end-effector
and qrd =

�

cos
�

γ/2
�

,u sin
�

γ/2
��

, with γ = nT
e nrd/(‖ne‖‖nrd‖) and u = ne × nrd/‖ne× nrd‖, defines

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes 19



(a) normal Vectors of the racket

o
n   rd

o   ||

o-i

i

racket

(b) racket orientation

i

i

o

v*
n

  
  
  
 r

d

i''

i' v*n      rd

i'

v*n      rd

racket

(c) racket velocity

Figure 2.4: Computation of the desired normal vector ned of the end-effector and the velocity based
on the orientation of the racket nrd, the velocity o and i of the ball after and before the
impact respectively. Figure (a) illustrates the normal vector ne, the desired orientation of the
racket nrd and the resulting desired orientation ned. The normal of the end-effector ned is
perpendicular to nrd. Figure (b) shows the relationship between nrd , o and i. Assuming the
absence of spin and a speed change only in the o− i direction, nrd is given by the normalized
difference vector of o and i. Figure (c) illustrates the computation of the velocity v of the
racket based on the relation of v, nrd, o and i.

the transformation of the normal of the end-effector ne to the desired racket normal nrd. See Figure 2.4
for an illustration of the computation of the racket normal used to define the orientation of the
end-effector.

As there exist infinitely many racket orientations that have the same racket normal, we need to
determine the final orientation depending on a preferred joint configuration. The resulting quaternion of
the end-effector qed is determined by a rotation about nrd. The corresponding joint values and velocities
are then computed using inverse kinematics (see Section 2.3.4). The orientation whose corresponding
joint configuration θ hp yields the minimum distance to the comfort posture θ com is used as the desired
racket orientation. Therefore, we weight each DoF according to its contribution to the cost function.
The comfort position θ com is a fixed joint configuration for each of the different striking motions (see
Section 2.3.5). We choose this configuration such that the distance to the joint limits is as large as
possible.

Required Racket Velocity

After computing the orientation of the end-effector, we have to calculate the velocity of the end-effector
at the time of the ball’s interception. We can describe the relation between the components of the
incoming and outgoing velocity parallel to the racket norm as o||− v= εR(−i||+ v), where εR denotes
the coefficient of restitution of the racket, v the speed of the racket along its normal. This equation can
be solved for v which yields the desired racket velocity

v=
o||+ εRi||

1+ εR
. (2.3)

Given the velocity and orientation of the racket, we now have all necessary information to specify the
virtual hitting point.

20 2 A Biomimetic Approach to Robot Table Tennis



2.3.4 Translating Virtual Hitting Points into Configurations

From the virtual hitting point, we have computed the position, orientation and velocity of the end-
effector in task space (i.e., Cartesian positions and rotations in the form of quaternions). As we plan
the motions in joint space (as discussed in Section 2.3.1), we have to compute the corresponding joint
state θ consisting of the joint angles θi, joint velocities θ̇i and joint accelerations θ̈i for each joint i of
the arm. The transformation of joint values into Cartesian positions and velocities x can be determined
using the forward kinematics x= f (θ ). Hence, to realize the transformation from Cartesian space into
the joint space, we require the inverse kinematics, that is, θ = f −1(x). Solving the inverse kinematics
problem by analytically inverting the forward kinematics is not feasible, as there may exist infinitely
many solutions due to the redundancy. To yield human-like motions, we follow the suggestion of Cruse
et al. [1990] for resolving the biomechanical redundancy in humans. Hence, the inverse kinematics
problem for the redundant DoFs can be solved numerically by minimizing the distance to the comfort
posture in joint space, while finding a racket position and orientation that coincides with the virtual
hitting point xhp. The cost function of the inverse kinematics problem is given by

min
∆θ0:T

F =
T
∑

t=0

1

2

�

∆θ t + θ t − θ R
�T W

�

∆θ t + θ t − θ R
�

(2.4)

s.t. ∆xt = J
�

θ t
�

∆θ t , (2.5)

where θ R is the optimization posture, the change in the joint state ∆θ = θ̇δt, θ t is the current joint
configuration of the robot and W is a symmetric, positive definite weight matrix. Thus, we have the
Lagrangian

L =
T
∑

t=0

1

2

�

∆θ t + θ t − θ R
�T W

�

∆θ t + θ t − θ R
�

+λT
t

�

∆x− J
�

θ t
��

∆θ t + θ t − θ R
��

. (2.6)

Minimizing L with respect to λ and ∆θ yields

θ t+1 = θ t + J†
w∆xt + (I− J†

wJ)
�

θ t − θ R
�

, (2.7)

where I denotes the identity matrix, J†
w = JT

w(J
T
wJ)−1 denotes a weighted pseudo inverse, and Jw = JW−1

denotes the weighted Jacobian. The final joint configuration for the desired hitting point can be
computed by iteratively running the algorithm until the error is below a certain error threshold. Note
that this method may have numerical problems at singularities where the rank reduction makes the
Jacobian inversion impossible and an additional ridge term is needed. Nevertheless, this method enables
a fast computation of the inverse kinematic function that provides control over the arm configurations
and is used for the transformation of the Cartesian position and orientation into joint space.

The step length in task space ∆x = [∆xp;∆xo] determines the accuracy of the cost and, hence, is
essential for computing a short path. We define the position part of the Cartesian difference vector ∆x
as

∆xp = gp(xhp− xe), (2.8)

where gp is a scaling factor and xe and xhp are the actual and desired Cartesian states of the end-effector,
respectively. For orientation control, we use the quaternion error qE between the actual and desired
orientation for the second part of the step length

qE = qedq∗e, (2.9)

∆xo = go[q
E
1 , qE

2 , qE
3 ]

T , (2.10)

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes 21



where qed is the quaternion describing the desired end-effector orientation, q∗e denotes the complex
conjugate of the actual quaternion of the end-effector orientation and go defines a scaling factor. The
scaling factors gp and go determine the convergence speed and robustness of the method; large values
result in a higher convergence speed, but the algorithm may never find a solution if the values are set
too high.

When the algorithm cannot find an appropriate joint configuration, the system decides not to return
the incoming ball.

2.3.5 Movement Parameters

To return an incoming ball, the movement is generated for each of the four stages. We determine the
start and end position, velocity and acceleration for each of the four stages as described in Section 2.3.1.
The start and end positions for all stages are fixed except the hitting point which defines the end
configuration of the hitting stage and the start configuration of the finishing stage. The fixed start and
end positions are chosen to produce hitting movements similar to those exhibited by humans. The
corresponding joint velocities and accelerations are set to zero. The configuration at the hitting point is
computed for each stroke individually as described above. The duration of each stage (i.e., tas, tps, ths,
tfs) is chosen such that the robot is able to execute the movement. The durations of the hitting stage ths
is equal to the estimated time to hit thp but is at least 250 ms and at most 350 ms. If the estimated time
to hit is less than 250 ms and the hitting stage is not yet initiated, the system decides not to execute the
stroke, since this would require infeasible accelerations for the robot’s joints.

Similar to humans who distinguish between several striking movements in table tennis, we have to
implement different strokes to adapt to different hitting points in the workspace of the robot. Therefore,
we divide the virtual hitting plane into three areas. A stroke movement is assigned to each of these
areas, resulting in two forehand and one backhand strokes. Each stroke is defined by an individual start
and end position for the individual stages and joints. When a ball moving towards the robot is detected,
the virtual hitting point is estimated. Based on the area in which the predicted hitting point is located,
the corresponding stroke type is chosen.

2.3.6 Movement Generation

The trajectory needs to be planned in joint space where high velocity movements can be executed more
reliably. For the execution of the movements, we need a representation to obtain position θ(t), velocity
θ̇(t) and accelerations θ̈(t) of the joints of the manipulator at each point in time t such that it can
be executed with an inverse dynamics-based controller [Spong et al., 2006]. Fifth order polynomials
represent the trajectory at all stages (see Appendix A). Such polynomials are the minimal sufficient
representation to generate smooth trajectories, and can be evaluated quickly [Craig, 1989]. Mimicking
the four stage model of Ramanantsoa and Durey [1994], we select four different splines that interpolate
between the initial and final configurations. As the trajectory of the hitting and finishing stages depends
on the hitting point, trajectories have to be calculated jointly at the beginning of the hitting stage and
have to be adjusted every time the virtual hitting point is updated.

The coefficients and final acceleration of the hitting stage are chosen such that the maximal accelera-
tion during this stage is minimized (see Appendix). In addition to the minimization of the acceleration,
this solution results in a decreased position overshoot before the hitting point. Thus, it reduces the risk
of running into joint limits.

The pseudo-code summarizing the table tennis setup described in this section is shown in Algorithm 1.

22 2 A Biomimetic Approach to Robot Table Tennis



Algorithm 1 Table Tennis Algorithm
Initialize: switch to AwaitingStage
repeat

Extract ball position xb
EK-Filter: xb→ xt , ẋt
EK-Prediction: xt , ẋt → thp,xhp, ẋhp
——————–Switch Stage———————–
if FinishingStage and MovementEnds then

Switch to AwaitingStage
Compute αk =M−1(0, tas)b

as
k for each DoF k

else if AwaitingStage and thp ≤ tas+ ths then
Switch to PreparationStage
Compute αk =M−1(0, tps)b

ps
k for each DoF k

else if PreparationStage and thp ≤ ths then
Switch to HittingStage

else if HittingStage and BallHit then
Switch to FinishingStage
Compute αk =M−1(0, tfs)b

fs
k for each DoF k

end if
—————Update Striking Motion—————
if HittingStage then

Solve with Newton-Raphson for o using
f (o,xhp, tnet) = xnet
f (o,xhp, ttable) = xtable

Determine joint configuration at hitting point
v= o||+ εRi||/(1+ εR)
nrd = o− i/(‖o− i‖)
qed = qrdqyrot
Determine optimal rotation about nrd by
θ opt = arg minθhp

‖θ com− θ hp‖
with Inverse Kinematics: xhp, qed, v→ θ hp

Compute αk =M−1(0, ths)b
hs
k for each DoF k

end if
—————Executing Movement——————
for each DoF k do
θk =

∑5
l=1αkl t

l

end for
Execute (θ , θ̇ , θ̈ ) with Inverse Dynamics Control.

until user stops program

2.3 A Biologically-Inspired Trajectory Generator for Table Tennis Strokes 23



0.5

ca
rt
e
si
a
n
 x
−
p
o
si
tio

n
 [
m
]

x−Position of Ball and Racket

 
0 0.5 1

0

1

1.5

2

hitting point

time [s]

ball

racket

ca
rt
e
si
a
n
 y
−
p
o
si
tio

n
 [
m
]

y−Position of Ball and Racket

 
0 0.5 1

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

hitting point

time [s]

ball

racket

0 0.5 1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

hitting point

time [s]

z−Position of Ball and Racket

 

ball

racket

ca
rt
e
si
a
n
z−

p
o
si
tio

n
 [
m
]

Figure 2.5: This figure shows the movement of the racket and the ball on the real Barrett WAM for a
successful striking movement. The ball (solid blue line) moves towards the robot until it is hit
by the racket (dashed magenta line) at the virtual hitting point (black triangle). The y-axis is
aligned with the long side of the table tennis table, the x-axis is aligned with the width of the
table and the z-axis goes upwards.

2.4 Evaluations

In this section, we demonstrate that robot table tennis is feasible with the proposed biomimetic player.
To evaluate the performance of the player, we examined the accuracy in striking an incoming ball. We
also analyzed the accuracy of the prediction of the virtual hitting point, the time of flight, and the
accuracy of returning the ball to a desired position on the opponent’s court. Furthermore, we analyzed
the performance of the dynamics model of the ball and compared the biomimetic player’s movement
generation to a human player. For the experimental evaluations, we used a Barrett WAM arm, as well as
a physically realistic simulated version of the complete setup.

2.4.1 Evaluation against a Ball Launcher

We assume a setup consisting of a Barrett WAM, a table, a racket, four cameras and a ball launcher. The
Barrett WAM is an anthropomorphic seven DoF arm that is capable of high speed motion (e.g., for the
end-effector we measured velocities of 6.5 m/s and accelerations of 234.6 m/s2). The robot is mounted
in a hanging position from the ceiling. A standard racket, with a 16 cm diameter, is attached to the
end-effector. The setup includes a standard sized table and a table tennis ball according to the ITTF
rules. The ball is served randomly by a ball launcher to the work space of the robot. As a result, the
ball passes the robot’s end of the table in an area of approximately 2 m×0.75 m. This area serves as the
virtual hitting plane. The target point on the opponent’s court is chosen randomly over the whole area.

Evaluation in a Simulated Environment

The table tennis system is capable of returning an incoming volley to the opponent’s court which is
served by a ping pong ball launcher at random times and to arbitrarily chosen positions in the workspace
of the robot. In simulation, when the ball was served 1,000 times to random positions in the work-space
of the robot, the system was able to return 95.5% of the balls. In 85% of the trials the ball was returned
successfully to the opponent’s court. In 4.5% of the trials the system refused to perform a hitting motion
due to joint and acceleration limits. The mean deviation from the target point of the opponent’s court
was approximately 13 cm. The mean deviation of the position of the racket’s mid-point to the ball at

24 2 A Biomimetic Approach to Robot Table Tennis



(a) Awaiting Stage (b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Figure 2.6: The figure shows the different stages, matching those in Figure 2.1, but performed by the
real robot. At the beginning the robot is in the rest posture waiting for an incoming ball
(Subfigure a). As a ball moves towards the robot, the arm performs a backswing motion to
prepare the striking movement (Subfigure b). Based on the prediction of the ball the system
chooses a hitting point. When the estimated time to contact reaches a critical value the arm
moves towards the hitting point and hits the ball back to the opponent (Subfigure c). The
robot arm moves upwards with decreasing velocity until the velocity is zero (Subfigure d).

2.4 Evaluations 25



Figure 2.7: Various target of the biomimetic table tennis setup. The plane of possible hitting points has
a length of 1.8 m.

the moment of contact was 3 cm. The estimated hitting point was corrected by 2.5 cm from the initial
estimate. The estimated hitting time changed by approximately 20 ms. When the system gets the true
position and velocity of the ball, the ball was returned to the opponent’s court in 96% of the trials.
The simulation of the Barrett WAM robot arm was created using the SL framework [Schaal, 2009]. To
build the table tennis environment, we used a model of the flight and bouncing behavior of the ball as
discussed in Section 2.3.2. The coefficients of restitution of both racket-ball and ball-table interactions
were determined experimentally (εR = 0.78, εT x = 0.73, εTz = 0.92). As the parameters for the air
drag, we estimated cw = 0.47, m= 0, 0027 kg, ρ = 1.293 kg/m3 and A= 0.0013 from real table tennis
trajectories.

Evaluation on the Real System

Subsequently, we successfully transferred the setup onto a real Barrett WAM robot equipped with two
partially overlapping stereo camera pairs. We used the same biomimetic player as in the simulated
setup. The extended Kalman filter, based on the ballistic flight of a point mass with estimated restitution
factors, tracks the ball well (for an extensive discussion see Section 2.4.2). However, the prediction
of the virtual hitting point and time is less accurate in the real world than in simulation due to the
neglected spin and the inaccuracies of the vision system. As ground truth data is not available, this can
only be assessed qualitatively. Furthermore, all balls served by the ball launcher possess a large amount
of topspin. Hence, these predictions needed to be updated more frequently and the trajectory generation
adapts accordingly. A ball launcher served 150 balls to the fore- and backhand area of the robot. 99 %
of these balls were returned by the system, approximately 62 % of those were returned successfully to
the desired target on the opponent’s court. See Figure 2.6 for snapshots of a stroke and Figure 2.5 for
trajectories of the racket and the ball of the real system. In the evaluations the robot covered a hitting
plane with a length of 1.8 m illustrated in Figure 2.7. A video showing the performance of the system
can be found at http://www.youtube.com/watch?=BcJ4S4L1n78.

2.4.2 Accuracy of the Ball Dynamics Model

We analyzed the accuracy of the ball’s dynamics model (see Section 2.3.2) on various ball trajectories.
To assess the model’s quality, we recorded ball paths from a competitive and a cooperative human table
tennis game. Furthermore, we recorded trajectories with extreme top-, side- and underspin to study the
robustness of the proposed biomimetic player in returning these balls.

In order to investigate how well the dynamics model corresponds to the real system, we computed the
deviation of the internal dynamics model from the trajectories captured by the vision system. Therefore,
we first estimated the velocity of the ball at the bouncing point using the EKF. The trajectory of the ball
was then precomputed for 200 ms using the dynamics model. The mean deviation of the ball position
200 ms after the bounce was estimated by computing the Root Mean Squared Error (RMSE) between

26 2 A Biomimetic Approach to Robot Table Tennis



Error in cm
x y z

Human game
(cooperative) 03.43± 2.05 03.59± 2.40 3.19± 1.79
Human game
(competitive) 04.03± 2.85 10.54± 3.51 2.58± 2.44
extreme Topspin 02.01± 1.57 38.58± 4.77 6.22± 3.06
extreme Sidespin 17.79± 1.46 04.63± 2.61 2.79± 1.44
extreme Underspin 01.17± 0.77 09.84± 3.53 4.90± 1.97

Table 2.2: Root Square Mean Error in centimeters of the deviation of the applied dynamics model of
the ball and the vision information of the ball 200 ms after the bounce. The velocity of the
model was set to the estimate of the EKF before bouncing. The y direction corresponds to the
side direction of the table, x direction corresponds to the long side of the table and z to the
height (see Figure 2.3).

both trajectories. In a cooperative game of two naive players (including the ball trajectories of 200
volleys) the average amount of deviation was 5.9 cm ± 2.6 cm. The deviation in each direction was
smaller than 3.6 cm ± 2.4 cm. In the competitive game the player used different kinds of spin as well
as smash strokes such that it was difficult for the opponent to return the ball. The mean deviation of
the used dynamics model from the vision information was 11.59 cm ± 6.8 cm. The main difference to
the cooperative game was the average amount of topspin and therefore the deviation in the y direction
which increased from 3.6 cm ± 2.4 to 10.54 cm ± 7.6 cm.

Unlike a human being, a ball launcher can create trajectories with only top-, side- or underspin.
Hence, we analyzed the biomimetic player using trajectories produced by a ball launcher with regard to
sensitivity to the different types of spin. Despite that the mean deviation of the topspin trajectory was
39.16 cm ± 4.5 cm (with a deviation of 38.58 cm ± 4.8 cm in y direction), the biomimetic player was
still able to adapt to these changes and returned 61% of the balls successfully to the opponent’s court.
The underspin trajectories had a mean deviation of 11.05 cm ± 3 cm. Here, the biomimetic player was
able to return 85% of the served balls successfully to the opponent’s court. However, its performance
decreased when facing sidespin as the biomimetic player was not able to adapt to these trajectories. The
mean deviation from the observed trajectories was 18.6 cm ± 1.1 cm. Most prediction error was due to
the differences in the x direction, that is, the direction along the net. Table 2.2 shows the deviations
of the different recordings from the vision information 200 ms after the bounce for all three Cartesian
directions. Note that the spin produced by the ball launcher was much higher than the spin that we
found in games of naive human players.

2.4.3 Comparison to Human Behavior and Performance

The robot is able to return balls over the whole width of the table. However, compared to a human
player, the robot lacks the acceleration abilities. Therefore, the human can adapt to unexpected ball
trajectories after the ball bounces of the table much better than the robot. While the human can perform
the hitting motion in 80 ms the robot needs 350 ms due to lower accelerations. Furthermore, the human
is able to switch from for- to backhand while observing the ball moving towards him. The Barrett WAM
may needs up to 500 ms for this action to avoid violating its acceleration and torque limits. The robot
is not just limited by its acceleration abilities but also by the missing degrees of freedom; as it has no
floating base, it cannot move sideways as well as back and forwards. Thus, to compare the performance
of our biomimetic player to a human, we have to compare it to a human that is standing at a fixed

2.4 Evaluations 27



location. When the ball was served to the small forehand area of a stationary human, the performance
of returning a ball successfully to an certain area of the table decreased to 50%. Without a given target
on the table, the human was able to return 97 % of the balls successfully to the opponent’s court.

We also compared the hitting movements of the robot qualitatively to the strikes of a naive human
player. Similar to humans, the robot hits the ball in a circular hitting movement in an upward motion.
The impact point of the racket and the ball is on an axis parallel to the table going through the base of
the human and robot respectively.

2.5 Discussion and Conclusion of Chapter 2

In this section, we discuss the inclusion of strategy, optimization possibilities for the movement genera-
tion and spin estimation. Finally, we summarize the contributions of this chapter.

Including a Strategy
The presented evaluation is based on a strategy where the player does not attempt to beat the

opponent. Thus, the player does not consider the game history and chooses the target on the opponent’s
court randomly. This randomized policy enables the player to return the ball successfully. However, this
policy would not suffice to win against an intermediate player. Therefore, we have to choose the goal
parameters according to the position and actions of the opponent. To realize this aim, a model of the
opponent’s strategy is necessary. From the observed game play, the robot player may be able to learn
opponent’s preferences and how to prepare for the opponent’s return. See Chapter 4 for an detailed
description of strategies in table tennis.

Optimizing the Movement Generation
Since the robot is limited in its accelerations abilities, switching between fore- and backhand while

playing on the real system is often not possible. Predicting the expected hitting area based on the
movements of the opponent would give the real system additional time to adjust its motion generation
and to switch from fore- to backhand. Here, Wang et al. [2013] was able to show in a prototype setup
that it is possible to infer whether to play a fore- or a backhand before the ball was hit by the opponent.

Estimating Spin
As discussed in the analysis of accuracy of the ball dynamics model, the inclusion of a spin estimate

(especially sidespin) could improve the performance of the robot. However, spin cannot be determined
from the few pixels in which the ball is observed by the camera. Even worse, the number of frames is
insufficient to estimate spin based on the ball’s trajectory. Hence, using only vision information of the
ball would not allow us to receive a good model of the present spin. Opponent modeling could enable
the system to observe the opponent’s arm and racket movements and to use this data to predict the
expected spin.

Conclusion
In this chapter, we have presented a novel table tennis setup which is based on biological assumptions

on human movement generation. Our setup, with an anthropomorphic seven DoF robot arm and a
human-inhabited environment, is significantly more challenging than the tailored ones of previous robot
table tennis players. The movement structure and initiation is based on a hypothesis of the movement
structure of expert table tennis players by Ramanantsoa and Durey [1994]. The resulting biomimetic
player structures the table tennis stroke into four stages and uses a virtual hitting point and pre-shaping
of the orientation to parametrize the goal. The redundancy of the arm is solved by minimizing the
distance to a defined comfortable hitting posture. This concept has proven to be successful in operation
and to produce human-like hitting motions. We demonstrated that the biomimetic player can be used as

28 2 A Biomimetic Approach to Robot Table Tennis



an explicit policy for returning incoming table tennis balls to a desired point on the opponent’s court
in a physically realistic simulation as well as on the real Barrett WAM robot. A video can be found at
http://www.youtube.com/watch?v=BcJ4S4L1n78.

2.5 Discussion and Conclusion of Chapter 2 29





3 Learning to Select and Generalize Striking Movements for Robot Table Tennis

The analytical model of robot table tennis presented in Chapter 2 has proven to produce successful
hitting movements that are able to return balls to the opponent’s court. However, such an approach
also leads to rigid movement plans that require a programer to implement this highly specific approach.
Future autonomous robots need to be able to execute more than one specific task and, they need to
be able to learn such complex motor tasks and to adapt them to new situations. In this chapter, we
demonstrate how a complex motor task, such as table tennis, can be learned and how the elementary
movements involved can be chosen. Therefore, we create a library of elementary hitting movements
demonstrated by kinesthetic teach-in. We employ Dynamic system Motor Primitives (DMPs, [Ijspeert
et al., 2002]) and present a refinement of the modification of the DMPs for hitting movements presented
by Kober et al. [2010]. In order to enable the robot to associate the right motor primitives with different
situations and to adapt those to a wider range of situations, we propose the mixture of motor primitives
algorithm. We test the approach in a physically realistic simulation as well as on a real Barrett WAM
arm. The following chapter is based on work, which was originally published in the Journal of Robotics
Research [Muelling et al., 2013].

3.1 Prologue

Humans perform complex motor tasks in uncertain and changing environments with little apparent
effort. They are able to generalize and, as a consequence, to adapt to new tasks based on their
motor abilities. In contrast, current robots rely strongly on well-modeled environments with accurately
estimated parameters. Therefore, changes in the environment or task require an expert to program
new rules of motor behaviors. To alleviate this problem, robots need to autonomously learn new motor
skills and improve their abilities. While this problem has been recognized by the robotics community
[Schaal et al., 2002], it is far from being solved. Instead, learning new motor tasks autonomously and
adapting motor skills online while interacting with the environment has become an important goal in
robotics as well as machine learning. In recent years, it has become well accepted that for coping with
the complexity involved in motor skill learning for robots, we need to rely on the insight that humans
decompose motor tasks into smaller subtasks. These subtasks can be solved using a small number
of generalizable movement pattern generators, also called movement primitives [Giszter et al., 2000,
Billard et al., 2008, Flash and Hogan, 1985]. Movement primitives are sequences of motor commands
executed in order to accomplish a given motor task. Efficient learning of movement primitives is crucial
as the state space can be high dimensional and the number of scenarios that may need to be explored
grows exponentially with the number of dimensions and time-steps [Schaal, 1999]. Here, learning
from demonstrations can provide a good starting point for motor skill learning as it allows the efficient
acquisition of single movement primitives [Guenter et al., 2007, Peters and Schaal, 2008a, Kober et al.,
2008, Peters and Schaal, 2008b, Bitzer et al., 2010]. Most approaches for robot imitation learning
are either based on physical demonstrations of a motion sequence to the robot by kinesthetic teach-in
[Guenter et al., 2007, Peters and Schaal, 2008a,b, Bitzer et al., 2010] or through the use of a motion
capture system such as a VICON setup [Kober et al., 2008]. We refer to [Schaal et al., 2003a, Billard
et al., 2008, Argall et al., 2009] for a review of imitation learning methods.

To represent movement primitives such that they can adapt trajectories obtained by imitation learning
to the requirements of the current task, several methods have been suggested. Several approaches
make use of via-point based formulations using splines to interpolate between the via-points [Miyamoto
et al., 1996], Hidden Markov Models (HMMs,[Williams et al., 2008]) or Gaussian Mixture Models
(GMMs, [Calinon et al., 2007]). While these approaches are favorable in many situations, spline-based

31



via-point models are difficult to use in new situations while HMMs und GMMs are difficult to train for
high-dimensional systems. Hence, an alternative approach based on dynamical systems was suggested
by Ijspeert et al. [2002] and called DMPs (Dynamical system Motor Primitives). DMPs are robust against
perturbations, allow changing the final state, speed, and duration of the motion without altering the
overall shape of the movement. Furthermore, they are straightforward to learn by imitation learning
[Ijspeert et al., 2002] and well suited for reward driven self-improvement [Kober and Peters, 2009].
DMPs have been successfully used to learn a variety of motor skills in robotics, including planar biped
walking [Schaal et al., 2003b, Nakanishi et al., 2004], tennis-like swings to a static end-point [Ijspeert
et al., 2002], T-ball batting [Peters and Schaal, 2006], constrained reaching tasks [Guenter et al.,
2007], and Ball-in-a-cup [Kober et al., 2008]. However, up to now, most applications of learning and
self-improving Ijspeert’s DMPs use only individual movement primitives to represent the whole motor
skill. An exception is the work of Ude et al. [2010], in which the internal parameters of the DMPs
are recomputed from a library of movement primitives in each trial using locally weighted regression.
However, complex motor tasks require several movement primitives which are used in response to an
environmental stimulus and the usage needs to be adapted according to the performance.

In this chapter of the thesis, we attempt to create such a framework based on the idea that complex
motor tasks can frequently be solved using a relatively small number of movement primitives [Flash
and Hogan, 1985] and do not require a complex monolithic approach. The goal of this part of the thesis
is to acquire a library of movement primitives from demonstration (to which we will refer as movement
library), to improve the performance of the stored movements with respect to the current situation as
well as to select and generalize among these movement primitives to adapt to new situations. Each
movement primitive stored in the library is associated with a set of parameters to which we refer as
the augmented state that describes the situation present during demonstration. The primitives in the
movement library are used as components in our Mixture of Motor Primitives (MoMP) algorithm. The
MoMP algorithm activates components (i.e., single movement primitives) using a gating network based
on the augmented state and generates a new movement using the activated components. Our approach
is validated using robot table tennis as a benchmark task. In table tennis, the robot has to interact in
real-time with a human partner. Thus, it has to adapt to the humans variable behavior. As already
pointed out in Chapter 1 and 2, a typical movement in table tennis consists of the preparation of the
stroke by moving backwards, hitting the ball at a desired position, with the right orientation and velocity
and moving the arm back to a rest posture. The hitting movement itself may vary depending on the
point of impact relative to the base of the robot, the time available until impact or the kind of stroke
that should be performed. Furthermore, small inaccuracies in timing can lead to large deviations in
the final bouncing point of the returned ball that can result in unsuccessful attempts to return the ball
to the opponent’s court. The goal of this chapter is to learn autonomously from and with a human to
return a table tennis ball to the opponent’s court and to adapt its movements accordingly. Therefore,
the robot first learns a set of striking movements from a human teacher from physical human robot
guiding, known as kinesthetic teach-in. Thus, the system recorded the demonstrated movement of the
arm and the position of the ball. From this stream of data, the movement primitives were extracted.
Secondly, the learning system needs to identify the augmented state that includes where, when and
how the ball should be hit. Subsequently, the system generalizes these movements to a wider range
of situations using the proposed MoMP algorithm. Here, generalizing refers to the ability to generate
striking movements for an arbitrary incoming ball that was not seen during the demonstrations. The
resulting system is able to return balls served by a ball launcher as well as to play in a match against a
human.

In the remainder of the chapter, we will proceed as follows. In Section 3.2, we present our general
framework for learning complex motor skills. We show (i) how to initialize the library using imitation
learning, (ii) how to derive the augmented state from the state of the system and (iii) how to adapt
the setup to new situations using the MoMP algorithm. We evaluate the MoMP approach in a robot

32 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



Supervisory
Policy

DMP CDMP 3DMP 2DMP 1
Movement Library

MoMP Execution

Teacher

Learning
Signal

State    Actionus

Figure 3.1: General setup for learning a motor task using the Mixture of Motor Primitives (MoMP). A
supervisory level creates the augmented state s̃ containing the relevant information of the
task based on the state of the system. MoMP selects and generalizes among the movement
templates in a library according to the augmented state s̃ which is provided by the supervisory
level. As a result we obtain a new motor policy that can be executed. A teacher provides
learning signals to the supervisory level as well as the movement generation level such that
the system is able to adapt both the generation of the task relevant information and the
generation of the movement.

table tennis scenario in Section 3.3. Here, we will use all components of the presented motor skill
learning framework to achieve this task. In Section 3.4, we present our results and summarize
our approach. A glossary with the definition for the technical terms used in this chapter can be
found in the Section Abbreviations and Glossary. A review of robot table tennis is presented in
Chapter 2. The overall performance of our approach is illustrated in a video that can be found at
http://www.youtube.com/watch?v=SH3bADiB7uQ.

3.2 Learning and Generalizing Motor Behaviors

In a complex motor task such as table tennis, we need to coordinate different movements which highly
depend on a changing context. Unlike in many classical examples [Peters and Schaal, 2008b, Pongas
et al., 2005, Nakanishi et al., 2004], single movement primitives which were demonstrated to work
well in a certain situation do not necessarily perform equally well in other situations that might occur
throughout the task. In table tennis, the movement profile depends strongly on where, when and
how the ball has to be hit, as well as the velocity of the incoming ball and the desired target on the
opponent’s court. As it is not feasible to demonstrate all possibly required movements to the robot,
the system needs to generalize from a small number of movement primitives. Hence, we propose an
algorithm called Mixture of Motor Primitives (MoMP) which generates a generalized movement for a
given augmented state that can be executed by a robot. Therefore, a set of movement primitives and
their corresponding augmented states are extracted from a set of demonstrations and stored in a library.

To generate a movement for a new augmented state s̃ (that was not presented during demonstration),
the system selects movement primitives from the library. Therefore, a parametrized gating network
is used in the MoMP algorithm to activate movement primitives based on the presented augmented
state. In some cases, the augmented state might be directly available as part of the state of the system.
However, in table tennis, additionally parameters δ need to be estimated from the state by a supervisory
system. The state of the system s consists of all variables necessary to model the system, e.g., in our
table tennis task, the position and velocity of the ball moving towards the robot and the current joint
configuration of the robot itself. The additional parameters δ of the augmented state s̃ are given by the
point of impact, the velocity and orientation of the racket at the hitting point, and the time until hitting
the ball.

The supervisory system which generates the augmented state, as well as the gating network of the
MoMP algorithm that selects and mixes the movement primitives according to the augmented state
need to be adapted to improve the performance of the system. Figure 3.1 illustrates the general setup

3.2 Learning and Generalizing Motor Behaviors 33



Figure 3.2: The learning process in the presented MoMP framework. Given a set of demonstrations
recorded by kinesthetic teach-in, the system generates the movement library, initializes the
gating network as well as the estimation of the augmented states used in the MoMP. The
resulting initial system can be used to perform a given motor task. During the execution, the
gating network, the augmented states estimation and the primitives are further improved
using reinforcement learning.

for executing a motor task based on the current state of the system and the relation between the state,
the augmented state and the movement generation. The learning structures involved in the MoMP
algorithm are shown in Figure 3.2.

In the remainder of this section, we will first present the MoMP framework (Section 3.2.1). Subse-
quently, we explain how to compute the augmented state (Section 3.2.2). Finally, we show how to use
and initialize DMPs as elementary motor policies in the MoMP framework (Section 3.2.3).

3.2.1 Learning a Motor Task using the Mixture of Motor Primitives

A movement performed by an artificial or biological system can be formalized as a policy

u= π(s̃,w)

that maps the state of the system, described by vector s̃ = [s,δ], to a control vector u. The vector w
contains task-specific adjustable parameters. In the following, we will refer to such a policy as motor
policy π(s̃). The state of the system s̃ corresponds here to the augmented state.

We generate the motor policy π(s̃) based on a library consisting of L movement primitives. Each
movement primitive i ∈ {1, ..., L} in the library is stored in a motor policy πi. Additionally, for each motor
policy πi, the augmented state s̃i associated with this movement primitive is stored. The movement
library can be initialized using movements demonstrated in different situations of the task (more details
on the acquisition of single primitives will follow in Section 3.2.3).

The MoMP generates a new movement for the current situation, represented by the augmented state
s̃ by computing the weighted average of all movement primitives πi (see Figure 3.3). The resulting
motor policy generated by MoMP is given by

π(s̃) =

∑L
i=1 γi(δ)πi(s̃)
∑L

j=1 γ j(δ)
, (3.1)

where the function γi(δ) generates the weight of πi(s̃) given the augmented state s̃= [s,δ]. All weights
γi together form the gating network of the MoMP similar to a gating network in a mixture of experts
[Jacobs et al., 1991].

34 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



Figure 3.3: An illustration of the mixture of motor primitive framework. The gating network weights
the single movement templates stored in a movement library based on an augmented state.
The weighted sum of these primitives defines the new motor policy which produces the joint
positions, velocities and accelerations for one degree of freedom. The resulting movement is
then executed using a control law for execution which generates the required motor torques.

The weights of the gating network ensure that only movement primitives that are well-suited for the
current situation contribute to the resulting behavior. It appears reasonable to assume that movement
primitives associated with augmented states similar to the currently observed one are more likely to
produce successful movements than movement primitives whose augmented states differ significantly
from the observation. However, any large set of demonstrations will include rather poor attempts and,
thus, some demonstrations are more suitable for generalization than others. Therefore, the gating
network has to weight the movement primitives based on their expected performance within the current
context. Such weights can be modeled by an exponential family distribution

γi(s̃) = ξexp{λT
i φi(s̃)}, (3.2)

where φi(s̃) denotes the feature vector of s̃, λi is a vector containing internal parameters, and ξ is a
normalization constant. The weight γi corresponds to the probability that the motor policy πi is the
right policy in the context described by s̃, i.e., γi(s̃) = p(πi|s̃). In an ideal world, there would be just one
motor policy in the library that is perfectly suited for the current context. However, in practice, usually
several motor policies correspond to this context imperfectly. Therefore, the MoMP needs to generalize
among these motor policies, i.e., it mixes these movement primitives according to their weights γi in
order to yield a motor policy that can be used in a broader context.

The choice of φi(s̃) depends on the task. In our experiments however, a Gaussian basis function
where the center is given by the augmented state s̃i proved to be a good choice. The parameters λi
of the probability distribution γi(s̃) are unknown and have to be determined. If good features φ(s̃)
are known, linear regression methods are well suited to learn the parameters λi given examples of γi
and the corresponding φ(s̃). Hence, we use linear Bayesian regression [Bishop, 2006] to update the
mean and variance of the parameters of the distribution online for each motor policy in the library (see
Appendix C for a short review of linear Bayesian regression). The parameters are updated during the
execution of the task based on the performance of the system. The performance can be measured by the
reward r which is provided by a teacher to the system and corresponds in table tennis to the distance of
the returned ball to the desired goal on the opponent’s court. As a result, the system is able to adapt the
choice of the used motor policies.

Altogether, the mixture of motor primitives selects and generalizes between movement primitives
in the library based on the current augmented state s̃. The resulting motor policy π(s̃) is composed
of sev eral primitives weighted by their suitability in the given context of the task. The weights are
determined by a gating network and adapted to the task based on the outcome of previous trials.

3.2 Learning and Generalizing Motor Behaviors 35



Algorithm 2 Generalizing Movements
Initialize:

Initiate movement library from demonstrations
Determine initial states S0, costs C0 and meta-parameters D0 from demonstrations
Choose a kernel k, k, K and scaling parameter ϕ
Choose basis function φ(s̃), reward function r

For each trial
Determine current state sN+1

Choose δN+1 ∼N (δ|δ(s),Σ(s)) with CrKR, where
δ(s) = k(s)T (K+ϕC)−1D
Σ(s) = k(s, s) +ϕ− k(s)T (K+ϕC)−1k(s)

Set s̃N+1 = [sN+1,δN+1]
Calculate motor policy with MoMP

π(s̃) =
∑L

i=1 γi(δ)πi(s̃)
∑L

j=1 γ j(δ)

Execute motor policy π(s̃)
Determine reward r for executing π(s̃)
Update S, D and C according to s, δ and r
For all πi in library update λi with LBR

ci = γi/
∑L

j γ j

VN+1
i =

�

�

VN
i

�−1
+ βφ(s̃N+1)T ciφ(s̃

N+1)
�−1

λN+1
i = VN+1

i

�

�

VN
i

�−1
λN

i + βφ(s̃
N+1)T ci r

�

end

3.2.2 Computation of the Augmented State

Some parameters required for the task are not part of the state and need to be computed. In table
tennis, these parameters include the temporal and spacial interception point of the ball and the racket,
as well as the velocity and orientation of the racket while hitting the ball. When planning in joint space,
this corresponds to finding the position and velocity at the interception point for each joint. These
parameters are an essential part of the generation of a desired movement with the motor policy π(s̃) as
they define the final state and duration of the movement. We refer to these additional parameters as the
meta-parameter δ. The augmented state s̃ is given by s̃= [s,δ].

One possibility of computing the meta-parameters is to predict the trajectory of the ball using an
extended Kalman predictor starting with the current state of the system. Subsequently, we can determine
a well suited hitting point on the trajectory and compute the desired velocity and orientation of the
racket given a target on the opponent’s court. Using inverse kinematics is one way to compute the
corresponding joint configuration (see Chapter 2 for a detailed description).

An alternative possibility is to use an episodic reinforcement learning approach to acquire the mapping
from s to the meta-parameter δ directly. Here, Cost-regularized Kernel Regression (CrKR), see [Kober
et al., 2012b], has also proven to be suitable for learning meta-parameters for motor policies as used
in in robot table tennis. CrKR uses a stochastic policy from which it draws the meta-parameters. The
initial policy is obtained by training the algorithm with the demonstrations. The cost is used to weight
the training data points down based on the reward r. See Appendix B for a short description of the
CrKR algorithm.

36 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



In Algorithm 2, we show the complete approach of computing the meta-parameters δ using CrKR, the
generation of a generalized motor policy using the MoMP, and the corresponding update according to
the system’s performance.

3.2.3 Representation of Behavior with Movement Primitives

To represent a single motor policy πi used in the MoMP, we employ motor primitives represented by
dynamical systems (DMPs). DMPs, as suggested in [Ijspeert et al., 2002, Schaal et al., 2007], are a
particular kind of dynamical systems that is well-suited for imitation and reinforcement learning. It
can be understood as a set of two differential equations that are referred to as the canonical and the
transformed system. The canonical system h determines the phase z of the movement generated by

ż = h(z). (3.3)

Intuitively, one could state that the canonical systems drives the transformed system similar to a clock.
The transformed system

u= π(s̃) = d(y, g f , z,w), (3.4)

generates the desired movement for a single degree of freedom (DoF). It is a function of the current
position y of the system, the final goal position g f , the phase variable z and the internal parameter
vector w. The movement can be specified in joint or task space. The desired movement is specified by a
dynamical system for each DoF, linked together by one shared canonical system.

DMPs allow us to represent arbitrarily shaped smooth movements by the parameter vector w, which
can be learned from demonstration by locally weighted regression (see Section 3.2.3). Furthermore, it is
straightforward to adapt the DMPs with respect to the final position, movement amplitude and duration
of the movement without changing the overall shape. In contrast to non-autonomous movement
representations such as splines, DMPs are robust against perturbations in the environment, because
time is not used explicitly. Furthermore, the DMP representation allows us to mimic a presented
movement shape and, to represent arbitrary movements instead of only one special kind of movement.
As a consequence, we can adapt the movement during execution to new movement goals and time
constraints without re-planing the whole movement. However, the original formulation cannot be
used for striking movements in a straightforward manner as the formulation does not account for
non-zero end-velocities or via-points without changing the shape of the movement. Thus, the use
of movement primitives for the whole striking movement with zero end-velocity is not suitable. The
generated movements from such an approach will fail to return the ball successfully, since the trajectory
is not guaranteed to cross the hitting point with the desired end-effector velocity at the right point in
time. As a result, the success-rate of returning a ball to the opponent’s court would decrease drastically.
Hence, we need movement primitives that allow for different movement stages where the stages are
switched based on features of the state. To achieve this goal, we introduce a type of two-stage movement
primitive suited for hitting movements and use the feature of ball-racket contact to allow the system to
switch the stage. Using the ball-based features, it becomes straightforward to compute the hitting point
and therefore, the point were we have to switch between the two movement stages. While Kober et al.
[2010] augmented Ijspeert’s approach to make it possible to strike moving objects with an arbitrary
velocity at the hitting point, we will show in the following the shortcomings of their approach and
present an improved alternative form.

Movement Primitives for Striking Motions

For discrete movements (i.e., movements between fixed start and end positions such as reaching,
pointing, grasping and striking movements) the canonical system is defined as

τż =−αzz, (3.5)

3.2 Learning and Generalizing Motor Behaviors 37



0 0.1 0.2 0.3
1.75

1.8

1.85

1.9

1.95

2

(a) Position

Time in sec

Jo
in

t 
p
o
si

ti
o
n
 in

 r
ad

0 0.1 0.2 0.3

−0.5

0

0.5

1

1.5

2

Time in sec
Jo

in
t 
ve

lo
ci

ty
 in

 r
ad

/s

(b) Velocity

0 0.1 0.2 0.3

−20

0

20

40

60

80

100

120

Time in sec

Jo
in

t 
ac

ce
le

ra
ti
o
n
 in

 r
ad

/s
2

(c) Acceleration

Demonstration Ijspeerts original Kober et al. original Modified hitting primitives New goal position/velocity

Figure 3.4: Changing the goal position and velocity is essential for adapting the demonstration to
new situations. This figure illustrates how the different versions of the dynamical system
based movement primitives are modulated by changing the goal position and velocity of
the movement as they frequently occur in striking sports. The demonstration of a striking
movement was obtained by kinesthetic teach-in in table tennis. After learning, all movement
primitive formulations presented were able to reproduce the demonstration to a certain
extend. However, the three formulations are differently robust against changes in the desired
goal position and velocity. We changed the position by 0.15 m and the velocity by 0.4 m/s.
The original formulation of Ijspeert is not able to reach the desired velocity as the system
ends with zero velocity. The formulation of Kober et al. [2010] is able to adapt to a new
final velocity. However, the accuracy of the adapted movement does not suffice for practical
problems. The reformulation presented here reduces this inaccuracy drastically and stays
closer to the desired movement shape.

where τ is a temporal scaling factor and αz is a pre-defined constant which is chosen such that the
behavior is stable [Ijspeert et al., 2002, Schaal et al., 2007]. Initially z is set to 1 and converges to zero
at the end of the movement. Please note that as long as the time parameter of the movement does not
change, we can integrate with respect to the time directly and use the solution z(t) = exp(−αz/τt)
instead. However, implementing a change of the hitting time, slowing down or speeding up is not
straight forward anymore. Therefore, when such parameter changes are essential (as in our setup), the
phase should be computed as described in Equation 3.5.

For hitting movements, Kober et al. [2010] proposed the transformed system

τv̇ = (1− z)αy

�

βy(g − y) + ġ f τ− v
�

+η f (z),

τ ẏ = v , g = g0− ġτ
ln(z)
αz

,
(3.6)

where y and v are the desired position and velocity generated by the policy, η = (g f − y0) defines
the amplitude of the movement, y0 is the start position, g f is the desired final position, ġ f the desired
final velocity of the system, g is the current goal position defined by a moving target, g0= g f −τ ġ f
is the initial position of the moving target and τln(z)/αz corresponds to the time. At the end of the
movement, g is equal to the desired final goal g f . For each new movement g and ġ are computed based

38 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



0 0.5 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
(a) Position

Time in sec

Jo
in

t 
p
o
si

ti
o
n
 in

 r
ad

0 0.5 1

−1

0

1

2

3

Time in sec

Jo
in

t 
ve

lo
ci

ty
 in

 r
ad

/s

(b) Velocity

0 0.5 1

0

50

100

150

Time in sec

Jo
in

t 
ac

ce
le

ra
ti
o
n
 in

 r
ad

/s
2

(c) Acceleration

Demonstration Ijspeerts original Kober et al. original Modified hitting primitives New goal position/velocity

Figure 3.5: A key problem of the previous movement primitive formulation is the highly uneven dis-
tributed accelerations with a peak at the beginning of the movement. Such jumps can affect
the position and velocity drastically as shown in this figure. They may result in the attempt to
generate infeasible trajectories for real robots. Kober et al. reduced this effect by gradually
activating the attractor dynamics. However, if the initial movement amplitude is close to zero
in a demonstration jumps will occur when the goal position is changed. By introducing a new
scaling term for f , we can avoid jumps at the beginning of the movement and reduce over-
shooting in the position and velocity profile. The demonstration was obtained by kinesthetic
teach-in of a striking movement. Both position and velocity were then changed to a new
goal. Note, that the acceleration of the modified hitting primitives is so much smaller that it
appears to be zero when compared to Kober’s and Ijspeert’s original versions.

on the new desired goal position g f and the desired final velocity ġ f . The pre-defined spring-damper
constants αy and βy are chosen such that the system is critically damped. The transformation function

f =

∑N
j=1 w jψ j(z)z
∑N

j=1ψ j(z)
, (3.7)

employs Gaussian basis functions ψ j(z) = exp(−ρ j(z − µ j)2) characterized by a center µ j and a
bandwidth ρ j. N is the number of adjustable parameters w j. The transformation function f alters the
output of the spring damper model and thereby allows the generation of arbitrarily shaped movements.
As z converges to zero at the end of the movement, the influence of the non-linear function f will vanish.
The augmented form of the DMP enables us to pull the DoF simultaneously to a desired goal position
and an arbitrary end velocity without changing the overall shape of the movement or its duration. If
ġ is set to zero, the formulation corresponds to the original formulation of Ijspeert except for the first
term (1− z) which prevents large jumps in the acceleration at the beginning of the movement. A proof
of the stability of the system can be found in Appendix D.

Modified Hitting Primitives

The formulation of Kober et al. [2010] with a linear velocity allows to directly incorporate the desired
velocity such that the desired final velocity can be adapted (in addition to the desired initial and final
position in Ijspeert’s formulation). However, this formulation has two drawbacks. First, fast movement
changes of the final position and velocity can lead to inaccuracies in the final velocity (see Figure 3.4).

3.2 Learning and Generalizing Motor Behaviors 39



Algorithm 3 Mixture of Motor Primitives (MoMP)
Input: augmented state s̃
for t = 1 to T do

for i = 1 to L do
Compute the phase variable z

ż =−αzz
and the transformed system

g =
∑5

j=0 b j

�

−τ ln(z)
αz

� j

ġ =
∑5

j=1 j b j

�

−τ ln(z)
αz

� j−1

g̈ =
∑5

j=2 ( j
2− j)b j

�

−τ ln(z)
αz

� j−2

η=
(1+g f −y0)2

(1+a)2

τv̇ = αy

�

βy(g − y) + ġτ− v
�

+ g̈τ2+η f (z)
τ ẏ = v̇

end for
Mixture of motor primitives output

π(s̃) =
∑L

i=1 γi(s̃)πi(s̃)
∑L

i=1 γi(s̃)
end for

In table tennis, such errors at the hitting point can cause the returned ball to miss the opponent’s court.
Second, if (g f − y0) is close to zero, the scaling of f with η= (g f − y0) can cause huge accelerations
when g f is changed (see Figure 3.5). Using a polynomial target velocity, we modified the transformed
system to

τv̇ = αy

�

βy(g − y) + ġτ− v
�

+ g̈τ2+η f (z),

τ ẏ = v , η=
(1+ g f − y0)2

(1+ a)2
,

g =
5
∑

i=0

bi

�

−τ
ln(z)
αz

�i

, ġ =
5
∑

i=1

i bi

�

−τ
ln(z)
αz

�i−1

,

g̈ =
5
∑

i=2

(i2− i)bi

�

−τ
ln(z)
αz

�i−2

,

(3.8)

where g, ġ and g̈ are the current position, velocity and acceleration defined by the moving target
and a is a reference amplitude. If the internal parameters w are estimated by imitation learning as in
the experiments performed in this chapter, a will correspond to the amplitude of the demonstrated
movement. The parameters b j are computed by applying the bounding conditions, i.e., the condition
that the fifth order polynomial starts with the initial position, velocity and acceleration and ends at the
desired goal g f with the desired velocity ġ f and zero acceleration. Thus, using a fifth order polynomial
allows us to control the initial and final position, velocity and acceleration more accurately. The new
scaling term η= (1+ g f − y0)2/(1+ a)2 ensures that f does not cause infeasible acceleration. To avoid
infeasible acceleration profiles the velocity and acceleration is set constant outside the interval [0, T f ].
The term (1− z) is not necessary anymore, as jumps in the acceleration are avoided by incorporating
the polynomial position profile starting at y0. Note that Ning et al. [2011] also used splines in a DMP
setting. However, while Ning et al. [2011] always try to follow the reference trajectory and adapt only
the beginning and ending of the trajectory, we attempt to adapt the whole trajectory. A proof of the

40 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



Algorithm 4 Imitation Learning of one DMP for MoMP

Input: Γi = [θt , θ̇t , θ̈t], t ∈ {1, ..., T f }
For all DoF i and each parameter wn do

Set constant parameters αz, αy , βy , pn and µn

Set g f = θτ and ġ f = θ̇T f

Calculate g, ġ and g̈
Calculate zt by integrating τż = αzz for all t
Calculate ψn

t = exp(−ρn(zt −µn)2)
Calculate reference value f ref from demonstration

f ref
t = τ

2θ̈t −αy(βy(g − θt) + ġ −τθ̇t)− g̈τ2

Create matrices z= [z1, ..., zT f
]T , Ψ= diag(ψn

1, ...,ψn
T f
) and fref = [ f ref

1 , ..., f ref
T f
]T

Compute weights via locally weighted regression
wn = (zTΨz)−1zTΨfref

end

stability of the system can be found in Appendix D. The complete algorithm for generalizing DMPs using
MoMP is given in Algorithm 3.

Initialization of the Behaviors

A library of movement primitives can be built using demonstrated motor behaviors. Imitation learning
for DMPs, as suggested in [Ijspeert et al., 2002, Schaal et al., 2003b], enables us to learn initial
DMPs from observed trajectories and to reproduce these movements. The observed trajectories are
captured using kinesthetic teach-in. To learn the DMP from a demonstration, we assume that the policy
that produced the observed trajectory can be represented by a DMP as described in Equation (3.8).
Consequently, the problem reduces to inferring the set of internal parameters w such that the error
between the reproduced and demonstrated behavior is minimized. Therefore, the problem can be solved
straightforwardly by a regression algorithm.

In the following, we will assume that each DoF is independent and that we can learn each primitive
separately. Redundant primitives can be eliminated [Chiappa et al., 2008]. For a recorded trajectory
Γ = [θt , θ̇t , θ̈t] over a time interval t ∈ {1, ..., T f }, we can compute the reference signal of a striking
movement based on Equation (3.8) by

f ref
t = τ

2θ̈t −αy(βy(g − θt) +τ ġ −τθ̇t)− g̈τ2. (3.9)

The appropriate cost function to be minimized for each parameter wn is the weighted squared error

e2
n =

T f
∑

t=1

ψn
t ( f

ref
t − zt wn)

2, (3.10)

where ψn
t = exp(−ρn(zt − µn)2) while zt can be determined by integrating Equation (3.5). We can

rewrite this error in matrix form by

e2
n = (fref− zwn)

TΨn(f
ref− zwn), (3.11)

where fref is the vector consisting of f ref
t for each time step t, Ψn = diag{ψn

1, ...,ψn
Tf
} and z= [z1, ..., zT f

]T .
The resulting regression problem can be solved straightforwardly using locally weighted regression as
originally suggested in [Ijspeert et al., 2002, Schaal et al., 2003b]. Thus, the optimal wn are given by

wn = (z
TΨnz)−1zTΨnfref. (3.12)

The detailed method for learning movement primitives with imitation learning for all DoFs is shown in
Algorithm 4.

3.2 Learning and Generalizing Motor Behaviors 41



3.3 Evaluation

In Section 3.2, we have described a framework for selecting and generalizing movements based on
augmented states as well as for computing the meta-parameters which are part of the augmented states
from the state information of the environment. Here, we will show that we can use these methods to
learn robot table tennis from and with a human being. Therefore, we will first give a short overview of
the table tennis task and then evaluate the methods in simulation as well as on a real robot.

3.3.1 Robot Table Tennis Setup

For the robot table tennis task, we developed a system that includes a Barrett WAM arm with seven
DoFs capable of high speed motion for hitting the ball and a vision system with four Prosilica Gigabit
GE640C cameras for tracking the ball [Lampert and Peters, 2012]. The robot is mounted in a hanging
position from the ceiling. A standard racket, with a 16 cm diameter, is attached to the end-effector. The
setup incorporates a standard sized table tennis table and a table tennis ball in accordance with the
International Table Tennis Federation (ITTF) rules [International Table Tennis Federation, 2011]. The
ball is served either by a ball launcher to the forehand of the robot with a randomly chosen velocity
or served by a human. The area covered is approximately 1 m2. The ball is visually tracked with a
sampling rate of 60 Hz and the vision information is filtered using an extended Kalman filter (EKF).
For the internal model of the EKF, we assume a simplified model of the flight and bouncing behavior
of the ball, i.e., we consider gravity and air drag, but neglect the spin acting on the ball due to its
limited observability. The world frame is fixed at the base of the robot, with the negative y-axis pointing
towards the opponent and the z-axis pointing upwards.

If the visual system detects a table tennis ball that moves towards the robot, the system needs to
compute the relevant movement information, i.e., where, when and how the ball has to be hit (see
Section 3.3.2). The target location on the opponent’s court was fixed to the center of the court to make
the results comparable.

Special attention was given to prevent physical damage to the setup during movement execution. As
a result, the system evaluates at each time point the position of the end-effector. If the end-effector
was too close to the table, the movement would be stopped and the arm moves back to its rest posture.
During the real robot evaluation, however, the table was 80 cm away from the real robot. Thus, the
robot was not able to hit the table. However, even in simulation, where the table was at a distance of 30
cm from the robot, collisions with the table were rarely a problem. Balls which cannot be reached by the
robot are ignored. To avoid joint limitations, the solutions for the joint configuration predicted for the
hitting point were evaluated before performing the motion. If the joint configuration violated the joint
limits, the solution would be rejected. Furthermore, the desired joint configuration for the next time
step, was tested. If the join limitations were violated, the movement would stop and not continue the
planned movement. However, if additional object or joint limit avoidance is necessary, the movement
could be adapted by adding a repellent force. In this case, a potential field centered around the obstacle
(as described by Park et al. [2008] and Kroemer et al. [2010]) could be used. Luckily, these security
precautions were never required in our experiments in practice as the MoMP generates movements
within the convex combination of demonstrations. Hence, the system will not encounter joint limits
or hit the table. Similarly, singularities were avoided by additionally restricting the hitting area of the
robot.

3.3.2 Computing the Meta-Parameters

To use DMPs as motor policies in a table tennis game, the system needs to identify the hitting position,
velocity and orientation of the racket, as well as the time until impact. These parameters need to be

42 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



(a) Physical human robot interaction: kinesthetic teach-in of a striking motion in table tennis.

(b) Reproduced hitting motion by imitation learning.

Figure 3.6: Sequence of a hitting motion in table tennis demonstrated by a human teacher and repro-
duced with a Barrett WAM arm with seven DoF. From the left to the right the single pictures
represent the system at the end of the awaiting, preparing, hitting and follow through stage
respectively.

estimated for each incoming ball in a match. When planning in joint space, the hitting position, velocity
and orientation of the racket are defined by the joint configuration of the robot at this point in time.
Altogether, 15 parameters need to be determined, which include the joint position and velocity of the
seven DoFs of the Barrett WAM and the timing parameter that determines the initiation of the hitting
movement. These values depend on the impact point of the racket and the ball, the velocity of the ball
and the desired goal on the court of the opponent. As the goal on the opponent’s court is kept constant,
we can neglect this parameter.

We can learn the 15 task parameters using CrKR as described in Section 3.2.2 based on the position
and velocity of the ball above the net, which is used as the state of the system. The Euclidean distance
of the ball and the racket at the estimated hitting time is used as the cost function. At the beginning
the robot misses the ball in 95% of the trials. At the end the trained robot hits almost all balls. A more
detailed description and evaluation of this approach can be found in [Kober et al., 2012b].

Besides learning the meta-parameters directly, the position, velocity and orientation of the racket can
be computed analytically based on the state of the system and the target on the opponent’s court. These
task space parameters can also be converted into joint space parameters using inverse kinematics as
described in Chapter 2.

3.3.3 Mixture of Motor Primitives

To analyze the performance of our system described in Section 3.2, we analyzed the MoMP framework
in simulation as well as on a real Barrett WAM in a physical table tennis setup. The system learns a set
of basic hitting movements from demonstration and, subsequently, generalizes these demonstrations to
a wider range of situations.

3.3 Evaluation 43



1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Degree of freedom

E
rr

o
r 

in
 r

a
d

/s

 

 

Single Movement Primitives

Mixture of Motor Primitives

(a) Execution Error

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Movement Primitives

R
e
w

a
r
d

(b) Impovement Curve of MoMP

Figure 3.7: (a) Velocity error at the movement goal of the single movement primitives and the MoMP.
The execution error of each movement primitive in the library was determined. The first bar of
each DoF shows the mean error of the individual movement primitives and the corresponding
standard deviations. The second bar of each DoF shows the mean error of the motor policies
generated by the MoMP. (b) Improvement of the MoMP system with a growing number of
movement primitives in the library.

Evaluation in Simulation

In order to evaluate our setup, as described in Section 3.2, in a variety of different situations under
near-perfect conditions, we first evaluate it in simulation. The parameters of the hitting movement
depend on the interception point of the racket and the ball and vary in their overall shape. To generate
a movement that is able to cope with the varying conditions, we use our MoMP framework with the
estimated hitting point and velocities as augmented state. The movement library was built using
300 movement templates sampled from successful strokes of the analytical robot table tennis player
described in Chapter 2. For the simulation of the ball, we neglected air drag in this evaluation. The
system received the true position and velocity of the ball which reduces the sources of potential errors.
Thus, the success rate of returning the ball back to the desired goal on the opponent’s court reflects
the performance of the algorithm more accurately. We collected arm, racket and ball trajectories and
extracted the duration of the submovements and the Cartesian ball positions and velocities at the hitting
point. The parameters w for all movement primitives were learned offline by imitation learning as
described in Algorithm 4. All DoFs were modeled independently in the transformed system but are
synchronized such that they all start at the same time, have the same duration and are driven by the
same canonical system. The Cartesian position and velocity of the expected hitting point were used
as meta-parameters of the augmented state. The balls were served equally distributed on an area of
1.1 m x 0.3 m.

First, we evaluated the single mixture components (i.e., the movement primitives learned by imitation
learning) independently. Testing randomly selected movement primitives individually, we observed a
success rate of 23 % to 89 %, where success was defined as the ability to return the ball to the opponents
court. The combination of these components in an untrained mixture of movement primitives algorithm
resulted into a player which achieved a success rate of 67 %. Learning of the weight parameters γi over
1000 trials improved the performance to a 94 % success rate. Analyzing the weight parameters for all
movement primitives allowed the learning system to reduce the size of the library as all primitives πi
where γi converged to zero were effectively removed. We observed that about 27 % of the primitives
were removed and that these primitives had an average performance of only a 30 % success rate.

44 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

Position x in m

P
o

s
it

io
n

 z
 i

n
 m

Ball−racket impact

 

 

Demonstration

Test set 

(a) Fixed ball launcher.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

Position x in m

P
o

s
it

io
n

 z
 i

n
 m

Ball−racket impact

 

 

Demonstration

Test set 

(b) Oscillating ball launcher.

Figure 3.8: The locations of ball-racket impacts during demonstration and evaluation on the real robot.
(a) The ball-racket impacts during the evaluation with the fixed ball launcher. (b) The
ball-racket impacts of the evaluation of the oscillating ball launcher.

Real Robot Table Tennis

We evaluated our setup on a Barrett WAM arm. Kinesthetic teach-in was used to record 25 striking
motions which all started at the same initial position (see Figure 3.6). Gravity compensation of the
robot was enabled, but no additional movement commands were sent to the robot. As a result, the robot
could be moved freely by the teacher. To ensure the safety of the teacher, reduced limits for velocity and
acceleration were enforced. A second person manned the emergency shut-off. For the demonstrations,
the ball was served by a ball launcher covering the forehand area of the robot. The recorded arm
movements were divided into submovements according to the following events: contact with the ball,
zero velocity and change in movement direction. As a result, each demonstration could be divided into
four submovements: preparing the hitting by moving the racket backwards, hitting the ball in a circular
forward movement, follow throw until the velocity goes to zero and moving back to the default position.
We created the movement library of DMPs for each movement recorded from the human teacher using
imitation learning. As augmented state, we used the estimated hitting position and velocity.

We evaluated the performance of the created movement library intensively in simulation first. Here,
we used the exponential of the negative distance between the desired joint velocity and the actual
joint velocity at the interception point of the ball and the racket. The balls were served to an area
of 1.1 m x 0.3 m. The system was trained using 100 trials and evaluated over 200 additional trials.
First, we evaluated the performance of the individual movement primitives in our library. Analyzing
the ability of each DMP to generalize to new situations (i.e., the ability to perform equally well in
new situations), we found that not all DMPs were able to adapt to the changing velocity profiles as
required. In the last three DoFs towards the racket, we found mean errors ranging from 0.02 rad/s
to 0.4 rad/s from the desired joint velocities. Using our MoMP system reduced the mean errors to
0.04 rad/s (see Figure 3.7(a)). Using just the average performance of the last three DoF as a reward
signal, the system was able to reduce the average error to 0.02 rad/s where 8 movement primitives
were mixed in average. The average performance of the system using MoMP without updating the
gating network was 0.08 rad/s. Updating the gating network and just choosing the movement primitive
with the best expected performance, we had an error of 0.05 rad/s and mixing the movement primitives
yielded an error of 0.02 rad/s. An overview of the improvement of the system with increasing number
of movement primitives used is shown in Figure 3.7(b).

3.3 Evaluation 45



−0.54 −0.52 −0.5 −0.48 −0.46 −0.44 −0.42 −0.4 −0.38 −0.36 −0.34

−1.05

−1

−0.95

−0.9

−0.85

Orininal MP distribution on the hitting manifold

Position x in m

P
o

s
it

io
n

 z
 i

n
 m

(a) Before training.

−0.54 −0.52 −0.5 −0.48 −0.46 −0.44 −0.42 −0.4 −0.38 −0.36 −0.34

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

Learned MP distribution on the hitting manifild

Position x in m

P
o

s
it

io
n

 z
 i

n
 m

(b) After training.

Figure 3.9: Distribution on the hitting manifold (i.e., the part of the state-space that defines the ball-
racket contacts) of the most dominant movement primitives before (a) and after (b) training.
Each colored region corresponds to one movement primitive in the movement library. Each
point corresponds to the point of impact during evaluation. The usage of the movement
primitives changed after training the system with a ball launcher. While two movement
primitives were relocated, three were avoided and replaced by two better suited primitives.
Please note that we have displayed only a small excerpt of the served forehand area here in
order to visualize the re-organization of a few primitives.

Performing the movement on a real system, we used the exponential of the negative distance between
the desired goal on the opponent’s court and the actual bouncing point as reward signal. If the ball
missed the table, the distance would be set to 5 m and the reward was set close to zero. We evaluated the
algorithm in three experiments. In the first two experiments we used the ball launcher to serve the ball
to the robot to ensure similar conditions for both initial and final test phases. In the first experiment, the
ball launcher was in an oscillating mode. The area served by the ball launcher measured 0.7 m x 0.4 m.
The striking movement would be considered to be successful, if the ball was returned to the opponent’s
court. The setup was tested with 30 trials. Before training, the performance of the system was 69%.
The distance between the bouncing points on the opponent’s court and the desired target on the table
had an average distance of 1.9 m to the target on the table. After training the system in 150 trials, the
system returned 97% of the balls successfully to the opponent’s court. The mean distance between the
bouncing point and the target on the table was 0.6 m. Evaluating only the successful trials, the mean
distance to the target was 0.46 m. The point of impact of the ball and the racket during demonstration
and evaluation is shown in Figure 3.8.

In the second experiment, we chose to fix the ball launcher in a position where the system was not
able to return the ball using the initial policy generated by MoMP. The area served by the ball launcher
was 0.25 m x 0.25 m. Initially, the system was not able to return any of these balls. After training for 60
trials, the system was able to return 79% of the balls successfully to the opponent’s court. The mean
distance between the bouncing point of the returned balls and the desired target on the table was
0.31 m. During the training, the usage of the applied movement primitives changed drastically. While
some of the movement primitives were relocated, other movement primitives were avoided completely
and replaced by others used instead (see Figure 3.9).

In a third experiment, a human played against the robot. The human served balls on an area of
0.8 m x 0.6 m. The robot hit back up to 9 balls in a row in a match against the human opponent. Initially
the robot was able to return 74.4 % of the balls. After playing one hour against the human, the robot
was able to return 88 % of the balls successfully, i.e., to the opponent’s court.

46 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



min ẋ max ẋ min ẏ max ẏ min ż max ż vmax

Simulation -0.92 m/s 0.34 m/s 1.88 m/s 4.03 m/s -2.11 m/s 1.23 m/s 4.64 m/s
Experiment 1 -0.66 m/s 0.00 m/s 2.8 m/s 3.27 m/s -2.75 m/s -1.03 m/s 4.33 m/s
Experiment 2 -0.49 m/s -0.22 m/s 2.59 m/s 2.99 m/s -3.04 m/s -1.55 m/s 4.29 m/s
Experiment 3 -0.92 m/s 0.57 m/s 2.03 m/s 4.04 m/s -2.02 m/s 0.29 m/s 4.61 m/s

Table 3.1: Variance of the velocity of the ball before impact in the different experiments of the evaluation.
The maximal velocity vmax of the ball before impact is defined by vmax =

p

| ẋ |2+ | ẏ|2+ |ż|2.
All values are given in meters per second [m/s].

Setup Goal Perturbation Resulting Error
δg f [rad] δ ġ f [rad/s] egf

[rad] eġf
[rad/s]

average max average max mean std mean std

real robot evaluation 0.44 1.93 1.54 3.01 0.0017 0.0013 0.0431 0.0375

min max min max

−2.00 2.00 0.00 0.00 0.0054 0.0056 0.1695 0.2323
simulation analysis −1.00 1.00 0.00 0.00 0.0035 0.0030 0.0929 0.1083
(5 configurations) 0.00 0.00 −2.00 2.00 0.0031 0.0024 0.0597 0.0701

0.00 0.00 −1.00 1.00 0.0028 0.0024 0.0566 0.0706
−1.00 1.00 −2.00 2.00 0.0036 0.0031 0.0950 0.0944

Table 3.2: Analysis of the accuracy of the modified hitting primitives after both imitation and reinforce-
ment learning. The right part of the table shows the changes in the desired final position
and velocity compared to the values in the demonstration. On the left side of the table the
corresponding mean errors (averaged over all DoFs) in the desired position and velocity are
displayed at time T f . The simulation analysis consisted of several configurations in which the
motor policies yield through demonstrations were perturbed. For each configuration, either
the final position, final velocity or both were modified using uniform value shifts between
[-2,2] and [-1,1]. Please note that these position shifts exceed those which were observed on
the real system.

The information about the velocity of the ball before impact, as well as on the variance of the incoming
ball’s direction are summarized for all experiments in Table 3.1. The mean error of the desired final
position and velocity at time T f during evaluation on the real robot was 0.0017 rad and 0.0431 rad/s,
respectively. A systematic study of the errors in simulation showed that changes in the position affects
the final error more than changes in the velocity. The results from this analysis are depicted in Table 3.2.

3.4 Discussion and Conclusion of Chapter 3

In this chapter, we presented a new framework that enables a robot to learn basic cooperative table
tennis from demonstration and interaction with a human player. To achieve this goal, we created an
initial movement library from kinesthetic teach-in and imitation learning. The movements stored in the
movement library can be selected and generalized using the proposed mixture of movement primitives
algorithm. As a result, we obtain a task policy that is composed of several movement primitives weighted
by their ability to generate successful movements in the given task context. These weights are computed
by a gating network and can be updated autonomously.

The setup was evaluated successfully in a simulated and real table tennis environment. Our exper-
iments showed that both (i) selecting movement primitives from a library based on the current task

3.4 Discussion and Conclusion of Chapter 3 47



context instead of using only a single demonstration and (ii) the adaptation of the selection process
during a table tennis game improved the performance of the table tennis player. As a result, the system
was able to return balls served to the forehand area of the robot successfully to the opponent’s court.
We managed to perform and improve the movements involved in table tennis with a reasonable amount
of training data for real robot evaluation.

The presented method of generating motor policies from a library of demonstrated movements is
not limited to the demonstrated show-case of robot table tennis. In particular, the approach is suited
for many tasks where a set of movements has to be adapted to new, different but similar situations as
commonly found in striking sports. Additionally, it could potentially be adapted to other goal-oriented
movements (e.g., simple manipulation tasks, foot-step generation for walking over rough terrain, etc.)
where our approach would be a good starting point.

Our approach generalizes well if the situations are within the convex combination of demonstrations.
For extrapolating, more additional reinforcement learning will be needed as exploration is required.
In our approach, only local reinforcement learning is employed for self improvement. As a result,
the solution can be extrapolated to new similar situations and movements but not totally novel ones.
Discovering a movement that differs from all existing ones (as e.g., Dick Fosbury did in high-jumping
with the Fosbury flop [Wikipedia, 2012]) is clearly a limit of this data-driven framework.

48 3 Learning to Select and Generalize Striking Movements for Robot Table Tennis



4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning

Performing a motor task does not only depend on the perfect execution of robust movements. Even after
acquiring the necessary motor skills as shown in Chapter 2 and 3, a higher-level strategy is required to
choose where and how to return the ball to the opponent’s court in order to win the game. Defining a
successful strategy manually is difficult as such a strategy depends strongly on the abilities of the player
and the opponent. Therefore, it would be highly desirable to infer strategic information from observing
humans playing table tennis. This strategic information can be used by the robot as a foundation
for finding an optimal policy. In this chapter, we want to come one step closer towards this goal.
Thus, we suggest a computational model for representing and inferring strategies, based on a Markov
Decision Problem (MDP), where the reward function models the goal of the task as well as all strategic
information. We demonstrate how this reward function can be inferred from demonstrations of real
table tennis games using model-free inverse reinforcement learning. Therefore, we collect data from
table tennis players with different skill levels and styles. We show that the resulting reward functions
are able to distinguish between the different playing skills and styles on real human table tennis data.

4.1 Prologue

Understanding the complex interplay between learning, decision making and motion generation is
crucial both for creating versatile, intelligent robot systems as well as for understanding human motor
control. In complex competitive and cooperative motor tasks, mastering the task is not merely a matter
of perfect execution of a specific movement pattern. In table tennis, a player usually cannot win the
game by always returning the ball safely to the same position. Instead, players need a good strategy that
defines where and how to return the ball to the opponent’s court. An action should always be chosen to
have a high probability of successfully returning the ball as well as to make the task of the opponent
harder, i.e., it should improve the chance of winning the game. In this chapter of the thesis, we want
to model and understand the decision processes underlying this behavior. To accomplish this goal, we
investigate how basic strategic information can be inferred from the observation of a human table tennis
game.

In racket science, researcher identified so called winning patterns in tennis video sequences in order to
help trainers analyze their game [Wang et al., 2004, Wang and Parameswaran, 2005, Vis et al., 2010].
Here, specific repetitive movement patterns of both the players and the ball were turned into tactical
templates. In table tennis, Hohmann et al. [2004] determined the transition probabilities of different
stroke positions, directions and types individually. Such transition probabilities allow identifying the
components that can be used most efficiently. Similar to Diaz et al. [2013], where the authors showed
that memory-based information is used for predictive eye movements in racquetball, Seve et al. [2004]
showed that such memory-based information is also used for strategies in table tennis. Seve et al.
[2004] conducted interviews with professional table tennis players to analyze the actions that they
chose in a match. They concluded that the players selected their actions not only based on the current
situation, but also based on the knowledge of sequences that have proven to be effective in the past
in similar situations. Rather than identifying the frequencies and effectiveness of specific movement
patterns, we want to model the decision process for choosing actions by players in a match of table
tennis from a computational point of view. Thus, we are not only able to use the learned model for
artificial systems, but also yield a better insight into the reasons for choosing a given action in a specific
state. Therefore, we only consider basic features available to the player such as the bouncing point and,
the direction and velocity of the ball.

49



(a) (b)

Figure 4.1: Considered scenario: A table tennis player (agent) plays a game of table tennis. At time
point t, he has to decide how to return the approaching ball to the opponents court such
that the chance of winning the point will increase. Returning the ball to a specific goal on
the opponent’s court (with a specific orientation and velocity) corresponds to an action at
executed by the agent. The player chooses this action based on his current state st (Figure a).
Due to this action, the system will transfer to the state st+1 defining a new situation for the
player (Figure b).

A common way to model decision processes in artificial systems is to use a Markov Decision Problem
(MDP, Puterman [1994]). Here, an agent interacts with a dynamic environment. It chooses and executes
an action that will change the state of the player and its environment (see Figure 4.1). The agent can
observe this state change and may receive a reward for its action. A strategy defines the general plan of
choosing actions in specific states in order to achieve a goal. A strategy in the MDP framework is usually
called a policy and is denoted by π. Given a MDP model, one can find an optimal policy using optimal
control techniques [Sutton and Barto, 1998, Powell, 2011]. The goal is to find a policy that maximizes
the expected reward. The reward thus, encodes the goal of the task. Having encountered states, actions,
rewards and policies in Chapter 3, we will address these concepts in a more detailed way in this chapter.

While it is possible to learn a policy directly from demonstrations using supervised learning [Schaal,
1999, Argall et al., 2009], such behavioral cloning approaches usually have limited generalization
abilities since they are restricted to the demonstrated scenarios. As they do not consider the underlying
dynamics, they cannot be applied in a task with altered or constantly changing dynamics. In table tennis,
the dynamics of the environment changes as the opponent changes. The player may also encounter
new states, and hence need to learn new strategic elements while his experience increases with training.
Therefore, blindly following the strategy of an observed expert will not lead to a successful strategy.
Rather than mimicking a specific policy, we want to learn which information the expert uses in order
to win the game. This knowledge can sometimes be succinctly captured in the reward function that
defines the reward the agent will receive in a specific situation when executing an action. Based on this
reward function, we can compute and adapt the policy when new state-action pairs are encountered.
As a result, the transfer of strategic information from humans to artificial systems such as robots will
be possible. When transferring human policies to robots we have to account for differences in their
respective dynamics. The reward function is independent from the dynamics. It can therefore be used
to obtain a policy with reinforcement learning.

Given an exact model, simple reward functions that only specify an immediate positive reward for
winning, a negative one for losing a rally, and zero reward for non-terminal actions may be sufficient.
However, such simplified rewards will cause slow convergence rates for behavior generation as the
system will need to pass through several state-action pairs before receiving a reward. Clearly, such

50 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



a simplified reward cannot suffice for explaining human playing behavior in table tennis. Instead of
pre-defining the reward function, we seek to identify it from human game-play. Such an approach will
also allow us to reveal individual preferences of table tennis players. The process of determining the
reward function from an expert demonstration is referred to as Inverse Reinforcement Learning (IRL)
or inverse optimal control [Boyd et al., 1994, Ng and Russel, 2000]. IRL has been applied to many
problems such as helicopter control [Abbeel et al., 2010], parking lot navigation [Abbeel et al., 2008],
navigating a quadruped robot across different terrains [Kolter and Ng, 2011], routing preferences of
drivers [Ziebart et al., 2008], user simulation in spoken dialog management systems [Chandramohan
et al., 2011] and, modeling goal directed trajectories of pedestrians [Ziebart et al., 2009]. In most
of these approaches, the underlying dynamics of the system is assumed to be known. However, the
dynamics of human behavior is usually difficult to model. We avoid modeling these complex dynamics
by learning the strategies directly from human demonstration. Thus, the dynamics model underlying
the task is implicitly encoded in the observed data. To collect demonstrations, we asked skilled and
naive table tennis players to compete in several matches. We recorded the ball trajectories as well as the
Cartesian position and orientation of the upper body joints for all players with a VICON motion capture
system.

During the course of this chapter, we will answer the following questions: (1) Can we infer a reward
function that captures expert-specific information using model-free inverse reinforcement learning?
(2) Using this reward function, can we distinguish players with different playing styles and skill levels?
(3) Which parts of the sensory information are the key elements for selecting the movement parameters?

In the remainder of this chapter, we will proceed as follows. In Section 4.2, we present the theoretical
background for modeling decision processes, including MDPs and IRL algorithms. We present the
experimental setup and evaluations in Section 4.3. In Section 4.4, we summarize our approach and the
results.

4.2 Modeling Human Strategies

As discussed in the prologue, we use model-free Inverse Reinforcement Learning (IRL) to learn the
strategic components. Here, we will first introduce the notation and basic elements necessary for the
table tennis model. Subsequently, we will discuss different model-free IRL approaches and show how
the states, actions and reward features in the table tennis task can be represented.

4.2.1 Preliminaries

To employ IRL, the problem at hand needs to be modeled as a Markov Decision Problem (MDP). Formally,
a MDP is a tuple

�

S, A,T , r, d0,γ
�

, where S is the state space, A is the action space, and T is a transition
function

T (st ,at , st+1) = Pr(st+1|st ,at),

with states st , st+1 ∈ S and actions at ∈ A. The function r(s,a) defines the reward for executing action
a in state s, the initial state distribution d0(s) models the start conditions, and the discount factor
γ ∈ [0, 1) determines the effective planning horizon.

A deterministic policy π is a mapping: S 7→ A and defines which action is chosen in a state s ∈ S. A
stochastic policy is a probability distribution over actions in a given state s and is defined as π(s|a) =
Pr(a|s). The performance of a policy is measured with the so-called value function Vπ(s). The value
function of a policy π evaluated at state s is given by

Vπ(s) = E





∞
∑

t=0

γt r(st ,at)

�

�

�

�

π,T , s0 = s



 ,

4.2 Modeling Human Strategies 51



and corresponds to the expected reward following policy π starting from state s. The optimal value
function is defined by V ∗(s) =maxπ Vπ(s) ∀s ∈ S . The goal of an agent in a MDP is to find the optimal
policy π∗, i.e., a policy that maximizes the value for every s ∈ S.

We assume that the reward function r is given by a linear combination of m feature functions fi with
weights wi. The reward function is therefore defined by

r(s,a) =
m
∑

i=1

wi fi(s,a) =wTf(s,a),

where w ∈ Rm and f(s,a) ∈ Rm. The features fi are fixed, known, bounded basis functions mapping
from S × A into R. For a given trajectory τ = s1a1, ..., sT aT the feature counts are given by f τi =
∑H

t=1 γ
t fi(st ,at). Similarly to the value function, we can define the feature count f πi under policy π by

f πi (s) = E





∞
∑

t=0

γt fi(st , at)

�

�

�

�

π,T , s0 = s





as the expected features observed when following policy π. Since the reward function can be represented
as a linear combination of features fi, the expected return of policy π can be written as

Vπw (s) =
m
∑

i=1

wi f πi (s) =wTfπ(s),

where fπ ∈ Rm is a vector containing the single feature counts f πi (s) as entries.

4.2.2 Learning the Reward Function

The reward function is a crucial part of the MDP as it defines the goal of the task and shapes the policy
optimization process. Usually, it is assumed that the reward function is given. However, it is hard to
specify the reward function for solving a complex task beforehand and the learned behavior is sensitive
to the provided reward function. This problem is especially evident when the task requires modeling the
dynamics of human actions. The problem of designing the right reward function led to the development
of IRL methods. Given the actions of an agent that is assumed to behave in an optimal manner, the
available sensory information about the environment and, if possible, a model of the environment, the
goal of IRL is to determine a reward function that can (mostly) justify the demonstrated behavior.

The IRL problem was originally formulated within the MDP framework by Ng and Russel [2000].
Many researches provided further refinements in order to improve the original algorithms suggested
by Ng and Russel [2000] and Abbeel and Ng [2004]. For example, Ratliff et al. [2006] suggested a
maximum margin planning approach. Ziebart et al. [2008] suggested an algorithm where the principle
of maximum entropy was exploited. Ramachandran and Amir [2007] modeled the uncertainties
involved as probabilities where the demonstrations are treated as evidence of the unknown reward
function. A recent review of IRL algorithms can be found in [Zhifei and Joo, 2012].

However, most IRL approaches rely on a given model of the environment T or assume that it can be
accurately learned from the demonstrations. The reward function is found by first computing a policy
that optimizes a reward function for an initial weight vector w. Subsequently, the expected feature count
of the new policy fπ can be computed. Based on this feature count, a new weight vector that separates
the values of the expert feature fπE and the features of the current policy fπ can be computed. These
steps are repeated until the weight vector converges. This general algorithm is displayed in Algorithm 5.

In this chapter of the thesis, we want to estimate the underlying reward function for playing table
tennis based on demonstrations without having to model the correct dynamics model. Only few model-free

52 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



Algorithm 5 General IRL Algorithm
Input: DE = {τ}Pp=1 expert demonstrations
Initialize: reward feature weights w0, j = 1

expert feature counts fπE = 1
P

∑

τ∈DE fτ

repeat
Optimize π j based on w j−1

Estimate fπ
j

Update w j such that w j f π j <w jfπE

j← j+ 1
until ‖w j −w j−1‖2 < ε

IRL methods have been suggested: Boularias et al. [2011] derived a relative entropy approach which
was evaluated on a ball-in-a-cup scenario. Mori et al. [2011] used Least Squares Policy Iteration and
Least Squares Temporal Difference learning and applied their algorithm on human impedance control.

To avoid modeling the dynamics in the table tennis task, we collect demonstrations from an expert as
well as demonstrations from less skilled players in order to find the reward function of the underlying
behavior. This approach stands in contrast to previous methods, where a model of the dynamics is
used to iteratively generate optimal trajectories under different reward functions until the generated
trajectories match the ones provided by the expert. We use both expert and non-expert data to compute
the weight vector w∗ that maximizes the differences between the non-expert and the expert reward
values. To compute the reward weights, we compared three different methods, where the results can be
found in Section 4.3.2. The first two evaluated methods are based on the max-margin method of Abbeel
and Ng [2004], while the third algorithm is the model-free relative entropy approach of Boularias
et al. [2011]. In the following sections, we assume that we are given a set of expert demonstrations
DE = {τp}Pp=1, where τp = sp

1ap
1, ..., sp

Tp
ap

Tp
corresponds to one rally (i.e., state-action trajectory), as well

as a set of sub-optimal demonstrations DN = {τl}L
l=1. Here, Tp is the number of volleys (i.e., state-action

pairs) in the observed rally τp.

Model Free Max-Margin for Game Values

The max-margin method of Abbeel and Ng [2004] aims at finding a policy π that has an expected return
close to that of the expert, i.e., maxw |Vπw (s)− VπE

w (s)| ≤ ε, where ‖w‖2 ≤ 1. As the value is a linear
function of the reward, it suffices to find an optimal policy π that has feature counts close to the ones of
the expert’s trajectories, i.e., ‖fπ− fπE‖2 ≤ ε. The policy π needs to be chosen from the set of previously
recorded sub-optimal policies due to the lack of a model for generating policies. We use the projection
algorithm of Abbeel and Ng [2004] to solve the following optimization problem

max
ξ,w
ξ s.t. wT fπE ≥wT fπ j + ξ, ‖w‖ ≤ 2,

where ξ is the difference of the value of the expert and the value of the non-expert, and π j are the
policies of non-expert players. f

π j
i therefore corresponds to the average feature count for all rallies

demonstrated by a player in one game. The corresponding algorithm is displayed in Algorithm 6. In the
following, we will refer to this algorithm as MMG (Maximum Margin for Game values).

Model Free Maximum Margin of States Values

Using the max-margin method of Abbeel and Ng [2004] in a model-free setup as described above has
one drawback. We assume that the initial state of the rally largely defines all following state-actions

4.2 Modeling Human Strategies 53



Algorithm 6 Maximum Margin for Game Values
Input: DE = {τ}Pp=1 expert demonstrations

DN = {τ}L
l=1 sub-optimal demonstrations

Initialize: fπE = 1
P

∑

τ∈DE fτ

fπi = 1
L

∑

τ∈DNi fτ with DNi ⊂ DN

w0 = 0, j = 1
repeat

i =mini w j−1(fπE − fπi )
f j−1 = fπi

Compute f̄
j−1

, the projection of fπE on (̄f
j−2

, f j−1)
w j = fπE − f̄

j−1

∆ f = ‖fπE − f̄
j−1‖2

j← j+ 1
until ∆ f < ε

pairs. However, in table tennis, it is unlikely that any player plans the strokes for more than only a few
steps ahead. Computing the value function based on only a few state-action pairs after the initial serve
would cause the agent to lose important information that led to winning or losing the rally. To avoid this
information loss, we need to compare the values of the expert in every state in the recorded trajectories
to the ones of the non-experts in the same state. As the states are continuous, it is unlikely that exactly
the same state is encountered in both the expert and sub-optimal trajectories. Nevertheless, we can find
the weight vector w by solving the quadratic optimization problem

max
w

P
∑

p=1

Tp
∑

t=0

�

VπE
w (s

p
t )− V̂πN

w (s
p
t )
�

−λ||w||2, (4.1)

where V̂πN
w (s

p
t ) is an estimated value of the non-expert players in the current state sp

t of the expert.
Estimating the value V̂πN in a given state s is a regression problem that we propose to solve by using
the k-nearest neighbors method,

V̂πN
w (s) =

1

k

∑

s′∈Nk(s)

VπN
w (s

′),

where Nk(s) is the set of k-nearest neighbors of s among all the states that have been observed in the
sub-optimal trajectories. We use a Gaussian kernel K(s, s′) = exp(−(s− s′)TΣ−1(s− s′)T) to define a
similarity measure between states. The diagonal matrix Σ contains weight parameters. Note that one
can also use other non-parametric methods, such as kernel regression.

The value functions VπE and VπN of the expert’s policy πE and sub-optimal policies πN are computed
as

Vπw (s
p
t ) =

1

H p
t − t + 1

Hp
t
∑

i=t

wTfπ(sp
i ,ap

i ),

where H p
t =min{t +H − 1, Tp} and H is the planning horizon, i.e., the number of steps we look into

the future. The corresponding algorithm is displayed in Algorithm 7. In the following, we will refer to
this algorithm as MMS (Maximum Margin of State values).

54 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



Algorithm 7 Maximum Margin of States
Input: DE = {τp}Pp=1 expert demonstrations

DN = {τl}L
l=1 sub-optimal demonstrations

Initialize: n= 1
for all p ∈ DE do

for all sp
t ∈ τp do

[FπE]n: =
∑Hp

t
i=t f(sp

t ,ap
t )

Compute k-nearest neighbors Nk(s
p
t )

[FπN ]n: =
1
k

∑

sl
t∈Nk(s

p
t )

∑H l
t

i=t f(sl
i ,a

l
i)

n← n+ 1
end for

end for
w=maxw w(FπE − FπN )−λ||w||2

Relative Entropy Method

The relative entropy IRL method [Boularias et al., 2011] finds a distribution P over trajectories that
minimizes the KL-divergence to a reference distribution Q, while ensuring that the feature counts under
P are similar to the feature counts in the expert trajectories. The reference distribution Q encodes
prior preferences and constraints of the learned behavior, which makes this method well-suited for
transferring the expert’s policy to a robot. The solution to this problem takes the following form

P (τ|w) =
1

Z(w)
Q(τ)exp

�

wT f τi
�

,

where Z(w) =
∑

τQ(τ)exp
�

wT f τi
�

. The reward weight vector w is found by solving the optimization
problem

max
w

wT fπE − ln Z(w)−λ‖w‖1. (4.2)

The gradient of this objective function is calculated by re-using the expert and sub-optimal trajectories
with importance sampling. For our experiments, we choose the reference distribution Q to be uniform,
as we are mainly interested in extracting the most informative reward function and not in transferring
the expert’s policy. The corresponding algorithm is displayed in Algorithm 8. In the following, we will
refer to this algorithm as RE (Relative Entropy).

4.2.3 Computational Model for Representing Strategies in Table Tennis

In the previous sections, we have given a general description of how the decision processes in table
tennis can be modeled as a MDP. We also showed several approaches for obtaining the reward function
from the table tennis player’s demonstrations. As a next step, we need to specify the states, actions and
reward features of the table tennis task.

States
The state of the system consist of all sensory information experienced by the agent. However,

learning in such high-dimensional continuous state domains is likely to be intractable. Hence, we
need to remove redundant or irrelevant information. Therefore, we assume that the player has to

4.2 Modeling Human Strategies 55



Algorithm 8 Relative Entropy IRL Algorithm
Input: DE = {τp}Pp=1 expert demonstration

DN = {τl}L
l=1 sub-optimal demonstration

Initialize: fπE = 1
P

∑

τ∈DE fτ

w0 = 0, j = 1
repeat

Compute P (τ|w j−1) =
Q(τ)exp

�

∑m
i=1 w j−1

i fi
�

∑

τ∈DN Q(τ)exp
�

∑m
i=1 w j−1

i fi
�

for all τ ∈ DN

for all features fi do
∂

∂ wi
g(w) = f πE

i −
∑

τ∈DN P (τ|w j−1) fi(τ)− βiλi

w j
i = w j−1

i + ∂

∂ wi
g(w)

end for
∆w = ‖w j−1−w j‖2
j← j+ 1

until ∆w < ε

decide where and how to hit the ball when the hitting movement is initiated. Furthermore, we
assume that the decision depends on the following information: the planar Cartesian position of the
agent ds = [dsx , ds y], the opponent’s position do = [dox , do y] and velocity vo, the state of the rally
g ∈ {player serve, opponent serve, not served} as well as the ball position db = [dbx , db y], velocity |vb|
and direction given by the bouncing angles αpy and αpz (see Figure 4.2).

Thus, the state can be represented by the parameters si = [db, |vb|,αpy,αpz,ds,do,g]. The variables
αpy and αpz are defined as the horizontal and vertical bouncing angles of the ball at the moment of
impact on the player’s side of the table, respectively. αpz defines the bouncing angle in the xz-plane and
therefore corresponds to how flat the ball was played. αpy defines the bouncing angle in the xy-plane
(see Figure 4.3). Playing the ball diagonal to the backhand area of the opponent results in a smaller
negative angle for αpy, while playing the ball diagonal to the forehand area results in an increased angle.
Playing the ball straight corresponds to an angle of zero. Additionally, we define a set of terminal states
sT ∈ {W, L}. A rally will end when either the subject won the rally (sT =W ), or the subject lost the rally
(sT = L).

Actions
To perform a hitting movement, the system needs the following information: (i) where and when to

hit the ball, (ii) the velocity of the racket and (iii) the orientation of the racket at impact. While the first
may directly result from the current state of the system, the second and third points are determined by
how the player decides to return the ball to the opponent’s court. This decision includes the desired
bouncing point pb of the ball on the opponent’s court, the corresponding bouncing angles αoy and αoz,
the overall velocity of the ball ||vb|| and the spin of the ball. Since the different kinds of spin are hard to
capture without an expert classifying the sampled data, we discard the spin and use only basic strategic
elements. Therefore, an action can be defined as a= [pb, ||vb||,αoy,αoz]. We do not distinguish between
serves and non-serves for the actions, as the first bounce of the serve will be fully described by the
second bounce.

Reward Features
The reward features fi(s,a) for each state-action pair are defined by the following attributes.

56 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



Figure 4.2: Figure(a): The state of the system is defined by the relative position of the agent (dsx , ds y)
and the the relative position (dox , do y) and velocity (vo) of the opponent towards the table,
as well as the the position (dbx , db y ) and velocity (vb) of the ball when bouncing on the table.
Figure(b): In order to compute the table preferences on the opponent’s court the table was
divided into nine cells. Each cell was assigned a center (red points) ci .

Position on the table. We divided the table into nine cells. Each cell was specified by a center ci
(see Figure 4.2b). Nine features were considered

Pr(ci|pb) =
exp(−ε‖pb − ci‖2

2)
∑

j exp(−ε‖pb − c j‖2
2)

,

each defining the probability that the player was aiming for the specific cell. This computation is based
on the euclidean distance between the desired bouncing point pb of the ball (which is part of state s)
and the cell center ci, where ε is a shape parameter.

Distance to the edges of the table. We provided two features defining the proximity to the edge et ,
one for the x-direction δtx = exp(−1.5|etx

− pbx
|) and one for the y-direction δty = exp(−1.5|et y

− pby
|).

Distance to the opponent. Two features defined the distance of the bouncing point of the ball on the
opponent’s court and the right hand of the opponent. One of the features is defined by the distance in
x-direction δox = |pox

− pbx
|, while the second is defined by the distance in y-direction δoy = |poy

− pby
|.

Elbow. One feature is the closeness of the ball to the elbow and, therefore, it measures if the ball
was played to the elbow of the opponent eo. It is defined by δelbow = exp(−|eoy

− pby
+ tan(αy)(eox

−
pbx
|)), where tan(αy)(eox

− pbx
) is an extrapolation of the ball position. This feature also provides a

measurement of how close the ball bounces relative to the opponent.
Velocity of the ball. The velocity of the ball ‖vb‖ in meters per second was used as another feature.
Movement direction of the opponent. One feature was derived in order to define the velocity of

the opponent and the ball in y-direction. It is defined by vo = 10(poy
− pby

)voy
.

Bouncing angles. We computed two bouncing angles αoz and αoy which define the direction of the
ball when bouncing on the opponent’s side of the court.

Smash. One of the features defined whether the ball was a smash. When the ball velocity was
higher than 10 m/s, this feature was set to one, otherwise this feature was set to zero. The velocity of
10 m/s was defined empirically.

Winning and Loosing. One binary feature was used to assign a reward to the terminal states (i.e.,
winning and losing). For all non-terminal states, this feature was set to zero. For the terminal states, a
value of one was assigned to the feature for sT =W and a value of −1 for sT = L.

All features are scaled to lie in an interval of [0 1], except for the direction sensitive features αoy and
vo which lie in an interval of [-1 1].

4.2 Modeling Human Strategies 57



(a) αy (b) αz

Figure 4.3: The bouncing angles αy and αz in the xy- and xz-surface define the orientation of the ball.
While αz corresponds to the horizontal bouncing angle, αy corresponds to the direction of
the ball and thereby defines if the ball is played cross to the left, cross to the right or straight.

4.3 Experiments and Evaluations

To validate the suitability of using IRL algorithms in order to extract basic strategic elements, we recorded
table tennis players with various skill levels. The subjects played under three different conditions. This
data was used to compute the reward feature weights and to validate the potential reward functions.

In the following, we will first describe the experiment and the data processing procedure. Subsequently,
we will present the results.

4.3.1 Experimental Setup and Data Collection

The purpose of the experiment was to investigate basic strategic elements in table tennis (excluding all
types of spin which are difficult to capture), using inverse reinforcement learning techniques. Therefore,
a data set with expert demonstrations, and a data set with different sub-optimal policies were collected.
In this study, there were both participants serving as subjects who rarely played table tennis, as well as
subjects who played on a regular basis in a table tennis club.

Participants
Eight healthy right-handed subjects of all genders (seven males, one female) participated in this study.

The mean age of the participants was 26.25 years (standard deviation (SD) 3.38 years). All subjects
had normal or corrected-to-normal eye sight. All participants gave their consent prior to the experiment
and completed a form about their playing skills according to which they were grouped in one of two
classes: 1) naive players and 2) skilled players.

The group of naive players consisted of five subjects (four males and one female) with a mean age of
28.4 years (SD 1.14 years). The subjects were recruited from the Max Planck Campus in Tübingen and
the University of Tübingen. All naive players fulfilled the following requirements: (i) never played in a
table tennis club, (ii) did not train on a regular basis (weekly or daily) in the last five years, (iii) did
not participate in table tennis tournaments and (iv) did not play any other racket sports on a regular
basis. The group of skilled players consisted of three subjects (all male) with a mean age of 22.67 years
(SD 2.08 years). The subjects were recruited from a local table tennis club and fulfilled the following
requirements: (i) played for at least eight years in a table tennis club, (ii) trained on a weekly basis (at
least twice a week) and (iii) participated regularly in table tennis competitions.

58 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



Figure 4.4: Experimental setup. A naive player (right side) plays against a skilled opponent (left side).
The upper body of both players, as well as the ball are tracked by a motion capture system.

One of the skilled players were used as a permanent fixed opponent and, therefore, was not con-
sidered part of the subject set. Furthermore, only one of the skilled subjects was used for the expert
demonstrations. All other subjects were used as sub-optimal demonstrations.

Apparatus
In order to collect information about the position of the participants, the table and the ball during

the game, we used a VICON motion capture system (16 VICON MX-13 cameras with the VICON IQ 2.5
software, 120 frames per second). Therefore, 25 VICON infrared reflecting markers were attached to
the hands, wrists, elbows, shoulders, hips and the back and front of the participants. With this setup
and a 3D kinematic model of the upper body of each individual, we could capture their whole body
movement during the game. To identify the table and the net, we placed four markers at each corner of
the table and one marker on one of the edges of the net. A standard table tennis table (length 2.74 m,
width 1.53 m and height 0.76 m) and rackets conform with the rules of the International Table Tennis
Federation [2011] were used. The surfaces of the rackets were chosen such that they did not allow for
spin on both sides. The table tennis ball was covered with a gray-green infrared reflecting powder in
order to detect it with the VICON system. As a result the ball had an additional weight of 2 grams. This
coating slightly changed its physical properties (e.g., it additionally reduced the spin during the game).
Additionally, the subjects were recorded with two video cameras. The experimental setup is also shown
in Figure 4.4.

Procedure
The participants were asked to play a game of table tennis under three different conditions.
Condition 1. The subjects played a cooperative game of table tennis. The goal for the subjects is to

maximize the number of returns in a rally for a ten minute period.
Condition 2. The subject was told to perform a competitive game of table tennis, while the opponent

was instructed to return the ball “nicely” (i.e., the opponent was instructed to play towards the subject
when possible in a cooperative way).

Condition 3. Both the subject and the opponent were instructed to play a competitive game of table
tennis.

Each of the seven subjects played against the opponent one game under each of the three conditions.
The participants were required to play table tennis according to the standard table tennis rules defined

4.3 Experiments and Evaluations 59



Method Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Coop.

Average reward MMG 1.01 0.28 0.90 1.16 0.69 0.49 0.55
difference MMS 1.16 0.07 1.24 0.86 0.71 0.33 0.50

RE 0.70 0.11 0.60 0.80 0.42 0.31 0.55
Scores Condition 2 5:33 12:33 2:33 5:33 2:33 21:34
Scores Condition 3 13:33 17:33 10:33 5:33 17:33 20:33

Table 4.1: Summary of the results of the evaluations for the different methods. The differences in the
average rewards with respect to the expert, define the differences between the reward of
the expert and the spared test subject of the non-expert data set. The feature of winning and
loosing the game were not included. MMG corresponds to the model-free maximum-margin
of game values, MMS corresponds to the model-free maximum margin of states values with
an horizon of three and RE corresponds to the relative entropy method (see Section 4.2.2).

by the International Table Tennis Federation [2011] with the following exceptions: (i) The players did
not switch sides after a game, (ii) the expedite system1 did not apply during the game, and (iii) the
first serve of the match was always executed by the subject (never by the opponent). A game consisted
of the best of five matches, i.e., the game was won by the player who first won three matches. Before
the experiment started, the subjects played a friendly game with the opponent for 10 minutes in order
to get used to the slightly altered bouncing properties of the table tennis ball (due to the coating with
reflective powder). Each subject was required to read the rules before the experiment. The current score
of the game in Condition 2 and 3 were displayed on a scoreboard visible for both of the two players. In
each game, a referee ensured that the game was conducted in accordance with the rules. The score was
protocolled by two of the experimenters independently and reconciled afterwards.

Data Processing
The captured motion was post-processed using the VICON IQ 2.5 software. The marker labels were

automatically assigned to each marker using the VICON IQ 2.5 trajectory labeler. Errors that occurred
during this automatic labeling process were manually corrected afterwards. The ball had to be labeled
manually as it was tracked as a single VICON marker. The VICON IQ 2.5 kinematic fitting function
computed the 3D kinematic information of the subjects automatically. Bouncing and hitting events for
all data were then automatically labeled during another MATLAB post-processing step and manually
reassigned if necessary. For each point, the score was automatically computed based on this information
and reconciled with the score information recorded by the experimenters. Finally, for each time where
the ball was hit by the subject, the corresponding state and reward features were extracted and saved in
a MATLAB file.

4.3.2 Results and Discussion

Only one of the subjects was able to win against the opponent in the competitive game under Condition 3.
All other games were won by the skilled opponent. The scoring results of the subjects that lost the game
can be found in Table 4.1. The skilled player who won the game in Condition 3 was able to win 41 out
of 75 rallies. Based on these results, the data was divided into two subsets: (1) a non-expert data set
and (2) an expert data set. The non-expert data set included all games of the subjects who lost against
the fixed opponent, i.e., all naive subjects and one of the skilled players, as well as all cooperative games.

1 Expedite system: additional rules to discourage slow play in a table tennis match. It is used after 10 minutes of play or
if requested by both players.

60 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



We will refer to the players that lost as Naive 1 to 5 and Skilled 1. The expert data set consisted of all
rallies in the competitive game (Condition 3) played by the skilled player that won against the opponent.
We will refer to this player as Expert. When asked which player performed worst, the opponent stated
that Naive 3 was the worst.

We tested all three IRL methods as described in Section 4.2.2. To evaluate the potential reward
functions, we performed a leave-one-subject-out testing scheme. We computed the reward feature
weights for each of the three methods seven times. Every time leaving out all rallies (i.e., state-
action trajectories) of one of the subjects that lost or the rallies of the cooperative game of the Expert
respectively. We also excluded 20 rallies of the Expert for the validations. The obtained reward functions
were tested for the different skill levels of the subjects using the excluded rallies demonstrated in the
game under Condition 3 only and the different styles using the cooperative game of the Expert.

All resulting reward functions yielded the highest rewards for the feature of the terminal state for
losing or winning the rally. Winning the rally was therefore highly desirable for the agent while losing
should be avoided. For the evaluations, we did not consider this feature in order to see how well we can
distinguish the subjects based on the other strategic elements.

In the following, we will first present the overall results of the three methods showing that we were
able to distinguish between different playing skills and styles. Subsequently, we will discuss the influence
of the horizon for the MMS algorithm. Finally, we discuss the results for all features separately.

Classifying the Skill Levels of the Players
We computed the differences in the average reward for a state-action pair of the spared expert and

non-expert data for the reward functions obtained from the three methods described in Section 4.2.2
abbreviated as before as MMG, MMS, and RE. The results in terms of the differences in the average
reward between expert and non-expert are displayed in Table 4.1. All three reward functions were able
to distinguish between the non-expert games and the expert game, as well as between the different
playing styles of the expert (competitive vs cooperative). In general the average reward for each player
reflected the skill level of the players with the exception of Naive 2. For all naive players except Naive 2,
the differences were high, while the difference between Skilled 1 and the Expert was moderate. These
differences were more distinctive for the MMS algorithm.

All three reward functions obtained in the evaluation resulted in a very small difference in the average
reward of the Expert and Naive 2, followed by Skilled 1 and Naive 5. Furthermore, all three methods
showed relatively large differences between the Expert and the players Naive 1, Naive 3 and Naive 4.
However, they disagree in the ranking of these three players. While the reward function obtained by the
MMG and RE algorithm show the highest difference for the Expert and Naive 4, the reward function
obtained by the MMS algorithm yield the highest difference between the Expert and Naive 3. Naive 4
being the worst player is in compliance with the scoring results of Experiment 3, while Naive 3 being
the worst player is in compliance with the statement of the permanent opponent.

Analyzing player Naive 2, we can conclude that the player chooses his actions based on the same
principles as the Expert. This player lost against the opponent due to his inaccurate movement execution.
In comparison, the player Skilled 1 has a very good movement execution due to his long training and
experience. However, he was not able to win against the opponent, although this player had the most
experience in terms of years. This suggests that Skilled 1 was a very good player in terms of playing the
ball successfully back to the opponent, but was not efficient in choosing his actions without the strategic
element of spin.

Evaluating the differences of each feature individually yielded different performances for the three
reward functions. While the reward function obtained by maximum margin of state values was able to
distinguish 91 % of the dominant features of expert and non-expert, the reward function of relative
entropy was able to distinguish 83 % and the reward function obtained by maximum margin of game
values only 71 %.

4.3 Experiments and Evaluations 61



H Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Coop.

Average reward 1 1.30 0.04 1.17 0.91 0.74 0.30 0.43
difference 2 1.20 0.07 1.22 0.87 0.72 0.33 0.47

3 1.16 0.07 1.24 0.86 0.71 0.33 0.50
Average reward diff. 2 0.91 -0.21 0.92 0.57 0.38 -0.12 0.23
before terminal state 3 1.12 0.04 1.23 0.89 0.76 0.24 0.53

Table 4.2: Summary of the results for the different horizons with the MMS algorithm. The differences
in the average reward with respect to the expert trained with the different horizons H. The
differences in the average reward directly before the terminal, define the differences of the
reward of the expert and the spared test subject for the state before the terminal or the
average reward of the two states before the terminal for the horizons 2 and 3 respectively.

Influence of the Planning Horizon
For the MMS algorithm, we evaluated the setup with three different horizons. We chose the horizons

of H = 1, H = 2 and H = 3. The horizon of one considers only one state-action pair. The horizon of two
also considers the state-action pair presented directly after the current one. A horizon of three means
that we consider up to two state-action pairs following the current one.

The results of the average reward differences of the sub-optimal policies and the expert for the whole
game and the states directly before the terminal are displayed in Table 4.2. In general, the average
reward difference was reduced slightly with increasing horizon, while the average reward difference for
the last H − 1 states before the terminal state increases with growing planning horizon, reaching its
maximum with a horizon of three. Horizons larger than three did not improve the differences in the
reward.

Individual Reward Features
Analyzing the reward weights individually, the different methods showed similar weights for the most

important features (i.e., the features with the highest weights). The largest influence resulted from
the bouncing angles αy and αz, the table preferences and the distance between the desired bouncing
point and the racket of the opponent. For simplicity, we will only discuss the parameter values for the
individual features of the reward functions obtained by the MMS and RE algorithm (as MMG had the
worst performance in terms of individual feature classification).

The reward weights for the individual features are displayed in Figure 4.5a and b. We also showed the
average reward differences for the spared test data sets for each feature individually in Figure 4.5c and
for the different time steps in Figure 4.5d. Figure 4.6 shows the various characteristics of the features
for each subjects individually. We will discuss all features in the next sections.

Goal Preferences on the Table
The preferences of the locations on the table are independent from the state information of the

opponent, but they do reflect parts of the strategy that will also be covered by other features. The
resulting reward functions of the different algorithms showed a preference for the areas where the
opponent would have to return the ball using the backhand, while the areas that are suited for returning
the ball with the forehand and the areas directly after the net are often rather avoided (see Figure 4.5a).

Distance to the Edges of the Table
The distance of the bouncing point of the ball to the edges of the table had only a small positive

influence in the reward function yielded by the max-margin algorithm. The reward function yield by the
RE algorithm assigned a little negative reward for playing the ball close to the edge in the y-direction

62 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



(a) Reward function for table preferences

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

δ
tx

δ
ty

δ
ox

δ
oy

v
ball α

z
α

y
v

o δ
elbow Smash

Feature

R
ew

ar
d

Weights of the individual reward features

 

 

MM
RE

(b) Reward feature weights

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Table 
Preferences

δ
tx

δ
ty

δ
ox

δ
oy

v
ball α

z
α

y
v

o
δ

elbow Smash

Features

R
ew

ar
d 

di
ffe

re
nc

e

Differences in the average reward between expert and naive player

 

 

MM
RE

(c) Average reward differences

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

δ
oy

α
z

α
y

v
o δ

elbow

Features

R
ew

ar
d 

di
ffe

re
nc

e

Differences in the average reward at different time steps

 

 

T−1
T−2
T−3
Average

(d) Reward differences features at different time
steps

Figure 4.5: Resulting parameter values for the individual features. Figure a shows the resulting reward
function of the table preferences for Algorithm 7 (MM). Figure b shows the weights of all
other features for Algorithm 7 (MM) and Algorithm 8 (RE), respectively. Figure c shows
the differences of the average reward of the expert and the naive player for each feature
separately using the reward function of the max-margin algorithm (green) and the relative
entropy algorithm (yellow). Figure d shows the differences of the average rewards for the
most important features at different time steps before the terminal state (win or loss) for the
reward function yield with the max-margin algorithm.

4.3 Experiments and Evaluations 63



Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Subjects

R
ew

ar
d 

di
ffe

re
nc

e

Differences in the average rewards

 

 

Table Preferences
δ

ox

δ
oy

v
ball

α
z

α
y

v
o

δ
elbow

Figure 4.6: Histogram of the average reward differences between the expert and sub-optimal players
for each player and each feature individually. The reward function was received by the MMS
algorithm with a horizon of three.

(i.e., along the width of the table) and a relatively high negative reward for playing the ball close
to the edge in the x-direction (direction towards the player). The average reward differences in the
evaluations indicate that the reward assigned by the reward function of the RE method is to be favored
(see Figure 4.5b).

Distance to the Opponent

Maximizing the distance between the position of the bouncing point and the position of the opponent
in the x-direction (i.e., direction towards the opponent) received only a small reward (Figure 4.5a)
and also had only a small effect in the evaluations (Figure 4.5b). While the reward function of the
max-margin algorithm assigned a slightly positive reward for maximizing this distance, the reward
function yielded by the relative entropy algorithm assigned a slightly negative reward. The evaluations
on the spared test data were in favor for the positive reward weights.

The distance in y-direction (i.e., along the width of the table) between the bouncing point and the
racket of the opponent resulted in a high reward in both reward functions. This feature also influenced
the differences in the reward yield by the naive and expert table tennis player.

The overall performance on average only increased by ∼ [0.05|0.08]2. The differences in the average
reward for the features before a terminal state, increased dramatically by ∼ [0.26|0.40] and became a
dominant factor in the reward function (see Figure 4.5d). The differences between the average reward
two states before the terminal was below average. This observation suggests that the chance of winning
a point increases with an increasing distance between the bouncing point and the racket between the
player.

2 In the following, the first value will correspond to the reward differences obtained by MMS algorithm and the second
value will correspond to the reward differences obtained by the RE algorithm

64 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



(a) (b)

Figure 4.7: Possible strategy that distinguished the expert player that won the game, from the non-
expert players that lost the game against the opponent. If the expert had the chance, he
would play the ball very cross to the backhand area (Figure a). As a result the opponent was
forced to move more into the left corner. The expert could then play the ball to the forehand
area in order to increase the distance between the ball and the opponent (Figure b).

Proximity to the Elbow
Playing towards the elbow of the opponent had a negative effect. The weights for the elbow features

were negative and increased the differences in the average reward between non-expert players and the
expert player (see Figure 4.5b).

Velocity of the Ball and Opponent
The feature for the velocity of the ball had only a small positive weight and almost no influence on

the difference between the players (see Figure 4.5a and b) in the evaluations.
The movement direction of the opponent relative to the ball had a moderate positive weight (see

Figure 4.5a), but only a small influence in the evaluations on the differences between the non-expert
and expert data set. This observation indicates that this feature was used by the Expert but did not
dominate his behavior.

Bouncing Angles
We evaluated the direction of the ball by means of two angles: αz and αy . The horizontal angle αz

had a high negative reward value, i.e., smaller angles were preferred. The overall difference in the
performance between the Expert and the naive players did increase the overall reward difference only
slightly. Hence, the ball was in general played in a slightly flatter manner by the expert.

The angle αy also had a high negative weight, i.e., playing the ball cross to the backhand area was
preferred opposed to playing the ball cross towards the forehand area. These results are conform with
the table preferences as displayed in Figure 4.5a. This feature was one of the dominating factors in the
reward function and in the evaluations of the excluded subjects. The average difference between expert
and naive players for the state right before the terminal state was only decreased by ∼ [0.02|0.01]. The
average reward two states before the terminal state on the other side were much higher than the overall
average reward (∼ [0.48|0.25]).

This observation together with the results of the distance of the bouncing point and the racket,
suggests the following strategy successfully applied by the Expert. When playing the ball very cross to
the outer backhand area of the opponent, the opponent was forced to move to his left. The expert used
this opportunity to play the ball to the other side of the table in order to increase the distance between
the ball and the opponent (see Figure 4.7).

4.3 Experiments and Evaluations 65



The observation that the overall difference in the reward between the Expert and Naive 2 and the
Expert and Skilled 1 are not high, indicates that these two players use similar techniques in terms of
playing the ball cross to the backhand area. However, when comparing the results in the last hits before
the terminal state, we notice that i) the expert usually plays the ball more cross in the backhand area,
forcing the opponent to move further in this direction and ii) the two players did not play the ball into
the other direction afterwards in order to increase the distance.

4.4 Conclusion of Chapter 4

In this chapter, we modeled table tennis games as a Markov decision problem. We have shown that it is
possible to automatically extract expert knowledge on effective elements of basic strategy in the form
of a reward function using model-free Inverse Reinforcement Learning (IRL). To accomplish this step,
we collected data from humans playing table tennis using a motion capture system. Participants with
different skill levels played in both a competitive and a cooperative game during this study. Based on
their performance, we divided the data into an expert and a sub-optimal data set. These data sets have
been used to infer and evaluate the reward functions.

We have tested three different model-free inverse reinforcement learning methods. Two were derived
from the model-based IRL method of Abbeel and Ng [2004]. The third algorithm was the model-free
relative entropy method of Boularias et al. [2011]. The resulting reward functions were evaluated
successfully in a leave-one-subject-out testing scheme. All learned reward functions were able to
distinguish strategic information of players with different playing skills and styles.

The presented approach used information about the position of the player and the opponent as well
as the ball position, velocity and orientation. However, spin was not included in this setup. In order to
include spin, a system that infers the spin of the ball from its trajectory would be necessary. The reward
function was able to capture the goal of the task, in terms of winning the rally while avoiding to lose it.
The key elements revealed by the model were (i) playing cross to the backhand area of the opponent,
(ii) maximizing the distance of the bouncing point of the ball and the opponent, and (iii) playing the
ball in a flat manner. Other elements as playing against the moving direction and the velocity of the ball
were also positively correlated.

The presented approach is not limited to analyze individual preferences of players and successful
strategic components against a specific opponent. Rather, the learned reward function can also be used
within the MDP framework for artificial systems such as table tennis robots or virtual reality-based table
tennis games. Thus, the robot can learn a strategy against a human opponent. The described method
allows an artificial system to analyze the strategy of the opponent and as a result, the system will be
able to anticipate the actions of its opponent. Such anticipation can allow artificial systems to adapt
their own strategies to improve their chances.

66 4 Learning Strategies in Table Tennis using Inverse Reinforcement Learning



5 Conclusion and Future Work

This thesis was dedicated to the goal of modeling and learning a complex motor task using robot table
tennis as a test case. We developed a model of robot table tennis based on human motor control in
order to achieve robust, efficient, and human-like hitting motions. We also showed that such a complex
task can be learned from demonstrations and interactions with humans. Both setups, the biomimetic
and the learned approach, were successfully tested on a real Barrett WAM robot arm. Furthermore, we
showed that the reward function which captures basic strategic knowledge can be inferred from human
table tennis data using model-free inverse reinforcement learning. In the following, we give a detailed
summary of the thesis and its contributions. We also discuss possible extensions to the work presented
and list the publications which resulted from this thesis.

5.1 Summary of the Thesis

This thesis has contributed to the fields of learning and robotics, and has further supported the different
hypotheses in human motor control. The results and contributions have been organized into three
different chapters. Following this grouping, we summarize in this section the individual chapters and
their contributions individually.

5.1.1 Modeling Complex Motor Tasks

In Chapter 2, we presented a novel model for robot table tennis. Previous work on robot table tennis
concentrated on efficient vision algorithms in well defined environments and often used hardware which
was developed for this specific purpose. In contrast to these contributions, we used an anthropomorphic
seven DoF Barrett WAM arm in a semi-structured environment and concentrated on smooth movement
generation using a biomimetic approach. In order to model table tennis, we relied on hypotheses and
observations from human motor control and sport science. The resulting player structures the hitting
movement into four stages following the observation of Ramanantsoa and Durey [1994] who reported
such a movement organization in human striking motions. The trajectories in the individual stages were
represented by 5th order splines. We used the hypothesis of a virtual hitting point [Ramanantsoa and
Durey, 1994] to define the interception parameters as opposed to a reactive approach as suggested
for catching tasks [Gigerenzer, 2005, Yeo et al., 2012]. The redundancy of the arm was solved by
minimizing the distance to a defined comfortable hitting posture following the suggestion of Cruse
[1986]. The resulting robot table tennis player was able to successfully return balls played towards
the robot in simulation and on a real robot while producing human-like hitting motions. A video
showing the performance of the system, including a small match against its creator, can be found at
http://www.youtube.com/watch?v=BcJ4S4L1n78.

The positive results of this study showed that the used features of human motor control in our
model resulted in human-like hitting motions on a robot. This result gives further evidence that these
hypotheses might also be used in human motor control.

5.1.2 Learning Complex Motor Tasks

While previous approaches on learning robot table tennis concentrated on learning the interception
parameters for the hitting tasks [Miyazaki et al., 2006, Lai and Tsay, 2011, Kober et al., 2012b], we
concentrated on learning robust hitting movements and how these can be selected and generalized in a

67



table tennis game. Furthermore, we also used machine learning approaches in order to infer a reward
function to model a higher-level strategy and therefore to win the game.

Selecting and Generalizing Striking Movements
In Chapter 3, we presented a framework for learning cooperative table tennis based on Dynamical

system Motor Primitives (DMPs, [Ijspeert et al., 2002]), imitation and reinforcement learning. In
contrast to most approaches of learning motor tasks using DMPs so far, complex tasks cannot be
learned using only one primitive. In order to account for the complexity involved, several movement
primitives need to be chosen and adapted in response to the current environmental stimuli. To meet
this requirement, we developed an algorithm called Mixture of Motor Primitives (MoMP) that selects
and generalizes movement primitives in a library based on the suitability for the current task context.
Instead of selecting and generalizing among the motor primitives purely based on a manually pre-defined
similarity to the current context, we weighted the primitives with their predicted performance for the
given situation. These weights can be adapted autonomously based on the performance of the generated
hitting movements using reinforcement learning. As a result, we can suppress unsuited motor primitives
from the library and use only those that qualify for the specific situation to create the hitting motion.
The framework was successfully evaluated for the table tennis task on a real Barrett WAM robot arm.
The initial movement library was created from 25 striking movements demonstrated by a teacher using
imitation learning. Using the MoMP algorithm, the system was able to select the appropriate primitives
and to generalize these to new situations. As a result, balls played towards the robot can be returned
successfully to the opponent’s court. We were able to show that the selection process of movement
primitives can be adapted while playing table tennis and that due to the adapted selection process by
MoMP the performance increases significantly. A video showing the performance of the robotic system
can be found at http://www.youtube.com/watch?v=SH3bADiB7uQ.

The presented framework is not limited to the show-case of table tennis. The approach is suited
in general for tasks were the movements need to be adapted to new, but still similar, situations as
commonly found in striking sports. Additionally, it could also be used for other goal-oriented movements
such as foot-step generation for walking over rough terrain.

This work was also recognized by Dr. Muster, honorary member of the German table tennis coaches
club (Verband deutscher Tischtennis Trainer, Muster [2013]). In his opinion the demonstration of
multiple hitting motions to the robot and the subsequent learning of the association of situations
and suited hitting motions is further support to the differential training method [Schöllhorn, 2000,
2003]. Instead of repeating the same hitting movement every time, the theory of differential training
recommends the player to train under varying conditions allowing to learn a different movement plan
for the each situation.

Inferring Strategical Information
Even after acquiring the necessary motor skills as demonstrated in Chapters 2 and 3, competitive

games still require a higher-level strategy in order to win the game. The strategy defines for each
particular situation where and how the ball should be returned to the opponent’s court. Defining such a
higher-level strategy manually seems to be infeasible. Therefore, the strategy needs to be learned and
adapted towards a certain opponent. To get one step closer to this goal, we showed in Chapter 4 that it is
possible to automatically extract expert knowledge on effective elements of a basic strategy captured in
the form of a reward function of a Markov decision problem. In order to capture these strategic elements,
we collected optimal and sub-optimal data from human table tennis players with different playing
skills and styles using a motion capture system. This data was used to infer the reward function using
model-free inverse reinforcement learning. We tested three different inverse reinforcement learning
methods. Two were derived from the model-based inverse reinforcement learning method of Abbeel
and Ng [2004]. The third algorithm used was the model-free relative entropy method of Boularias

68 5 Conclusion and Future Work



et al. [2011]. The resulting reward functions were evaluated in a leave-one-subject-out testing scheme
on the collected human table tennis data. The reward functions were able to distinguish the strategic
information of the different playing styles and skills. It was possible to capture the goal of the task
in terms of winning the game. Furthermore, the methods were able to reveal key elements used to
achieve this goal. Playing the ball to the backhand area of the opponent, maximizing the distance of the
bouncing point of the ball and the opponent as well as playing the ball in a flat manner were the most
prominent features that distinguished expert and sub-optimal demonstrations.

Using such a reward function, an artificial agent can learn an effective strategy against a human using
reinforcement learning as well as to analyze the strategy of the opponent. Furthermore, this approach
can be used to analyze individual preferences of players and successful strategic components against a
specific opponent which would be helpful in situation-driven table tennis training.

5.2 Open Problems

This thesis presented encouraging results towards the goal of modeling and learning complex motor
tasks. On top of this work, there are several possible extensions that will be discussed in the following.

5.2.1 Extension of the Table Tennis Player

Although the created robot table tennis systems were able to return balls successfully, the presented
work can be extended to a mobile platform and to opponent modeling in order to further improve the
performance of the system. In this section, we will discuss these possible extensions of the robot table
tennis player.

Exporting the System to a Mobile Platform
While we were able to achieve very good results with both the biomimetic and the learned player,

the system is still limited to a small working space due to the fixed base of the robot. Exporting the
system to a mobile platform would enable the system to move its body to a position such that it can
perform an optimal stroke movement. Such an optimal hitting execution would increase its probability
to succeed. Furthermore, a mobile platform would also be crucial in order to implement and learn
different strategies against a human opponent and is an essential step to obtain a robot player that
gets a performance close to a human player. One possibility to achieve this goal would be to use a
moving platform consisting of linear axes. Another solution would be to implement the framework
on a humanoid robot. This approach would increase the overall complexity involved in this task, but
would also be more flexible to use in a broader range of situations and allows to study whole body
coordination in complex tasks. As a first step towards this goal, we moved the robotic framework
described in Chapter 2 successfully to a setup consisting of a BioRob mounted on a mobile platform
with three linear axes in simulation. However, real robot evaluations would be necessary to judge the
suitability of these approaches.

Intention Inference
The table tennis frameworks presented in Chapter 2 and 3 rely on visual position tracking of the

ball only. This information alone is already sufficient to return a ball in a friendly game of table tennis.
However, in a competitive game, the information given by only the ball trajectory would be insufficient.
Therefore, it could be beneficial to use additional information given by the movement patterns of the
opponent in order to predict his future actions. Such additional information can help the robot to
foresee the intentions of the opponent. We could already show that it is possible to predict the direction
of the returned ball and as a consequence whether the robot has to play a fore- or backhand even before

5.2 Open Problems 69



the ball was hit by the opponent [Wang et al., 2013]. Furthermore, it might be possible able to predict
the spin of the ball based on the observed hitting movement of the opponent.

5.2.2 Learning Complex Motor Skills

In Chapter 3 and 4, we demonstrated how a complex task can be learned using imitation, reinforcement,
and inverse reinforcement learning. Therefore, the teaching input was carried out in the form of
kinesthetic teach-in or an observation of the environment. This form of teaching is very effective, but
can still be extended and improved by using additional forms of communication and instruction. In the
following, we will shortly discuss the integration of natural language and gesture recognition for this
propose. Furthermore, we will also discuss the problem of modeling the dynamics of unknown objects
that the robot needs to interact with and the validation of the presented methods in other domains.

Natural Language and Gestures as Teaching Input
The framework for learning a hitting movement in Chapter 3 only uses physical demonstrations and

the observation of the environment together with a well defined reward function to teach the robot a
skill. This form of interaction is very useful when teaching a motor skill, but should not be the only
interaction between human and robot. Often a teacher expresses his feedback additionally in a verbal
manner after physical demonstrations: "Try to rather roll over the ball instead of hitting it directly!"
or "You are holding the racket the wrong way!". Also, the reward can be expressed in a verbal way:
"Yes, very good" or "Not there yet". Therefore, natural language should be used additionally as an
interface between human and robot. The use of spoken language should thereby be bidirectional. That
means, it should not only be used to express a description or feedback about the execution of a behavior
towards the robot, it should also be used by the robot in order to ask for feedback or for an additional
demonstration in order to accelerate the learning. To communicate this way, the spoken words need to
be recorded, recognized, and the semantic as well as the discourse needs to be interpreted. Natural
language processing is an active research area and not solved yet. The difficulties encountered include
the different ways of parsing one sentence as well as word ambiguities [Manning and Schuetze, 1999,
Jurafsky and Martin, 2009].

Hardware developments such as the Kinect camera have enabled a relatively simple form of human
posture real-time tracking. Therefore, gesture recognition can be used alongside with natural language
processing to resolve ambiguities, infer the intentions and to complete unfinished sentences [Perzanowski
et al., 1998]. Although computer systems are far away from understanding spoken language as well as
humans, it seems a promising direction to guide the motor learning process additionally with spoken
language and gestures.

Learning the Dynamics of an Unknown Object
Until now, most research on predicting the hitting point in striking sports concentrates on using

supervised or reinforcement learning to predict the hitting point directly from a part of the ball trajectory
[Miyazaki et al., 2006, Lai and Tsay, 2011, Kober et al., 2012b]. Each time an update of the prediction
is necessary, a new model needs to be trained. These predictions usually depend on specific parts of
the trajectory observed by the agent and require the system to store huge amounts of data points to
enable accurate predictions. Humans on the other hand are not just able to predict the hitting point
very reliable and independent from the observed part of the trajectory, they are also able to predicted
the whole trajectory of a ball. Therefore, humans appear to have an inner model of the dynamics of the
object they interact with. Hence, it should be investigated how such an inner model of the dynamics of
an object can be learned and how the interception point can be predicted based on the predicted ball
trajectory. Such an approach might also help to develop movement plans that minimize the uncertainty
of intercepting an object successfully.

70 5 Conclusion and Future Work



Testing of the Proposed Algorithms in Other Domains
The algorithms and frameworks presented in Chapter 3 and 4 were only tested on table tennis so

far. Therefore, the potential of these methods should also be evaluated on other tasks such as tennis,
catching, pointing tasks, badminton or foot placing in different terrains. Here, we already could show
that the hitting movements acquired by the system to play table tennis can be generalized to catching
skills [Kober et al., 2012a].

5.2.3 Learning Higher-Level Strategies

In Chapter 4, we discussed and showed how strategic elements for winning a match in table tennis can
be inferred from observing humans playing the game. This information was captured in the form of
a reward function using inverse reinforcement learning. Here, we would like to point out additional
future research direction and extensions to this work.

Learning the Feature Basis Functions
The foundation of most inverse reinforcement learning approaches are feature basis functions which

can be observed by the agent. These features define the reward function and are the bottleneck of
this approach as they are usually defined manually. Therefore, it is necessary that all relevant features
are known by the programer. To create a fully autonomous robot system, it is necessary to construct
these features automatically. This problem was also recognized by [Abbeel and Ng, 2004]. Levine et al.
[2010] suggested that the features can be constructed from a logical combinations of components that
are the most relevant to the task. Nevertheless, this approach also requires the definition of the most
relevant components of the state space beforehand. Even if it would be possible to consider the whole
state space as components, some features might be the result of a non-trivial combination of these
elements. Other feature combinations might be redundant and could dominate the behavior due to
their multiple occurrences. Therefore, it should be investigated how these relevant feature components
and their relation to each other can be extracted from observations. Here, the study of human attention
processing [Begum and Karray, 2011] might be helpful to achieve this goal.

Partially Observable Markov Decision Problems
In Chapter 4, we modeled table tennis as a Markov Decision Problem (MDP), assuming the task

consists of one agent that has perfect knowledge about its environment. This approach is a good starting
point, but might be an overly strong assumption. As in many other complex tasks, table tennis includes
multiple agents. In the current model, we did not account for the opponent’s personal weaknesses
and strategy as well as the possibility of imperfect sensory information. Here, Partially Observable
Markov Decision Problems (POMDPs, [Monahan, 1982]) could be useful. In contrast to modeling the
task using a MDP, POMDPs assume that the agent cannot completely observe its environment. POMDPs
model uncertainty of the state the agent is currently in such that we are able to include beliefs about
the intentions of the opponent. Here, it should be investigated whether it is possible to extend the
model-free methods presented in Chapter 4 to POMDPs.

RGBD Cameras versus VICON
In Chapter 4, we captured the motion data using a VICON tracking system based on infrared cameras

and infrared reflecting markers to collect the data of humans playing table tennis. Such a system is
effective but also constrained to a facility providing the necessary equipment. The development of
RGBD cameras such as the Kinect made it possible to use a small mobile device to track human postures
in real time. Unfortunately, RGBD cameras have only a limited working area and their accuracy is not as
high as the one of a calibrated VICON system. However, as RGBD cameras can be used more flexible

5.2 Open Problems 71



and allow for real time tracking of the upper body of the player, it should be investigated whether these
cameras can be used in this context.

5.3 Publications

The research presented in this thesis has been partly published in or has lead to the following publica-
tions.

5.3.1 Journal Papers

Muelling, K.; Boularias, A.; Schoelkopf, B.; Peters, J. (under review). Learning Strategies in Table
Tennis using Inverse Reinforcement Learning. Biological Cybernetics.

Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking
Movements in Robot Table Tennis, International Journal of Robotics Research (IJRR) vol. 32, 3.

Wang, Z.; Muelling, K.; Deisenroth, M. P.; Ben Amor, H.; Vogt, D.; Schoelkopf, B.; Peters, J. (2013).
Probabilistic Movement Modeling for Intention Inference in Human-Robot Interaction, International
Journal of Robotics Research (IJRR) vol. 32,7

Muelling, K.; Kober, J.; Peters, J. (2011). A Biomimetic Approach to Robot Table Tennis, Adaptive
Behavior Journal vol. 19, 5.

5.3.2 Conference and Seminar Papers

Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. (2012). Learning to Select and Generalize Striking
Movements in Robot Table Tennis, Proceedings of the AAAI 2012 Fall Symposium on Robotics that Learn
Interactively from Human Teachers

Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O. (2012). Robot Skill Learning,
Proceedings of the European Conference on Artificial Intelligence (ECAI)

Kober, J.; Muelling, K.; Peters, J. (2012). Learning Throwing and Catching Skills, Proceedings of the
International Conference of Robot Systems (IROS), Video Track

Wang, Z.; Lampert, C.H.; Muelling, K.; Peters, J. (2011). Learning Anticipation Policies for Robot Table
Tennis, Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2011)

Wang, Z.; Boularias, A.; Muelling, K.; Peters, J. (2011). Balancing Safety and Exploitability in Opponent
Modeling, Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence (AAAI).

Muelling, K.; Kober, J.; Peters, J. (2010). Learning Table Tennis with a Mixture of Motor Primitives,
Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010)

Peters, J.; Muelling, K.; Kober, J. (2010). Experiments with Motor Primitives to learn Table Tennis,
Proceedings of the 12th International Symposium on Experimental Robotics (ISER 2010), Springer,
Berlin, Germany

Muelling, K.; Kober, J.; Peters, J. (2010). A Biomimetic Approach to Robot Table Tennis, Proceedings of
the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010)

Muelling, K.; Kober, J.; Peters, J. (2010). Simulating Human Table Tennis with a Biomimetic Robot Setup,
From Animals to Animats 11: Eleventh International Conference on the Simulation of Adaptive Behavior

72 5 Conclusion and Future Work



(SAB 2010),

Peters, J.; Muelling, K.; Altun, Y. (2010). Relative Entropy Policy Search, Proceedings of the Twenty-
Fourth National Conference on Artificial Intelligence,

Peters, J.; Muelling, K.; Kober, J.;Nguyen-Tuong, D.; Kroemer, O. (2009). Towards Motor Skill Learning
for Robotics, Proceedings of the International Symposium on Robotics Research (ISRR),

Muelling, K., and Peters, J. (2009). A computational model of human table tennis for robot application,
Proceedings of Autonome Mobile Systeme (AMS 2009)

5.3 Publications 73





Bibliography

P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the
21st International Conference of Machine Learning (ICML), 2004.

P. Abbeel, D. Dolgov, A. Ng, and S. Thrun. Apprenticeship learning for motion planning with application
to parking lot navigation. In Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), pages 1083 – 1090, 2008.

P. Abbeel, A. Coates, and A. Ng. Autonomous helicopter aerobatics through apprenticeship learning. The
International Journal of Robotics Research, 29:1608 – 1679, 2010.

J. Abbs and K. Cole. Neural mechanisms of motor equivalence and goal achievement. In S. Wise, editor,
Higher Brain Functions: Recent Explorations of the Brain’s Emergent Properties, pages 15–43. John
Wiley & Sons, Hoboken, NY, 1987.

L. Acosta, J. Rodrigo, J. Mendez, G. Marchial, and M. Sigut. Ping-pong player prototype. IEEE Robotics
and Automation Magazine, 10(4):44–52, 2003.

R. Alexander. A minimum energy cost hypothesis for human arm trajectories. Biological Cybernetics, 76
(2):97–105, 1997.

R. Andersson. A robot ping-pong player: experiment in real-time intelligent control. MIT Press, Cambridge,
MA, USA, 1988.

L. Angel, J. Sebastian, R. Saltaren, R. Aracil, and R. Gutierrez. Robotenis: Design, dynamic modeling and
preliminary control. In Proceedings of the International Conference on Advanced Intellegent Mechatronics,
pages 747–752, 2005.

B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robotics and Autonomous System, 57(5):469 – 483, 2009.

M. Begum and F. Karray. Visual attention for robotic cognition: A survey. IEEE Transactions of Autonomous
Mental Development, 3:92 – 105, 2011.

N. Bernstein. The Coordination and Regulation of Movements. Pergamon, Oxford, 1967.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In B. Siciliano
and O. Khatib, editors, Springer Handbook of Robotics, pages 1371–1394. Springer Berlin Heidelberg,
2008.

J. Billingsley. Machineroe joins new title fight. Practical Computing, May/June:14–16, 1983.

C. Bishop. Pattern Recognition and Machine Learning. Springer, New Yok, NY, USA, 2006.

C. Bishop and M. Tipping. Bayesian regression and classification. In J. Suykens, G. Horvath, S. Basu,
C. Micchelli, and J. Vandewalle, editors, Advances in Learning Theory: Methods, Models and Applications,
volume 190, pages 267 – 289. IOS Press, 2003.

S. Bitzer, M. Howard, and S. Vijayakumar. Using dimensionality reduction to exploit constraints in
reinforcement learning. In Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), pages 3219 – 3225, 2010.

75



R. Bootsma and C. Peper. Predictive visual information sources for the regulation of action with special
emphasis on catching and hitting. In L. Proteau and D. Elliott, editors, Vision and Motor Control, pages
285 – 314. Noth-Holland, 1992.

R. Bootsma and P. van Wieringen. Visual control of an attacking forehand drive in table tennis. In
O. Meijer and K. Roth, editors, Complex Movement Behaviour: The Motor-Action Controversy, pages
189–199. Amsterdam: North-Holland, 1988.

R. Bootsma and P. van Wieringen. Timing an attacking forehand drive in table tennis. Journal of
Experimental Psychology: Human Perception and Performance, 16(1):21–29, 1990.

A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In Proceedings of
the Artificial Intelligences and Statistics (AISTATS), pages 20 – 27, 2011.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control
Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, June 1994.

A. Bryson and Y. Ho. Applied Optimal Control. Wiley, New York, 1975.

S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing a task in a humanoid
robot. IEEE Transactions on Systems, Man and Cybernetics, 32(2):286–298, 2007.

H. Chan, I. King, and J. Lui. Performance analysis of a new updating rule for td(γ) learning in
feedforward networks for position evaluation in go game. In Proceedings of the IEEE International
Conference on Neural Networks, pages 1716 – 1720, 1996.

S. Chandramohan, M. Geist, F. Lefevre, and O. Pietquin. User simulation in dialogue systems using
inverse reinforcement learning. In Proceedings of the 12th Annual Conference of the International
Speech Communication Association, pages 1025 – 1028, 2011.

S. Chiappa, J. Kober, and J. Peters. Using bayesian dynamical systems for motion template libraries. In
Advances in Neural Information Processing Systems 22 (NIPS), pages 297 – 304, 2008.

J. Craig. Introduction to Robotics. Mechanisms and Control. Addison-Wesley Publishing Company, Inc,
Reading, Massachusetts, 1989.

H. Cruse. Contraints for joint angle control of the human arm. Biological Cybernetics, 54(2):125–132,
1986.

H. Cruse, M. Brüwer, P. Brockfeld, and A. Dress. On the cost functions for the control of the human arm
movement. Biological Cybernetics, 62:519–528, 1990.

K. Dautenhahn and I. Werry. Towards interactive robots in autism therapy: background, motivation and
challenges. Pragmatics and Cognition, 12(1):1–35, 2004.

J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.
Prentice-Hall, Englewood Cliffs, NJ, 1983.

G. Diaz, J. Cooper, C. Rothkopf, and M. Hayhoe. Saccades to futur ball location revial memory-based
prediction in a virtual-reality interception task. Journal of Vision, 2013.

D. Elliott, G. Binsted, and M. Heath. The control of goal-directed limb movements: Correcting errors in
the trajectory. Human Movement Science, 18(2).

H. Fässler, H. A. Beyer, and J. T. Wen. A robot ping pong player: optimized mechanics, high performance
3d vision, and intelligent sensor control. Robotersysteme, 6(3):161–170, 1990.

76 Bibliography



P. Fitts. The information capacity of the human motor system in controlling the amplitdue of movement.
Journal of Experimental Psychology, 47(6):381–391, 1954.

T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed mathematical
model. Journal of Neurosciences, 5(7):1688–1703, 1985.

G. Gigerenzer. I think, therefore i err. Social Research, 72(1):195 – 218, 2005.

S. Giszter, K. Moxon, I. Rybak, and C. J. Neurobiological and neurorobotic approaches to control
architectures for a humanoid motor system. Intelligent Systems and their Applications, 15:64 – 69,
2000.

M. Gomez-Rodriguez, J. Peters, J. Hill, B. Schoelkopf, A. Gharabaghi, and M. Grose-Wentrup. Closing the
sensorimotor loop: haptic feedback helps decoding of motor imagery. Journal of Natural Engineering,
8(3), 2011.

F. Guenter, M. Hersch, S. Calinon, and A. Billard. Reinforcement learning for imitating constrained
reaching movements. Advanced Robotics, Special Issue on Imitative Robots, 21(13):1521 – 1544, 2007.

C. Harris and D. Wolpert. Signal-dependent noise determines motor planning. Nature, 394:780–784,
1998.

R. Harrison, J. Mackenzie, B. Morris, and J. Springett. Design and build of a robotic ping pong player.
Technical report, The University of Adelaide, 2005.

J. Hartley. Toshiba progress towards sensory control in real time. The Industrial Robot, 14(1):50–52,
1987.

H. Hashimoto, F. Ozaki, K. Asano, and K. Osuka. Development of a ping pong robot system using 7
degrees of freedom direct drive. In Proceedings of the IEEE International Conference on Industrial
Electronics, Control and Instruments (IECON), pages 608–615, 1987.

M. Hayhoe, T. McKinney, K. Chajka, and J. Pelz. Predictive eye movements in natural vision. Experimental
Brain Research, 217:125 – 138, 2012.

H. Hecht. Time-To-Contact. Elsevier Science, Amsterdamm, The Netherlands, 2004.

F. Henry and D. Rogers. Increased response latency for complicated movements and the memory drum
theory of neuromotor reaction. Research Quarterly, 31:448–458, 1960.

N. Hogan. An organizing principle for a class of voluntary movement. Journal of Neuroscience, 4(11):
2745–2754, 1984.

A. Hohmann, H. Zhang, and A. Koth. Performance diagnosis through mathematical simultion in table
tennis. In A. Lees, J.-F. Kahn, and I. Maynard, editors, Science and Racket Sports III, pages 220 – 226.
Routledge, London, 2004.

Y. Huang, D. Xu, M. Tan, and H. Su. Trajectory prediction of spinning ball for ping-pong robot. In
Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pages 3434 –
3439, 2011.

A. Hubbard and C. Seng. Visual movements of batters. Research Quaterly, 25:42–57, 1954.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical systems in
humanoid robots. In Proceedings of the International Conference on Robotics and Automation (ICRA),
pages 1398 – 1403, 2002.

Bibliography 77



International Table Tennis Federation. Table tennis rules, October 2011. URL http://www.ittf.com/
ittf_handbook/hb.asp?s_number=2.

R. Jacobs, M. Jordan, S. Nowlan, and G. Hilton. Adaptive mixures of local experts. Neural Computation,
3:79 – 87, 1991.

D. Jurafsky and J. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Speech Recognition and Computer Linguistics. Prentice-Hall, 2009.

M. Kawato and K. Samejima. Efficient reinforcement learning: computational theories, neuroscience
and robotics. Current Opinion in Neurobiology, 17:205–212, 2007.

S. Keele. Movement control in skilled motor performance. Psychological Bulletin, 70(6):387–403, 1968.

J. Knight and D. Lowery. Pingpong-playing robot controlled by a microcomputer. Microprocessors and
Microsystems, 10(6):332–335, 1986.

J. Kober and J. Peters. Policy search for motor primitives in robotics. In Advances in Neural Information
Processing Systems 21 (NIPS), pages 849 – 856, 2009.

J. Kober, B. Mohler, and J. Peters. Learning perceptual coupling for motor primitives. In Proceedings of
the International Conference on Intelligent Robots and Systems (IROS), pages 834 – 839, 2008.

J. Kober, K. Muelling, O. Kroemer, C. Lampert, B. Schölkopf, and J. Peters. Movement templates
for learning of hitting and batting. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pages 688 – 694, 2010.

J. Kober, K. Muelling, and K. Peters. Learning throwing and catching skills. In Proceedings of the
International Conference on Robot Systems (IROS), Video Track, pages 5167 – 5168, 2012a.

J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning to adjust parametrized motor
primitives to new situations. Autonomous Robots, 33(4):361 – 379, 2012b.

J. Kober, D. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. accepted.

Z. Kolter and A. Ng. The Stanford LittleDog: A learning and rapid replanning approach to quadruped
locomotion. The International Journal of Robotics Research, 30(2):150 – 174, 2011.

P. Kormushev, S. Calinon, and D. Caldwell. Robot motor skill coordination with em-based reinforcement
learning. In Proceedings of the IEEE/RSJ Intl Conference on Intelligent Robots and Systems (IROS), pages
3232 – 3237, 2010.

O. Kroemer, R. Detry, J. Piater, and J. Peters. Grasping with vision descriptors and motor primitives.
In Proceedings of the International Conference on Informatics in Control, Automation and Robotics
(ICINCO), pages 47 – 54, 2010.

A. Kuo. Harvesting energy by improving the economy of human walking. Science, 309(5741):1686–1687,
2005.

C. Lai and J. Tsay. Self-learning for a humanoid robot ping-pong player. Advanced Robotics, 25:1183 –
1208, 2011.

C. Lampert and J. Peters. Real-time detection of colored objects in multiple camera streams with
off-the-shelf hardware components. Journal of Real-Time Image Processing, 7(1):31–41, 2012.

M. Land and P. McLeod. From eye movements to actions: How batsmen hit the ball. Nature Neuroscience,
3(12):1231 – 1239, 2000.

78 Bibliography

http://www.ittf.com/ittf_handbook/hb.asp?s_number=2
http://www.ittf.com/ittf_handbook/hb.asp?s_number=2


D. Lee and D. Young. Visual timing of interceptive action. In D. Ingle, M. Jeannerod, and D. Lee, editors,
Brain mechanisms and spatial vision, pages 1–30. Dordrecht, Netherlands: Martinus Nijhoff, 1985.

S. Levine, Z. Popovic, and V. Koltun. Feature construction for inverse reinforcement learning. In Advances
in Neural Information Processing Systems (NIPS), 2010.

C. Manning and H. Schuetze. Foundations of Statistical Natural Language Processing. MIT Press,
Cambridge, MA, USA, 1999.

M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki. A learning approach to robotic table tennis.
IEEE Transactions on Robotics, 21:767–771, 2005.

H. Miyamoto, S. Schaal, F. Gadolfo, H. Gomi, Y. Koike, R. Osu, E. Nakano, Y. Wada, and M. Kawato. A
kendama learning robot based on bi-directional theory. Neural Networks, 9:1281–1302, 1996.

F. Miyazaki, M. Matsushima, and M. Takeuchi. Learning to dynamically manipulate: A table tennis robot
controls a ball and rallies with a human being. In S. Kawamura and M. Svinin, editors, Advances in
Robot Control, pages 3137–341. Springer Berlin Heidelberg, 2006.

G. Monahan. A survey of partially observable markov decision processes: Theory, models and algorithms.
Management Science, 28:1 – 16, 1982.

P. Morasso. Spatial control of arm movements. Experimental Brain Research, 42(2):223–227, 1981.

T. Mori, M. Howard, and S. Vijayakumar. Model-free apprenticeship learning for transfer of human
impedance behaviour. In Proceedings of the 11th IEEE-RAS International Conference on Humanoid
Robots (HUMANOIDS), pages 239 – 246, 2011.

K. Muelling. Motor control and learning in table tennis. Master’s thesis, Eberhard-Karls University, 2009.

K. Muelling, J. Kober, and J. Peters. A biomimetic approach to robot table tennis. Adaptive Behavior, 19
(5):359 – 376, 2011. URL http://adb.sagepub.com/content/19/5/359.refs.

K. Muelling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking movements
in robot table tennis. The International Journal of Robotics Research, 32(3):263 – 279, 2013. URL
http://ijr.sagepub.com/content/32/3/263.refs. SAGE Publications Ltd, All rights reserved.

K. Muelling, A. Boularias, B. Mohler, B. Schoelkopf, and J. Peters. Learning strategies in table tennis
using inverse reinforcement learning. Biological Cybernetics, under review.

M. Muster. Lernende roboter: Wie ein roboter tischtennis lernen kann. Trainerbrief des Verband Deutscher
Tischtennistrainer (VDTT), 2:8 – 15, 2013.

J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato. Learning from demonstration
and adaption of biped locomotion. Robotics and Autonomous Systems (RAS), 47(2-3):79 – 91, 2004.

A. Ng and X. Russel. Algorithms for inverse reinforcement learning. In Proceedings of the 17th
International Conference of Machine Learning, pages 663 – 670, 2000.

K. Ning, T. Kulvicius, M. Tamosiunaite, and F. Wörgötter. Accurate position and velocity control for
trajectories based on dynamic movement primitives. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 5006–5011, 2011.

D. Park, H. Hoffmann, P. Pastor, and S. Schaal. Movement reproduction and obstacle avoidance with
dynamic movement primitives and potential fields. In Proceedings of the 8th International Conference
on Humanoid Robots (Humanoids), pages 91 –98, 2008.

Bibliography 79

http://adb.sagepub.com/content/19/5/359.refs
http://ijr.sagepub.com/content/32/3/263.refs


D. Perzanowski, A. Schultz, and W. Adams. Integrating natural language and gesture in a robotics
domain. In International Symposium of Intelligent Control, pages 247 – 252, 1998.

J. Peters and S. Schaal. Policy gradient methods for robotics. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), pages 2219 – 2225, 2006.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural Networks,
21(4):682–697, 05 2008a.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 03 2008b.

D. Pongas, A. Billard, and S. Schaal. Rapid synchronization and accurate phase-locking of rhythmic
motor primitives. In Proceedings of the International Conference Intelligent Robots and Systems (IROS),
pages 2911–2916, 2005.

W. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality. John Wiley& Sons,
Inc, New York, NY, USA, 1 edition, 2011.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numeriacal recipes: The Art of Scientific Computing.
Cambridge University Press, 3th edition, 2007.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994.

D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In Proceedings of the 20th
International Joint Conference of Artificial Intelligence (IJCAI), pages 2586 – 2591, 2007.

M. Ramanantsoa and A. Durey. Towards a stroke construction model. Int. Journal of Table Tennis Science,
2(2):97–114, 1994.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA,
USA, 2006.

N. Ratliff, J. Bagnell, and M. Zinkevich. Maximum margin planning. In Proceedings of the 23rd
International Conference on Machine Learning (ICML), pages 729 – 736, 2006.

D. Ricks and M. Colton. Trends and considerations in robot-assisted autism therapy. In Proceedings of
the International Conference on Robotics and Automation (ICRA), pages 4354 – 4359, 2010.

H. Ripoll and P. Fleurance. What does keeping one’s eye on the ball mean? Ergonomics, 31:1647–1654,
1988.

S. Rodrigues, J. Vickers, and M. Williams. Head, eye and arm coordination in table tennis. Journal of
Sport Sciences, 20:187–200, 2002.

A. Roitman, S. G. Massaquoi, K. Takahashi, and T. Ebner. Kinematic analysis of manual tracking in
monkeys: chacterization of movement intermittencies during a circular tracking task. Journal of
Neurophysiology, 91(2):901–911, 2004.

S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6):233 –
242, 1999.

S. Schaal. The SL simulation and real-time control software package. Technical report, University of
Southern California, 2009.

S. Schaal, C. G. Atkeson, and S. Vijayakumar. Scalable techniques from nonparameteric statistics for
real-time robot learning. Applied Intelligence, 17(1):49 – 60, 2002.

80 Bibliography



S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor learning by imitation.
Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358:537 – 547,
2003a.

S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning motor primitives. In International Symposium
on Robotics Research (ISRR), pages 561 – 572, 2003b.

S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control – a unifying view. Progress
in Brain Research, 165(1):425 – 445, 2007.

R. Schmidt. A schema theory of discrete motor skill learning theory. Psychological Review, 82(4):
225–260, 1975.

R. Schmidt. The motor-action controversy. In O. Meijer and K. Roth, editors, Complex movement behavior,
pages 3 – 44. Amsterdam: Elsevier, 1988.

R. Schmidt. Motor schema theory after 27 years: Reflections and implications for a new theory. Research
Quartely for Exercise and Sport, 74(4):366–379, 2003.

R. Schmidt and C. Wrisberg. Motor Learning and Performance. Human Kinetics, second edition, 2000.

W. Schöllhorn. Practical consequences of systems dynamic approach to technique and strength training.
Acta Academiae Olympique Estonia, 8:25 – 37, 2000.

W. Schöllhorn. Coordination dynamnics and its consequences on sport and exercise. International
Journal of Computer Science in Sports, 2:40 – 46, 2003.

A. Scott and E. Fong. Body structures and functions. Delmar Learning, Clifton Park, NY, 10th edition,
2004.

C. Seve, J. Saury, S. Leblanc, and M. Durand. Course-of-action theory in table tennis: a qualitative
analysis of the knowledge used by three elite players during matches. Revue europeen de psychologie
appliquee, 55:145 –155, 2004.

H. Simon. The Shape of Automation: for Men and Management. Harper & Row, New York, Evanston and
London, 1965.

H. W. Sorenson. Kalman filtering: theory and application. IEEE Press, Los Alamitos, CA, 1985.

M. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley & Sons, Inc.,
Hoboken, NY, 2006.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA, USA,
1998.

M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter. Learning to pour with a robot arm; combining
goal and shape learning for dynamic movement primitives. Robotics and Autonomous Systems, 59:
910–922, 2011.

G. Tesauro. Td-gammon, a self-teaching backgammon program achieves master-level play. Neural
Computation, 6(2):215 – 219, 1994.

The ALIZ-E project team. Adaptive strategies for sustainable long-term social interaction, April 2013.
URL http://www.aliz-e.org.

E. Todorov and M. Jordan. Optimal feedback control as a theory of motor coordination. Nature
Neuroscience, 5(11):1226–1235, 2002.

Bibliography 81

http://www.aliz-e.org


D. Tyldesley and H. Whiting. Operational timing. Journal of Human Movement Studies, 1(4):172–177,
1975.

A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-specific generalization of discrete and periodic
dynamic movement primitives. IEEE Transactions on Robotics, 26(5):800 – 815, 2010.

Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in human multijoint arm
movement – minimum torque-change model. Biological Cybernetics, 61(2):89–101, 1989.

J. Vis, W. Kosters, and A. Terroba. Tennis patterns: Player, match and beyond. In Proceedings of the 22nd
Benelux Conference on Artificial Intelligence, 2010.

J. Wang and N. Parameswaran. Analyzing tennis tactics from broadcsting tennis video clips. In
Proceedings of the 11th International Multimedia Modelling Conference, pages 102 – 106, 2005.

P. Wang, R. Cai, and S. Yang. A tennis video indexing approach through pattern discovery in interactive
process. Advances in Multimedia Information Processing, 3331:59 – 56, 2004.

Z. Wang, K. Muelling, M. Deisenroth, H. Ben-Amor, D. Vogt, B. Schoelkopf, and J. Peters. Probabilistic
movement modeling for intention inference in human-robot interaction. International Journal of
Robotics Research (IJRR), 32(7):841 – 858, 2013.

Wikipedia. Fosbury flop, August 2012. URL http://en.wikipedia.org/wiki/Fosbury_Flop.

A. Williams and J. Starkes. Cognitive expertise and performance in interceptive actions. In Interceptive
Actions in Sport: Information and Movement. Routledge Chapman & Hall, New York, NY, 2002.

B. Williams, M. Toussaint, and A. Storkey. Modelling motion primitives and their timing in biologically
executed movements. In Advances in Neural Information Processing Systems 20 (NIPS), pages 1609–
1616, 2008.

D. Wolpert, C. Miall, and M. Kawato. Internal models in the cerebellum. Trends in Cognitive Science, 2:
338–347, 1998.

R. Woodworth. The accuracy of voluntary movement. Psychological Review, 3(13):1–106, 1899.

S. Yeo, M. Lesmana, N. D.R., and P. D. Eyecatch: Simulating visuomotor coordination for object
interception. ACM Transactions on Graphics (TOG), 31(4):42, 2012.

D. Zhang, Z. an Xu and M. Tau. Visual measurements and prediction of ball trajectory for table tennis
robot. IEEE Transactions on Instrumentation and Measurements, 59(12):3195–3205, 2010.

S. Zhifei and E. Joo. A survey of inverse reinforcement learning techniques. International Journal of
Intelligent Computing and Cybernetics, 5(3):293 – 311, 2012.

B. Ziebart, A. Maas, A. Bagnell, and A. Dey. Maximum entropy inverse reinforcement learning. In
Proceedings of the 23th National Conference of Articiial Intelligence (AAAI), pages 1433 – 1438, 2008.

B. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, A. Bagnell, M. Herbert, and S. Srinivasa.
Planning based prediction for pedestrians. In Proceedings of the International Conference on Intelligent
Robotics and Systems (IROS), pages 3931 – 3936, 2009.

82 Bibliography

http://en.wikipedia.org/wiki/Fosbury_Flop


Appendix

Appendix A – Fifth order Polynomials

A fifth order polynomial is given by

θk =
5
∑

l=0

αkl t
l , (5.1)

where αk = [αk0,αk1,αk2,αk3,αk4,αk5]T are adjustable parameters and k denotes the DoF. The bound-
ary conditions for the joint positions, velocities, and accelerations at the time points t i and t f are given
by

θk(t i) = pi, θ̇k(t i) = v i, θ̈k(t i) = ai, (5.2)

θk(t f ) = p f , θ̇k(t f ) = v f , θ̈k(t f ) = a f , (5.3)

where pi, v i, ai, p f , v f and a f are the joint angles, velocities, and accelerations at the time points t i and
t f , respectively. With the linear equation system Mα= b given by



















1 t i t2
i t3

i t4
i t5

i
0 1 2t i 3t2

i 4t3
i 5t4

i
0 0 2 6t i 12t2

i 20t3
i

1 t f t2
f t3

f t4
f t5

f
0 1 2t f 3t2

f 4t3
f 5t4

f
0 0 2 6t f 12t2

f 20t3
f



















︸ ︷︷ ︸

M(ti ,t f )

















αk0
αk1
αk2
αk3
αk4
αk5

















︸ ︷︷ ︸

αk

=

















pi
v i
ai
p f
v f
a f

















︸ ︷︷ ︸

b

, (5.4)

we can efficiently solve for α using Gauss-Seidel elimination [Press et al., 2007].

Acceleration-minimizing Fifth Order Polynomials

For table tennis, the trajectories resulting from the 5th order polynomials can result in high accelerations
that exceed the acceleration limits of the robot. Hence, we would like to find a final acceleration value
a f for the hitting stage such that the maximal acceleration is minimized. Therefore, we apply the
following constraints to the trajectory

θk(t i) = pi, θ̇k(t i) = v i, θ̈k(t i) = ai, (5.5)

θk(t f ) = p f , θ̇k(t f ) = v f ,
...
θ k(t j) = 0, (5.6)

where
...
θ k(t j) is the jerk and t j is an arbitrary time point with t i < t j < t f at which the acceleration is

maximal. Given these constraints we can compute the coefficients αk0 to αk5. Evaluating ∂ θ̈(t)/∂ t j = 0,
yields the solutions

t1
j =−

(
p

6− 4)t i + (
p

6− 6)t f

10
, (5.7)

t2
j =
(
p

6+ 4)t i + (6−
p

6)t f

10
. (5.8)

83



The expression for t j corresponds to the maximum near to the goal while t2
j corresponds to the maximum

near the start position. The first solution for t j is the one of interest, since updating the trajectory at
the end of the stage can cause high acceleration peaks at this point. The resulting acceleration that
minimizes the acceleration at t j =−0.1((

p
6− 4)t i + (

p
6− 6)t f ) is given by

a f =
−(2
p

6− 3)(t i − t f )v i + ((4
p

6− 1)(t i − t f )v f + (4− 6
3
2 ))(pi − p f )

(
p

6+ 1)(t i − t f )2
. (5.9)

This final acceleration does not just minimize the maximal acceleration but also the position overshoot
at the end of the trajectory.

Appendix B - Cost regularized Kernel Regression

Cost-regularized Kernel Regression (CrKR), as suggested in [Kober et al., 2012b], is a reinforcement
learning approach based on a kernelized version of reward-weighted regression. The goal is to find a
mapping between the meta-parameter δ of a motor policy and a situation described by the state vector
s. Therefore, we looking for a stochastic policy µ(δ|s) that maximizes the expected reward

J(µ) = E
�

r(s,δ)|µ
	

, (5.10)

where r(s,δ) denotes the reward following the selection of δ in state s. The CrKR is based on the use of
the Gaussian distribution with mean δ̄ and variance Σ for the policy µ, i.e., µ(δ|s) =N

�

δ|δ̄,Σ
�

. The
mean and the variance are computed by

δ = k(s)T (K+ϕC)−1D (5.11)

Σ = k(s, s) +ϕ− k(s)T (K+ϕC)−1k(s) (5.12)

where D is a matrix that contains the training examples δT
n , C= diag{r−1

1 (x1, s1), ..., r−1
N (xN, sN)} is the

cost matrix, ϕ is a ridge factor, k(s) is a vector that measures the distance between the current state and
the state of the training example using a Gaussian kernel and K is a matrix that contains the pairwise
distances between all combinations of training points. A detailed derivation of this policy can be found
in [Kober et al., 2012b].

In this policy µ, the variance corresponds to the uncertainty over output δ and a high cost results in a
high uncertainty. If we have a training example with a high cost, the policy will explore new actions and
the training point will only have a strongly reduced influence. On the other hand, when the cost is low,
we can assume that we are close to the optimal policy and the variance shrinks to a small region around
the observed example.

Appendix C - Linear Bayesian Regression

Linear Bayesian Regression is a linear regression approach in the context of Bayesian inference. The
following summary of the approach is based on Bishop [2006]. For more details we refer the reader to
Chapter 2 of Rasmussen and Williams [2006] or Chapter 3 of Bishop [2006].

Assume we are interested in the target variable t which can be modeled by a function y(x,λ) with
additive Gaussian noise such that

t = y(x,λ) + ε
= λTφ(x) + ε,

84 Appendix



where φ(x) is the vector of basis functions, λ is the vector of weights and ε is a zero mean Gaussian
random variable with precision β . The conditional distribution of the target variable t given x, λ and
β is given by the Gaussian distribution p(t|x,λ,β) =N (t|λTφ(x),β−1) [Bishop and Tipping, 2003].
Using the conjugate prior p(λ) =N (λ|m0,V0), the posterior distribution of the unknown parameter
vector λ is again a Gaussian distribution and given by p(λ|t) =N λ|mn,VN ), where

VN =
�

V−1
0 + βφ

Tφ
�−1

,

mN = VN

�

V−1
0 m0+ βΦ

T t
�

,

and m0 and V0 are the mean and covariance of the prior of λ [Bishop, 2006].
We can weight each observation similarly to a weighted least squares regression by assigning bad

observations a higher variance than others. Therefore, we obtain p(t|x,λ,β) =N (t|λTφ(x), (βw)−1).
Following the derivation in Bishop [2006], mean and covariance of the posterior distribution of λ are
defined by

VN =
�

V−1
0 + βφ

T Wφ
�−1

,

mN = VN

�

V−1
0 m0+ βΦ

T Wt
�

,

where W is a diagonal matrix whose diagonal entries define the uncertainty of the observation. When
considering the special case of a Gaussian prior with zero mean p(λ) =N (λ|0,α−1I) [Bishop, 2006],
the corresponding mean and covariance of the posterior distribution are given by

VN =
�

αI+ βΦT WΦ
�−1

,

mN = βVNΦ
T Wt.

In this case, the mean mN corresponds to the solution of the Weighted Ridge Regression.

Appendix D - Stability of Hitting DMPs

Here, we provide the mathematical proof of the stability and convergence of the extension of the DMPs
presented in Kober et al. [2010] and in this paper. Please note that for the ease of reading the variables
used in this section are not related to those with the same name elsewhere in this manuscript. The block
diagrams for the second-order-system for the system is illustrated in Figure 5.1.

Stability of Hitting DMPs with Linear Velocity

If we assume a linear velocity of the target object as in the setup of Kober et al. [2010], the forward
channel of the second-order-system expressed in Laplace space is given by

G(s) =
Y (s)
E(s)

,

where Y (s) = (AE(s) + BsE(s))/s2 is the state of our system, U(s) is our desired position of the moving
target, E(s) = U(s)− Y (s) and s ∈ C is the (complex) frequency variable. The transfer function is given
by

T (s) =
Y (s)
U(s)

=
G(s)

1+ G(s)
=

A+ Bs

s2+ Bs+ A
. (5.13)

85



G(s)
U(s) E(s)

Y(s)

Y(s)+
x
-

(a)

Figure 5.1: Diagrams of the employed second-order-system for the hitting DMPs in Laplace space.

Using A = ω2 and B = 2ω the system has a double pole at −ω which results in a critically damped
response. The steady-state error can be calculated by

ess = lim
t→∞

e(t) = lim
s→0

sU(s)(1− T (s)). (5.14)

For a linear moving object U(s) = V/s2+ C/s and therefore we obtain

ess = 0. (5.15)

The error’s change rate is given by

ėss = 0. (5.16)

Stability of Hitting DMPs with a Polynomial Velocity Profile

For the extension of the DMPs used and presented in this paper, the feed-forward term τ2 g̈ cancels
all higher order terms, hence the hitting DMPs with polynomial velocity profile has the same stability
properties as the hitting DMPs with linear velocity.

86 Appendix



List of Figures

1.1 Overview of the thesis and its contributions. This figure shows the contributions of this
thesis (red), how different aspects are connected with each other and their belonging to
the different research fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline of the thesis. The thesis is divided into two parts: Modeling complex motor
behavior and learning complex motor behavior. Learning complex table tennis can be
further divided into selecting and generalizing striking movements and learning higher
level strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 This figure illustrates the four movement stages of Ramanantsoa and Durey [1994]
recorded in a VICON motion capture system where (a) shows the Awaiting Stage in which
the opponent is observed, (b) the Preparation Stage in which the stroke is prepared, (c)
the Hitting Stage in which the ball is intercepted, and (d) the Finishing Stage. The red
and blue arrow show the movement of the ball and the racket, respectively, in each stage. 16

2.2 This figure shows different trajectories of intermediate table tennis players for one
hitting motion. The trajectories are color coded according to the stages suggested by
Ramanantsoa and Durey. The awaiting stage is colored in blue, the preparation stage in
magenta, the hitting stage in green and the follow through stage in red. Colored circles
show the corresponding position on the ball and arm trajectory respectively. . . . . . . . . 17

2.3 This figure illustrates the virtual hitting plane in the table tennis setup. The intersection
point of the ball trajectory with the virtual hitting plane defines the virtual hitting point
xhp. The x direction of the world coordinate system is parallel to the net, the y direction
is parallel to the long side of the table and the z direction goes upwards. . . . . . . . . . . 18

2.4 Computation of the desired normal vector ned of the end-effector and the velocity based
on the orientation of the racket nrd, the velocity o and i of the ball after and before the
impact respectively. Figure (a) illustrates the normal vector ne, the desired orientation of
the racket nrd and the resulting desired orientation ned. The normal of the end-effector
ned is perpendicular to nrd. Figure (b) shows the relationship between nrd , o and i.
Assuming the absence of spin and a speed change only in the o− i direction, nrd is given
by the normalized difference vector of o and i. Figure (c) illustrates the computation of
the velocity v of the racket based on the relation of v, nrd, o and i. . . . . . . . . . . . . . 20

2.5 This figure shows the movement of the racket and the ball on the real Barrett WAM for a
successful striking movement. The ball (solid blue line) moves towards the robot until
it is hit by the racket (dashed magenta line) at the virtual hitting point (black triangle).
The y-axis is aligned with the long side of the table tennis table, the x-axis is aligned with
the width of the table and the z-axis goes upwards. . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 The figure shows the different stages, matching those in Figure 2.1, but performed by the
real robot. At the beginning the robot is in the rest posture waiting for an incoming ball
(Subfigure a). As a ball moves towards the robot, the arm performs a backswing motion
to prepare the striking movement (Subfigure b). Based on the prediction of the ball the
system chooses a hitting point. When the estimated time to contact reaches a critical
value the arm moves towards the hitting point and hits the ball back to the opponent
(Subfigure c). The robot arm moves upwards with decreasing velocity until the velocity
is zero (Subfigure d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Various target of the biomimetic table tennis setup. The plane of possible hitting points
has a length of 1.8 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

87



3.1 General setup for learning a motor task using the Mixture of Motor Primitives (MoMP).
A supervisory level creates the augmented state s̃ containing the relevant information
of the task based on the state of the system. MoMP selects and generalizes among the
movement templates in a library according to the augmented state s̃ which is provided
by the supervisory level. As a result we obtain a new motor policy that can be executed.
A teacher provides learning signals to the supervisory level as well as the movement
generation level such that the system is able to adapt both the generation of the task
relevant information and the generation of the movement. . . . . . . . . . . . . . . . . . . . 33

3.2 The learning process in the presented MoMP framework. Given a set of demonstrations
recorded by kinesthetic teach-in, the system generates the movement library, initializes
the gating network as well as the estimation of the augmented states used in the MoMP.
The resulting initial system can be used to perform a given motor task. During the
execution, the gating network, the augmented states estimation and the primitives are
further improved using reinforcement learning. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 An illustration of the mixture of motor primitive framework. The gating network weights
the single movement templates stored in a movement library based on an augmented
state. The weighted sum of these primitives defines the new motor policy which produces
the joint positions, velocities and accelerations for one degree of freedom. The resulting
movement is then executed using a control law for execution which generates the required
motor torques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Changing the goal position and velocity is essential for adapting the demonstration to
new situations. This figure illustrates how the different versions of the dynamical system
based movement primitives are modulated by changing the goal position and velocity
of the movement as they frequently occur in striking sports. The demonstration of a
striking movement was obtained by kinesthetic teach-in in table tennis. After learning, all
movement primitive formulations presented were able to reproduce the demonstration to
a certain extend. However, the three formulations are differently robust against changes
in the desired goal position and velocity. We changed the position by 0.15 m and the
velocity by 0.4 m/s. The original formulation of Ijspeert is not able to reach the desired
velocity as the system ends with zero velocity. The formulation of Kober et al. [2010] is
able to adapt to a new final velocity. However, the accuracy of the adapted movement
does not suffice for practical problems. The reformulation presented here reduces this
inaccuracy drastically and stays closer to the desired movement shape. . . . . . . . . . . . 38

3.5 A key problem of the previous movement primitive formulation is the highly uneven
distributed accelerations with a peak at the beginning of the movement. Such jumps can
affect the position and velocity drastically as shown in this figure. They may result in
the attempt to generate infeasible trajectories for real robots. Kober et al. reduced this
effect by gradually activating the attractor dynamics. However, if the initial movement
amplitude is close to zero in a demonstration jumps will occur when the goal position is
changed. By introducing a new scaling term for f , we can avoid jumps at the beginning
of the movement and reduce overshooting in the position and velocity profile. The
demonstration was obtained by kinesthetic teach-in of a striking movement. Both
position and velocity were then changed to a new goal. Note, that the acceleration of the
modified hitting primitives is so much smaller that it appears to be zero when compared
to Kober’s and Ijspeert’s original versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Sequence of a hitting motion in table tennis demonstrated by a human teacher and
reproduced with a Barrett WAM arm with seven DoF. From the left to the right the single
pictures represent the system at the end of the awaiting, preparing, hitting and follow
through stage respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

88 List of Figures



3.7 (a) Velocity error at the movement goal of the single movement primitives and the MoMP.
The execution error of each movement primitive in the library was determined. The first
bar of each DoF shows the mean error of the individual movement primitives and the
corresponding standard deviations. The second bar of each DoF shows the mean error of
the motor policies generated by the MoMP. (b) Improvement of the MoMP system with a
growing number of movement primitives in the library. . . . . . . . . . . . . . . . . . . . . . 44

3.8 The locations of ball-racket impacts during demonstration and evaluation on the real
robot. (a) The ball-racket impacts during the evaluation with the fixed ball launcher. (b)
The ball-racket impacts of the evaluation of the oscillating ball launcher. . . . . . . . . . . 45

3.9 Distribution on the hitting manifold (i.e., the part of the state-space that defines the
ball-racket contacts) of the most dominant movement primitives before (a) and after (b)
training. Each colored region corresponds to one movement primitive in the movement
library. Each point corresponds to the point of impact during evaluation. The usage of
the movement primitives changed after training the system with a ball launcher. While
two movement primitives were relocated, three were avoided and replaced by two better
suited primitives. Please note that we have displayed only a small excerpt of the served
forehand area here in order to visualize the re-organization of a few primitives. . . . . . 46

4.1 Considered scenario: A table tennis player (agent) plays a game of table tennis. At time
point t, he has to decide how to return the approaching ball to the opponents court such
that the chance of winning the point will increase. Returning the ball to a specific goal on
the opponent’s court (with a specific orientation and velocity) corresponds to an action
at executed by the agent. The player chooses this action based on his current state st
(Figure a). Due to this action, the system will transfer to the state st+1 defining a new
situation for the player (Figure b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Figure(a): The state of the system is defined by the relative position of the agent (dsx ,
ds y) and the the relative position (dox , do y) and velocity (vo) of the opponent towards the
table, as well as the the position (dbx , db y) and velocity (vb) of the ball when bouncing
on the table. Figure(b): In order to compute the table preferences on the opponent’s
court the table was divided into nine cells. Each cell was assigned a center (red points) ci. 57

4.3 The bouncing angles αy and αz in the xy- and xz-surface define the orientation of the ball.
While αz corresponds to the horizontal bouncing angle, αy corresponds to the direction
of the ball and thereby defines if the ball is played cross to the left, cross to the right or
straight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Experimental setup. A naive player (right side) plays against a skilled opponent (left
side). The upper body of both players, as well as the ball are tracked by a motion capture
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Resulting parameter values for the individual features. Figure a shows the resulting
reward function of the table preferences for Algorithm 7 (MM). Figure b shows the
weights of all other features for Algorithm 7 (MM) and Algorithm 8 (RE), respectively.
Figure c shows the differences of the average reward of the expert and the naive player for
each feature separately using the reward function of the max-margin algorithm (green)
and the relative entropy algorithm (yellow). Figure d shows the differences of the average
rewards for the most important features at different time steps before the terminal state
(win or loss) for the reward function yield with the max-margin algorithm. . . . . . . . . 63

4.6 Histogram of the average reward differences between the expert and sub-optimal players
for each player and each feature individually. The reward function was received by the
MMS algorithm with a horizon of three. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

List of Figures 89



4.7 Possible strategy that distinguished the expert player that won the game, from the non-
expert players that lost the game against the opponent. If the expert had the chance, he
would play the ball very cross to the backhand area (Figure a). As a result the opponent
was forced to move more into the left corner. The expert could then play the ball to
the forehand area in order to increase the distance between the ball and the opponent
(Figure b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Diagrams of the employed second-order-system for the hitting DMPs in Laplace space. . 86

90 List of Figures



List of Algorithms

1 Table Tennis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Generalizing Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Mixture of Motor Primitives (MoMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Imitation Learning of one DMP for MoMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 General IRL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6 Maximum Margin for Game Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7 Maximum Margin of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8 Relative Entropy IRL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

91





List of Tables

2.1 This table shows a few robot table tennis systems as examples. Note that most systems
include linear axes to achieve the necessary speed or have an additional stick mounted
between racket and the robot’s palm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Root Square Mean Error in centimeters of the deviation of the applied dynamics model of
the ball and the vision information of the ball 200 ms after the bounce. The velocity of the
model was set to the estimate of the EKF before bouncing. The y direction corresponds
to the side direction of the table, x direction corresponds to the long side of the table and
z to the height (see Figure 2.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Variance of the velocity of the ball before impact in the different experiments of the
evaluation. The maximal velocity vmax of the ball before impact is defined by vmax =
p

| ẋ |2+ | ẏ|2+ |ż|2. All values are given in meters per second [m/s]. . . . . . . . . . . . . 47
3.2 Analysis of the accuracy of the modified hitting primitives after both imitation and

reinforcement learning. The right part of the table shows the changes in the desired
final position and velocity compared to the values in the demonstration. On the left
side of the table the corresponding mean errors (averaged over all DoFs) in the desired
position and velocity are displayed at time T f . The simulation analysis consisted of
several configurations in which the motor policies yield through demonstrations were
perturbed. For each configuration, either the final position, final velocity or both were
modified using uniform value shifts between [-2,2] and [-1,1]. Please note that these
position shifts exceed those which were observed on the real system. . . . . . . . . . . . . 47

4.1 Summary of the results of the evaluations for the different methods. The differences
in the average rewards with respect to the expert, define the differences between the
reward of the expert and the spared test subject of the non-expert data set. The feature
of winning and loosing the game were not included. MMG corresponds to the model-free
maximum-margin of game values, MMS corresponds to the model-free maximum margin
of states values with an horizon of three and RE corresponds to the relative entropy
method (see Section 4.2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Summary of the results for the different horizons with the MMS algorithm. The differences
in the average reward with respect to the expert trained with the different horizons H.
The differences in the average reward directly before the terminal, define the differences
of the reward of the expert and the spared test subject for the state before the terminal
or the average reward of the two states before the terminal for the horizons 2 and 3
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

93





Curriculum Vitæ

Education

12.2009 - now Ph.D. Student, supervised by Prof. Dr. Jan Peters
Max-Planck-Instiute for Intelligent Systems and Technische Universitaet
Darmstadt
Topic: Modelling and Learning of Complex Motor Skills: Case studies
with Robot Table Tennis

10.2003 - 11.2009 Diplom-Informatiker/Bioinformatiker
Eberhard Karls Universität Tübingen, grade: sehr gut

06.2003 Abitur, Neues Friedlaender Gymnasium, grade: 1.2

Research and Teaching Experience

08.2007 - 11.2009 Undergraduate Research Assistant
Max-Planck-Instiute for biological Cybernetics

10.2007 - 07.2008 Departemental Student Advisor, Informatik/Bioinformatik
Eberhard Karls Universität Tübingen

05.2007 - 08.2007 Lecture Assistant
Undergraduate course: Mathematik II fuer (Bio-)Informatiker
Eberhard Karls Universität Tübingen

10.2006 - 02.2007 Lecture Assistant
Undergraduate course: Mathematik I fuer (Bio-)Informatiker
Eberhard Karls Universität Tübingen

10.2005 - 02.2006 Lecture Assistant
Undergraduate course: Informatik 1
Eberhard Karls Universität Tübingen

Committee Work

11.2003 – 11.2009 Member of the Computer Science Student Senate (Fachschaft)
10.2007 – 09.2008 Student representative of the Examination Committee (Pruefungsauss-

chuss), Fakultät für Informations- und Kognitionswissenschaften, Eber-
hard Karls Universität Tübingen

10.2004 – 09.2007 Student representative of the Curriculum Committee (Studienkommis-
sion), Fakultät für Informations- und Kognitionswissenschaften, Eberhard
Karls Universität Tübingen

10.2005 – 09.2006 Student representative at Faculty Meetings (Fakultätsrat), Fakultät für
Informations- und Kognitionswissenschaften, Eberhard Karls Universität
Tübingen

95


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Abbreviations
	Introduction
	Modeling Complex Behaviors
	Learning Complex Behaviors with Robots
	Table Tennis – An Example for a Complex Motor Task
	Contributions
	Modeling Robot Table Tennis
	Learning Table Tennis

	Organization of this Thesis

	A Biomimetic Approach to Robot Table Tennis
	Prologue
	Related Work
	Our Contributions

	Modeling Human Striking Movements in Table Tennis
	Striking Movement Generation
	Initiation of Hitting Movements
	Extracting Essential Context Parameters
	Movement Stages of a Stroke

	A Biologically-Inspired Trajectory Generator for Table Tennis Strokes
	Overview of the Biomimetic Player
	Dynamics Model of the Table Tennis Ball
	Determining the Goal Parameters 
	Translating Virtual Hitting Points into Configurations
	Movement Parameters 
	Movement Generation 

	Evaluations
	Evaluation against a Ball Launcher
	Accuracy of the Ball Dynamics Model
	Comparison to Human Behavior and Performance

	Discussion and Conclusion of Chapter 2

	Learning to Select and Generalize Striking Movements for Robot Table Tennis
	Prologue
	Learning and Generalizing Motor Behaviors
	Learning a Motor Task using the Mixture of Motor Primitives
	Computation of the Augmented State
	Representation of Behavior with Movement Primitives

	Evaluation
	Robot Table Tennis Setup
	Computing the Meta-Parameters
	Mixture of Motor Primitives

	Discussion and Conclusion of Chapter 3

	Learning Strategies in Table Tennis using Inverse Reinforcement Learning
	Prologue
	Modeling Human Strategies
	Preliminaries
	Learning the Reward Function
	Computational Model for Representing Strategies in Table Tennis

	Experiments and Evaluations
	Experimental Setup and Data Collection
	Results and Discussion

	Conclusion of Chapter 4

	Conclusion and Future Work
	Summary of the Thesis
	Modeling Complex Motor Tasks
	Learning Complex Motor Tasks

	Open Problems
	Extension of the Table Tennis Player
	Learning Complex Motor Skills
	Learning Higher-Level Strategies

	Publications
	Journal Papers
	Conference and Seminar Papers


	Bibliography
	Appendix
	List of Figures
	List of Algorithms
	List of Tables
	Curriculum Vitæ

