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Abstract
In robotics we often want to solve a multitude of different, but related tasks. Movement

primitives (MPs) provide a powerful framework for data driven movement generation that has

been successfully applied for learning from demonstrations and robot reinforcement learning.

As the parameters of the primitives are typically high dimensional, a common practice for the

generalization of movement primitives to new tasks is to adapt only a small set of control

variables, also called meta parameters, of the primitive. Yet, for most MP representations,

the encoding of these control variables is pre-coded in the representation and can not be

adapted to the considered tasks. In this thesis, we want to learn the encoding of task-specific

control variables also from data instead of relying on fixed meta-parameter representations.

We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable

model for probabilistic movement primitives (ProMPs), which is a recent movement primitive

representation. We show on two real robot datasets that ProMPs based on HBMs outperform

standard ProMPs in terms of generalization and learning from a small amount of data and

also allows for an intuitive analysis of the movement. We also extend our HBM to a mixture

model, such that we can model different movement types in the same dataset.
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Zusammenfassung
In der Robotik betrachten wir oft eine Vielzahl von verschiedenen aber verwandten Aufgaben.

Bewegungsprimitive bieten ein mächtiges Framework für datengesteuertes Erzeugen von Be-

wegungen, welches erfolgreich auf Lernen von Demonstrationen und Reinforcement Learning

angewandt wurde. Da die Parameter der Bewergungsprimitiven typischerweise hochdimen-

sional sind, ist es gängig für die Generalisierung von Bewegungsprimitiven nur eine kleine

Zahl von Kontrollvariablen - auch Metaparameter genannt - anzupassen. Allerdings sind für

die meisten Repräsentationen von Bewegungsprimitiven diese Kontrollvariablen vorab ko-

diert und können nicht an die betrachtete Aufgabe angepasst werden. In dieser Arbeit wollen

wir die Kodierung von aufgabenspezifischen Kontrollvariablen von den Daten lernen, an-

statt vorab kodierte Metaparameter zu verwenden. Wir verwenden bayessche Netze um ein

Modell mit niederdimensionalen, latenten Variablen für probabilistische Bewegungsprimitive

zu lernen. Probabilistische Bewegungsprimitive sind eine kürzlich entwickelte Repräsentati-

on von Bewegungsprimitiven. Wir zeigen anhand von zwei Robotik-Datensätzen dass unsere

Methode die Standardformulierung der probabilistischen Bewegungsprimitiven im Hinblick

auf Generalisierung und Lernen von wenigen Daten übertrifft. Außerdem ermöglicht uns das

vorgestellte Modell eine intuitive Analyse von Bewegungen. Wir erweitern unser Modell zu

einem Mixture Modell, sodass wir verschiedene Bewegungstypen in demselben Datensatz

lernen können.
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1 Introduction
Robots with high-dimensional joint spaces are widely used and find more and more fields of

application, because they have the capability to perform very complex tasks. With increasing

complexity of tasks the ability of learning from demonstrations is crucial, since it is very chal-

lenging to define the tasks by hand. In the pasts reinforcement learning and imitation learning

have risen to great success in this area. When learning or analyzing movement data, we have

to deal with several challenges. These challenges can be high-dimensional data, missing data

or partial observations, multi-modal data or noise. Another requirement is that the robot

can generalize from the learned tasks as it is hard to learn configuration of all possible tasks.

Such tasks can be a grasping movement, lifting objects, motions that avoid an obstacle or even

complex tasks as table tennis strokes or golf movements. For representing such tasks a suit-

able choice are movement primitives (MPs). Movement primitives are a compact parametric

description of a movement [20, 9, 11, 6]. They provide a powerful framework for data driven

movement generation as they can be learned from demonstrations as well as by reinforce-

ment learning. They can generalize to a new task by adapting a given set of meta-parameters

[29, 13, 16]. Such parameters can be the final joint positions or the execution speed of the

movement [9]. Yet, for most movement primitive representations, the set of meta-parameters

is pre-coded into the movement primitive representation and can not be adapted. However,

for most tasks, a different encoding of the meta-parameters might be more appropriate than

the pre-coded parameters of the primitive representation. We believe that this shortcoming

has also hindered the application of movement primitives for more complex multi-task learn-

ing applications. In this work we want to learn the encoding of the meta-parameters also

from data. Therefore we propose an approach which extracts a low-dimensional manifold in

the MP parameter space. Each point on this manifold is described by a small set of control

variables. Hence, our underlying assumption is that, while the parametrization of movements

might be high-dimensional, useful parameter vectors for a given set of tasks typically share

a lot of structure. For instance they lie on a lower dimensional manifold. Each demonstra-

tion can now be characterized by the corresponding control variables that can be seen as a

compact description of the task considered in this demonstration. For example, in a table

tennis scenario, these control variables could specify the location of the hitting point or the

desired return direction for the ball. Hence, our model can not only be applied for efficient

generalization in multi-task learning with movement primitives but is also well suited for an-

alyzing the movements of human demonstrators. We implement the latent manifold model

by a Hierarchical Bayesian Model (HBM). The control variables for each demonstrations are

treated as latent variables and are also inferred from the data. The model is extended by a

mixture model such that we can learn the control variables of multiple types of movements.

We will use Probabilistic Movement Primitives (ProMPs) as underlying movement primitive

representation as they can be naturally integrated in the HBM representation as they ProMPs

already define a simple hierarchical Bayesian model.
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Figure 1.1.: The robots used in the main experiments to learn trajectory distributions. Shown
onn the left panel is Darias consisting of two Kuka light weight robot arms. On the
right the table tennis setup from IAS with a Barrett WAM robot and highspeed
cameras is illustrated. We thank Katharina Muelling for providing the table tennis
data and Axel Griesch for creating this picture.

1.1 Outlook of thesis

In Section 2 we discuss the related work containing movement primitives and multi-task

learning. In Section 3 we discuss variational inference and Probabilistic Movement Primi-

tives as they provide the foundation of this thesis. Afterwards we extend the formulation of

ProMPs by a hierarchical prior to encode low-dimensional latent control variables to obtain

a more accurate model of the prior distribution in Section 4. Results are represented in Sec-

tion 5 where we evaluate our proposed model on two kinestethic teaching datasets. We will

illustrate the improved generalization properties of our approach compared to the standard

ProMP approach in the case of a small amount of training data, noise and partial observa-

tions. In our experiments, we use high-dimensional robots in complex setups such as table

tennis as shown in Figure 1.1. We also show how demonstrations can be easily analyzed and

characterized by the extracted latent control variables.
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2 Related Work
In this section we give an overview on movement primitives and multi-task learning methods

as we extract control variables for movement primitives inspired from models used on multi-

task learning.

2.1 Movement Primitives

Movement primitives can be categorized into trajectory-based [9, 26, 20] and state-based

representations [11]. In this thesis we will focus on trajectory based approaches as they are

more commonly used and easier to scale up to higher dimensions. A common trajectory-based

approach are the dynamical movement primitives (DMPs). DMPs [9] are represented by a

parametrized dynamical system that is given by a linear point-attractor that is perturbed by

a non-linear time dependent forcing function. The forcing function can be used to encode an

arbitrary shape of the trajectory and the weights of the forcing function can be easily obtained

from demonstrations by linear regression. One of the benefits of the DMP approach is that it

specifies a small set of meta-parameters. These meta-parameters include the final position of

the movement, which is given by the point attractor, the final velocities, the execution speed,

or the amplitude of the movement [12, 23, 9]. In multi-task learning with DMPs [16, 13], it

is a common strategy to only adapt the meta-parameters due to the high dimensionality of

the weights of the forcing function. While DMPs have several more benefits such as stability,

and the ability to represent stroke based and rhythmic movements, they also have several

limitations, such as that they can not represent optimal behavior in stochastic systems, the

adaptation of the trajectory due to the meta-parameters is based on heuristics and it is unclear

how to combine DMPs simultaneously or to continuously switch from one DMP to another

DMP.

These issues have been fixed by the recently proposed Probabilistic Movement Primitives

approach (ProMPs)[20, 21]. ProMPs estimate a distribution of trajectories instead of single

trajectories. The main benefit of the probabilistic representation is that we can use probabilis-

tic operators such as conditioning for adaptation and a product of distribution for simulta-

neous combination. A distribution over trajectories also contains information on which time

points are relevant for the movement, e.g., time points with small variance in the Cartesian

end-effector space could denote task relevant via-points or targets. More details on ProMPs

are given in Section 3.1.

However, in difference to DMPs, ProMPs are lacking meta-parameters that can be used

to adapt the trajectories with a small amount of control variables. It would be easy to pre-

specify such control variables by conditioning the trajectory distribution for a fixed set of time

points. However such an approach would again require a lot of manual tuning and is lacking

flexibility. In this thesis we face this issue by extending the prior distribution of the original

ProMP formulation with a hierarchical prior which contains the desired control variables.

This approach is part of my thesis and discussed in Section 4.
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2.2 Multi-task learning

The approach developed for this thesis automatically extracts a small amount of control vari-

ables from a given set of demonstrations in the ProMP framework. We use a hierarchical

Bayesian approach to model prior distributions, which is inspired by techniques from multi-

task learning (MTL) [4, 31, 18, 15, 25, 27]. multi-task Learning has received a lot of intention

over the last two decades and still is an important research area [31, 18, 15, 25, 27]. It is not

only used on robotics but also in research areas as computer vision or medical science. It first

is defined by Caruana in [4] as

“Multi-task Learning (MTL) is an inductive transfer mechanism whose principle goal

is to improve generalization performance (. . . ) by leveraging the domain-specific

information contained in the training signals of related tasks.”.

The standard methodology in machine learning dividing complex problems into subproblems,

which are solved independent from one another suffer from the fact that the rich information

shared across these subproblems is completely lost. In MTL the underlying assumption is

that multiple tasks (or trajectories) share a common structure, and, hence, with an increasing

number of related tasks that have been already learned, the number of needed training sam-

ples for generalizing to a new task decreases [2]. This property is highly desired in robotics,

where the data is often high dimensional and obtaining training samples is costly. Different

approaches exist to model the shared information across tasks. They can be roughly sepa-

rated into two different categories The first category describes methods where parameters of

the model are close to each other in a geometric sense [8, 27]. In these methods often an ob-

jective function is defined which is to be optimized. Since the objective function is assumed to

be convex or approximately convex one can use Lagrangian multiplier and dual theory. Some

work also is done on non-convex objective functions [1]. The second category contain models

where parameters of the model share a common structure [31, 30, 5, 18, 24, 22]. This struc-

ture can be a clustering assumption [30], a (Gaussian) prior distribution for the parameters

of all tasks [31, 18] or some advanced structure like the Kingman’s coalescent [5], which is a

continuous time, partitioned valued Markov process. While we concentrate on a continuous

latent spaces there exists some approaches considering discrete prior distributions [10]. In

the case where the tasks share a common prior distribution in continuous or discrete [10] set-

tings. Also a conventional approach is to model the relatedness of the tasks in the covariance

function of the prior distribution. In high-dimensional parameter spaces this is prone to over-

fitting if only a small amount of training data is available. Also it is harder to analyze such

prior distributions in an intuitive fashion. Another problem of multi-task learning is negative

transfer, where learning task simultaneously slows down the performance [28].

Our approach is highly related to the Bayesian MTL approach presented in [22], where

a prior distribution over parameters is learned. The prior distribution is assumed to have a

low-dimensional, latent structure that is represented by a linear factor model. In order to

represent several modes (or non-linearities) in the data, the model is extended to a mixture

model of linear factor models. For both, the number of mixture components and the number

of factors, a non-parametric Dirichlet prior has been used. All parameters of the model are

integrated out by the use of a combination of sampling and variational inference. We will

use a simplification of this model, assuming a fixed number of mixture components, without

the Dirichlet priors, allowing a much more efficient algorithm without the need for expensive
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sampling methods. We extend the model of Passos et al. by an additional hyper-prior and

show that this hyper-prior significantly increases the robustness of the Bayesian model.
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3 Methods
As Probabilistic Movement Primitives provide the foundation of our proposed method we

will introduce them in this section in detail. Additionally we will give a short overview on

variational methods for latent variable models, because it we use variational inference as our

model learning approach.

3.1 Probabilistic Movement Primitives

Movement Primitives (MP) in general are used as building blocks in highly complex scenarios

with high-dimensional compliant robots. In Section 2.1 we stated that switching between

movement primitives or coactivate multiple movement primitives are some of the limitations

of DMPs. Facing these problems a probabilistic formulation of movement primitives are devel-

oped, called Probabilistic Movement Primitives (ProMPs) [20]. The framework of the ProMPs

encode all desirable properties of a MP as coactivation, modulation, temporal scaling and

learning. Additionally it provides a stochastic time varying feedback controller to reproduce

a given trajectory distribution. Overall ProMPs build a powerful framework for represent-

ing basic elementary movements, such as hitting or grasping, implementing a lot of desired

properties of MPs.

ProMPs represent a movement by a distribution p(τ) over trajectories τ = y1:T , where y t

specifies the joint positions (or any other quantities, such as a Cartesian coordinates of a ball)

at time step t, while T denotes the final time step. ProMPs use a linear basis function model

with J basis functions to represent a single trajectory

p(y t |w ) =N
�

y t

�

�Ψt w ,β−1IS

�

and p(τ) =
T
∏

t=1

p
�

y t

�

�w
�

,

where β denotes the precision of the S-dimensional data. The weight vector w is a compact

representation of the trajectory. The basis functions Ψt only depend on the time or, alterna-

tively, on the phase of the movement. For a single Degree of Freedom (DoF), Ψt is just given

by a vector of normalized Gaussian basis functions with

bt,i = exp

�

−0.5(t − ci)2

2h

�

,

which are normalized afterwards by ψt,i =
bt,i

∑

j bt, j
Here ci denotes the center of the ith basis

function. Typically the the centers of the basis functions are spread linearly between 0 and
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1, and each basis function has bandwidth given by h = (ci+1 − ci)2. For multi-dimensional

systems with D DoFs, the basis function matrix is represented by a block-diagonal matrix, i.e,

Ψt =















ψt
T 0T . . . 0T

0T ψt
T . . . 0T

...
...

. . .
...

0T 0T 0T ψt
T















.

Due to this encoding of the basis function matrix, the trajectories of all DoFs can still be

represented as a single weight vector w T = [w T
1 , w T

2 , . . . , w T
D] that is given by a concatenation

of all weight vectors for each degree of freedom.

Still, a single weight vector w only represents a single trajectory τ. In order to represent

a distribution over trajectories p(τ), we can estimate a distribution p(w ) over the weight

vectors and, subsequently, integrate out the weight vectors. In the original ProMP approach,

a multivariate Gaussian distribution is used to model the prior distribution

p(w ) =N (w |µw ,Σw). (3.1)

As such, the distribution over trajectories is also Gaussian and can be computed in closed

form

p(τ) =

∫

w

p(τ|w )p(w )dw ,

=

∫

w

N
�

y1:T

�

�Ψ1:T w ,β−1IS

�

N
�

w
�

�µw ,Σw
�

dw ,

=N
�

y1:T

�

�Ψ1:T µw ,Ψ1:TΣwΨ
T
1:Tβ

−1IS

�

,

where Ψ1:T is a T D× DJ matrix containing the basis function matrices for all time steps and

w is a DJ dimensional column vector. In the following we use the abbreviations S = T D and

d = DJ to keep the notation uncluttered.

3.1.1 Learning from Demonstrations with ProMPs

A ProMP already defines a simple hierarchical Bayesian model in a similar fashion as a

Bayesian linear regression model. The mean µw and the covariance matrix Σw can be learned

from data by maximum likelihood using the Expectation Maximization (EM) algorithm [7].

A simpler solution that works well in practice is to compute first the most likely estimate of

w [i] for each trajectory τ[i] independently, where the index i denotes the i-th demonstration.

Given a trajectory τi , the corresponding weight vectors w [i] can be estimated by a straight

forward least squares estimate. Subsequently, mean and covariance of p(w ) can be estimated

by the sample mean and sample covariance of the w [i] ’s. One advantage of the EM based

approach in comparison to the more direct approach is that the EM algorithm can also be

used for learning from incomplete data where, for instance some segments of the trajectories

might be missing due to occlusions in vision based recordings.

12



However, the training of ProMPs also suffers from a severe disadvantage. As the model has

a lot of parameters due to the high-dimensional covariance matrix, ProMPs suffer from overfit-

ting if we have little training data and noisy trajectories. The more sophisticated hierarchical

Bayesian model for ProMPs introduced in this thesis alleviates this problem.

3.1.2 Predictions with ProMPs by Conditioning

ProMPs can also be used to predict the behavior of the demonstrator once we have seen an

initial part of a new trajectory. Lets assume that we have observed a human demonstrator at

m = 1,2, ..., M different time points. Note that these time points do not need to be sampled

in uniform time intervals. t1 to tM at the positions y t1
to y tM

. Let us further denote Ψo as the

concatenation of the basis function matrices for these time points and o as concatenation of

the y tm
vectors. Given these observations, we can obtain a conditioned distribution p(w |o)

over the weight vectors as Gaussian distribution with mean and variance

µw |o = µw +ΣwΨo
T
�

Σo +ΨoΣwΨo
T
�−1 �

o −Ψoµw
�

, (3.2)

Σw |o = Σw −ΣwΨo
T
�

Σo +ΨoΣwΨo
T
�−1
ΨoΣw . (3.3)

The conditional distribution p(w |o) can be used to predict the behavior of the demonstrator

for future time points t > tM , i.e. we can determine the mean and covariance of y for future

time points. Note that the same procedure can be applied for partial observations, where only

a subset of the quantities in y t is observed. The covariance matrix Σo can be used to control

the importance of different dimensions. For example the diagonal elements of Σo might be

set to low values for important features.

3.2 Variational inference in latent variable models

In variational inference we consider posterior distributions over unobserved or latent vari-

ables Z given some observed variables or data X and also some deterministic parameters θ .

Variational inference is a technique for approximating intractable integrals through Bayesian

inference.

We start our discussion with the marginal log-likelihood of the observed data, which is

given by integrating out the latent random variables for the complete data log likelihood

log p(X |θ) =
∫

Z

log p(X , Z |θ)dZ . (3.4)

Usually it is infeasible to solve this integral in closed form, because the latent variables are

not known and in the case of continuous latent random variables there might be exponen-

tially many hidden states so that exact calculation is prohibitively expensive. Therefore we

need to resort to approximative variational Bayesian methods. These methods can com-

pute closed form solutions by iteratively updating the latent random variables, similar to the

EM-Algorithm [7].

Variational methods avoid computing the integral given in Equation (3.4) by introducing an

approximative posterior distribution q(Z) over the latent random variables. The true posterior
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distribution p(Z |X ,θ) is infeasible to evaluate or to compute expectations with respect to it to

optimize the log-likelihood. The variational posterior q(Z) only is an approximation. The log-

likelihood log p(X |θ) can be decomposed into a lower bound on the approximative posterior

L (q,θ) and the Kullback–Leibler divergence (KL)

log p(X |θ) =L (q,θ)KL(q||p),

with

L (q,θ) =

∫

Z

q(Z) log
p(X , Z |θ)

q(Z)
, and (3.5)

KL(q||p) =−
∫

Z

q(Z) log
p(Z |X ,θ)

q(Z)
.

We verify this decomposition by first using the product rule log p(X , Z |θ) = log p(Z |X ,θ) +
log p(X |θ) and substituting this into Equation (3.5),

L (q,θ) =

∫

Z

q(Z) log
p(X , Z |θ)

q(Z)
,

=

∫

Z

q(Z) log
p(Z |X ,θ)p(X |θ)

q(Z)
,

=

∫

Z

q(Z)(log
p(Z |X ,θ)

q(Z)
+ log

p(X |θ)
q(Z)

),

=

∫

Z

q(Z) log
p(Z |X ,θ)

q(Z)
︸ ︷︷ ︸

K L(q||p)

+

∫

Z

q(Z) log
p(X |θ)
q(Z)

︸ ︷︷ ︸

log p(X |θ)

.

Taking into account that q(Z) is a probability distribution and therefore sum to 1, the second

term gives exactly the required marginal log-likelihood. The Kullback-Leibler divergence de-

fines a metric on the similarity the true posterior p(Z |X ,θ) and q(Z) such that K L(q||p) = 0

if and only if q(Z) = p(Z |X ,θ). This shows that q(Z) is an approximation for the required

true posterior of the latent random variables.

Instead of maximizing the log likelihood function we can maximize the lower bound with

respect to the variational posterior. For a suitable choice of the variational posterior q(Z)
computing the lower bound L (q,θ) is tractable. A common choice for q(Z) is a complete

factorization of each latent random variable

q(Z) =
M
∏

i=1

qi(Zi), (3.6)

which assumes the latent variables partition into M disjoint groups. Using a factorized vari-

ational posterior we can maximize the lower bound with respect to each variational distri-
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bution. We now can compute the optimal solution q∗i (Zi) by the following general update

equation

log q∗i (Zi) =< log p(X , Z |θ)>i 6= j +const, (3.7)

where < · >i 6= j denotes the expectation w.r.t. all remaining variational distributions. Equa-

tion (3.7) can be used to compute incremental improvements for all latent variables until

convergence to learn our model.
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4 Extracting Control Variables with
Hierarchical Priors

In this section we will extend the Probabilistic Movement Primitives (ProMPs) with a hierar-

chical prior distribution on the weight vector w . This extension results in a more complex

prior distribution which exploits the information shared among multiple different but related

tasks by assuming that the weight vectors of the tasks lie on a low dimensional latent mani-

fold. Therefore we refer to the model as Latent Manifold ProMPs (LMProMPs). As in Section

3.1 we will demonstrate how we can learn the latent manifold and the latent control vari-

ables from demonstrations using variational inference. Finally we show how movements can

be predicted with only a small amount of test data. We start our discussion by considering

only a single movement type and extend the model afterwards to multiple movement types

in a natural fashion by using a mixture model.

4.1 Control Variables for a Single Movement Type

As in the framework of ProMPs we represent a trajectory by

p(y t |w ) =N
�

y t

�

�Ψt w ,β−1IS

�

and p(τ) =
T
∏

t=1

p
�

y t

�

�w
�

.

Since our goal is to model a prior distribution that can be modulated by low dimensional

latent control variables we propose the following hierarchical prior

p(w [i]) =N
�

w [i]
�

�

�b+Mh[i],α−1I
�

. (4.1)

We will shortly discuss this prior distribution and how it differs from the one given in the

original ProMP framework. The vector b denotes an offset term and together with the projec-

tion matrix M it defines the mapping from the latent low-dimensional control variable h[i] to

the weight vector w [i] for the trajectory of the i-th demonstration.

The control variable h[i] models the adaptation of the movement to the current task by

shifting the prior distribution along the hyperplane b + Mh[i]. So each task is not only

characterized by its weight vector w [i] but also by its control variable h[i]. The parameters of

this hyperplane b and M are to be learned during training which is shown in Section 4.1.1.

This prior distribution makes our model complex enough to model structures like different

shapes of trajectories. On the other hand our model is simple enough which prevents from

overfitting in high-dimensional parameter spaces. For instance we only use a single precision

parameter α instead of a full covariance matrix. This also serves the goal of learning from

only a few trajectories since more trajectories would be needed to learn a more complex

model by fitting a full covariance matrix.
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Figure 4.1.: The Latent Manifold ProMP Model used for single movement types. The original
ProMP is extended by the offset vector b, the projection matrix M and the con-
trol variable h[i]. The covariance is simplified to a single precision parameter α.
All model parameters then are given hyper-priors as we follow a fully Bayesian
approach.

If we set the control variable h[i] to zero the mean of the hierarchical prior would simplify

to b which corresponds to the mean µw of the original formulation of ProMPs. So we basically

extended the mean of the prior distribution of the weight vectors by introducing control

variables and simplify the covariance of the prior distribution to prevent from overfitting.

The combination of the latent variable h[i] and the projection matrix M implements a more

accurate model of the prior distribution. As we will demonstrate in Section 5, this hierarchical

prior model is less sensitive to overfitting in the case of noisy observations or incomplete data.

All parameters of the model are unknown a priori. We follow a fully Bayesian approach,

where we treat all parameters as random variables and introduce conjugate prior distributions

for each of them

p(b|λ[0]) =N
�

b
�

�0, (λ[0])−1Id

�

,

p(M |λ[1:V ]) =
V
∏

v=1

N
�

m[v ]
�

�0, (λ[v ])−1Id

�

,

p(h[i]|γ) =N
�

h[i]
�

�

�0, (γ)−1IV

�

,

p(α|a[0], b[0]) =Γ
�

α
�

�a[0], b[0]
�

.

Here m[v ] denotes the v -th column of the projection matrix M = [m[1], m[2], . . . , m[V ]]where

V denotes the dimensionality of the latent control variable h[i]. The symbol Γ denotes the

Gamma distribution. The graphical representation of our model is shown in Figure 4.1.

To enhance the numerical stability of the variational updates we also place an additional

Gamma prior on the precision parameters of the columns of each of the projection matrix

p(λ[v ]|c[0], d[0]) = Γ
�

λ[v ]
�

�c[0], d[0]
�

.

We evaluate the influence of this hyper-prior in Section 5. The technique to place a prior

distribution on each column of the projection matrix instead of using on prior for the whole

matrix is also used in Bayesian PCA. During the updates of the precision parameter λ[v ] some
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of them may be driven to infinity with its corresponding column vector m[v ] converging to

zero. For the special case c[0] = 1, this prior distribution approximates a Laplace prior which

also is more peaked around its mean which also favor sparse solutions. This results in sparser

solutions of the projection matrix M which are easier to analyze, since less columns are active.

We consider all parameters of the hierarchical prior as latent random variables

Z = {w [1:L], h[1:L], b, M ,α,λ[1:V ]},

while we treat the hyper-parameters as deterministic parameters

θ = {β ,λ[0],γ, a[0], b[0], c[0], d[0]},

where L denotes the total number of demonstrations. We use variational inference to learn

the posterior distribution of the latent random variables given some demonstrations in Sec-

tion 4.1.1. The parameters can be optimized using Bayesian optimization or simply can be

tuned by hand which worked well in our experiments. In our experiments we simplified the

model by setting λ[0] and γ to one, since their impact on the posterior distributions we are

interested in is infinitesimal small. a[0] and b[0] are set to small numbers like 10−5 to model

an uninformative prior. With this we obtain a model with only the precision parameter β to

tune. This parameter induces how much we trust the given data. More details on this is given

in Section 5.3.

4.1.1 Learning from demonstrations by variational inference

For our model we obtain the following complete data likelihood which is used to compute the

variational inference updates

p(y[1:L],Ψ[1:L], w [1:L], h[1:L], b, M ,λ[1:V ],α),

=
L
∏

i=1

{p(y[i]|Ψ[i], w [i])p(w [i]|b, M , h[i])p(h[i])}p(α)p(b)p(M |λ[1:V ])p(λ[1:V ]). (4.2)

As in Section 3.2 we also use a complete factorization of the variational posterior distribution

given by

q(Z) = q(b)
V
∏

v=1

{q(m[v ])q(λ[1:V ])}q(α)
L
∏

i=1

q(w [i])q(h[i]). (4.3)

Since we use conjugate prior distributions the variational posterior distributions reads

q(w [i]) :=N (w [i]|µw [i] ,Σw [i]),

q(h[i]) :=N (h[i]|µh[i] ,Σh[i]),

q(b) :=N (b|µb,σb I),

q(m[v ]) :=N (m[v ]|µm[v ] ,σm[v ] I),
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q(α) :=Γ(α|ā, b̄), and

q(λ[v ]) :=Γ(λ[v ]|c̄, d̄).

It is worth noting that the variational posterior distribution of h[i] contains a full covariance

matrix even though its prior only has a single precision parameter. The reason for this is that

the different dimensions of the control variable are not assumed to be independent. So we

learn a correlation between the different tasks we consider.

We now can compute each posterior distribution using the general update in Equation (3.7)

by computing the expected value of the complete data log-likelihood function w.r.t to each

remaining latent random variable. The solutions read

µw [i] =Σw [i](βΨ
[i]T y[i] + ᾱ(µb + M̄µh[i])),

Σw [i] =(βΨ
[i]TΨ[i] + ᾱId)

−1,

µb =σb(
L
∑

i=1

{ᾱ(µw [i] − M̄µh[i])}),

σb =(
L
∑

i=1

{ᾱ}+λ[0])−1 = (Lᾱ+λ[0])−1,

µm[v ] =σm[v ](
L
∑

i=1

{ᾱµh[v ,i](µw [i] −µb)}),

σm[v ] =(
L
∑

i=1

{ᾱ((µh[v ,i])2+σh[v ,i])}+ λ̄[v ])−1 = (ΣM[V ](v , v ))−1,

µh[i] =Σh[i](ᾱIV M̄ T (µw [i] −µb)),

Σh[i] =(ᾱIV (M̄
T M̄ + dΣM[V ]) + γIV )

−1,

c̄ =c[0] +
d

2
,

d̄ =d[0] +
1

2
(µm[v ]

Tµm[v ] + dσm[v ]),

ā =a[0] +
d L

2
,

b̄ =b[0] +
1

2

L
∑

i=1

{C + t r[Σw [i]] + dσb +µh[i]
T dΣM[V ]µh[i] + t r[Q],

with

M̄ =[µm[1] , . . . ,µm[V ]],

Q =(M̄ T M̄ + dΣM[V ])Σh[i] , and

C =(µw [i] −µb − M̄µh[i])
T (µw [i] −µb − M̄µh[i]).
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We also combine the precision parameters σm[v ] of each of the projection vectors m[v ] into

one matrix

ΣM[V ] =











σm[1] · · · 0
...

. . .
...

0 · · · σm[V ]











.

The inferred feature precision is denoted by ᾱ and the scalar µh[v ,i] denotes the v -th element

in the vector µh[i] = [µh[1,i] , . . . ,µh[V,i]]T . The derivations of the update equations are given in

Appendix B.1.

By iteratively updating these equations they converge to a (local) optimum for the given

data. As for the EM-algorithm the initialization is crucial, since the iterative updates might get

stuck in local optima. Our method is closely related to Principle Component Analysis (PCA)

as each dimension of the latent manifold can be seen as a principle component in parameter

space. However we are not able to perform PCA directly on the given data, since the principle

components must be determined in parameter space but only the trajectories in task space

are given as observed data. Nevertheless we could use PCA to initialize our model properly

after we obtained the required weight vectors by linear regression. This gives a good initial

solution for our model, as shown in the results section.

4.1.2 Predictions by Conditioning the Hierarchical Prior

For the original formulation of ProMPs conditioning was performed directly on the weight

vector to obtain a new Gaussian distribution for some observations o. However with the

LMProMPs the task does not only depend on the weight vector w but also on the latent

control variable h. We therefore condition typically on the lower-dimensional control variable

and integrate out the weight vector, which then gives us the conditional distribution over the

weight vector given the observed data. Note that conditioning directly on the weight vector

is not possible, since the weight vector depends on the control variable. The conditional

distribution over the control variables h given the observed data can be determined by first

using Bayes rule and integrating out the weight vector w and perform marginalization and

conditioning afterwards:

p(h|o)∝p(o|h)p(h),

=

∫

w

p(o|w )p(w |h)dw p(h),

=

∫

w

N
�

o|Ψo w ,Σo)N (w |µb + M̄h, (α)−1Id)dwN (h|0,γIV

�

,

=N
�

o|Ψo(µb + M̄h),Σo +Ψo(α)
−1IdΨo

T )N (h|0,γIV

�

,

=N
�

h|0,γIV )N (o|Ψo(µb + M̄h),Σo +Ψo(α)
−1IdΨo

T
�

,

=N

 

h 0

o Ψo(µb+ M̄h)
,

γIV γI T
V M̄ TΨo

T

Ψo M̄γIV Σo +Ψo(α−1Id)Ψo
T

!

,

=N

 

o Ψo(µb+ M̄h)

h 0
,

A Ψo M̄γIV

γI T
V M̄ TΨo

T γI T
V

!

,

=N (o|Ψo(µb + M̄h), A),
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N (h|0+ γI T
V M̄ TΨo

T A−1(o −Ψo(µb + M̄0),γIV − γI T
V M̄ TΨo

T A−1Ψo M̄γIV ),

where

A= Σo +Ψo(α
−1Id + M̄γI T

V M̄ T )Ψo
T .

So we obtain the conditioned distribution of the control variable h given the observed data

o, with its mean and covariance

µh|o =0+ γI T
V M̄ TΨo

T A−1(o −Ψo(µb + M̄0),

=γI T
V M̄ TΨo

T A−1(o−Ψoµb), (4.4)

Σh|o =γIV − γI T
V M̄ TΨo

T A−1Ψo M̄γIV . (4.5)

Given the distribution over the latent control variables we are able to compute the distribution

over the weight vectors by integrating out the control variables

p(w ) =

∫

h

p(w |h)p(h),

=

∫

h

N
�

w |µb + M̄h)N (h|µh|o ,Σh|o
�

dh,

=N
�

w |µb + M̄µh|o , (α)−1Id + M̄Σh|o M̄ T
�

.

As such the conditional distribution over the weight vectors is also Gaussian with mean and

variance

µw |o =µb + M̄µh|o , (4.6)

Σw |o =(α)
−1Id + M̄Σh|o M̄ T . (4.7)

It is illustrative to investigate the differences of the standard conditioning of the ProMPs

in Equation (3.2) and Equation (3.3) to the conditioning with the hierarchical prior. The

conditioning in the ProMP case requires a full-rank covariance matrix, which is hard to obtain

given a small amount of training data. In contrast, the latent prior model only requires the

projection matrix M̄ to perform the conditioning. Hence, the predictions of the latent prior

model are less prone to overfitting and are therefore also applicable for a small amount of

training data.

4.2 Extension to Multiple Movement Types

Until now we only have considered a single movement type. Since we want to learn multiple

different tasks we now extend the proposed model to cope with multiple types of movements.

If we inspect the parameter space of the weight vectors we see that different movement types

often build clusters. Note that the LMProMP for a single movement type only uses a single

Gaussian distribution as prior of the weight vectors, which is not able to model multiple

clusters properly. The weight vectors w also might lie on a non-linear manifold which we

cannot model with a single Gaussian prior distribution. An example of these different types
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Figure 4.2.: The Latent Manifold ProMP Model used for multiple movement types. The model
for a single movement types is extended with a mixture model. Additionally we in-
troduce an multinomial variable z[i] which indicates to which mixture component
a demonstration belongs.

of movements might by forehand and backhand strokes in a table tennis game. To model

such nonlinearities we extend our prior distribution to a standard mixture model

p(w [i]) =
K
∑

k=1

πkN
�

w [i]
�

�

�bk +M kh[i]k ,α−1
k I
�

. (4.8)

The extended model has K mixture components, each one having the same prior distribution

as in Equation (4.1), which can model a single movement type. The vector bk in Equation

(4.8) denotes an offset term of component k and the projection matrix M k defines the map-

ping from the low-dimensional control variables h[i]k to the weight vector w [i], while the

parameter αk models the precision of each component of the proposed prior distribution.

Additionally πk denotes the mixing coefficients. We also add a multinomial variable to our

probabilistic model, i.e. z[i]k ∈ {0, 1}. We represent this multinomial variable as binary vec-

tor z[i] = {z[i]1 , ..., z[i]K }, which indicates to which mixture component trajectory i belongs.

We treat this mixing indices also as latent variable and therefore introduce a multinomial

hyper-prior

p(z) =
L
∏

i=1

K
∏

k=1

(πk)
z[i]k .

The extended graphical model containing the mixture model is shown in Figure 4.2.

4.2.1 Learning from demonstrations for mulitple movements

As for a single movement type we use variational inference to learn the latent variables from

demonstrations. Given our model we obtain the following complete data likelihood function

p(y[1:L],Ψ[1:L], w [1:L], h[1:L]
1:K , z[1:L]

1:K , b1:K , M1:K ,α1:K ,λ[1:V ]
1:K ),

=
L
∏

i=1

{p(y[i]|Ψ[i], w [i],β)
K
∏

k=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(h
[i]
k |γ)}}
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K
∏

k=1

{p(bk|λ
[0]
k )p(M k|λ

[1:V ]
k )p(αk|a

[0]
k , b[0]k )p(λ

[1:V ]
k |c[0]k , d[0]k )}p(z|π).

We again use a complete factorization of the variational posterior distribution over the latent

variables Z

q(Z) =
K
∏

k=1

{q(αk)q(bk)
V
∏

v=1

{q(m[v ]k )q(λ
[v ]
k )}

L
∏

i=1

q(h[i]k )}
L
∏

i=1

{q(w [i])}q(z).

The variational distributions are the same as for Equation (4.3). Additionally we define the

variational distribution of the mixing indices as

q(z) =
L
∏

i=1

K
∏

k=1

(µ
z[i]k
)z
[i]
k .

The variational updates are the same as for the case with only a single component, with the

difference that the trajectories are weighted by the responsibilities of the individual mixture

components µ
z[i]k

,

µw [i] =Σw [i]

�

βΨ[i]1:T

T
y[i]1:T +

K
∑

k=1

ᾱkµz[i]k

�

µbk
+ M̄ kµh[i]k

�

�

,

Σw [i] =

 

βΨ[i]1:T

T
Ψ[i]1:T +

K
∑

k=1

ᾱkµz[i]k
I

!−1

,

µbk
=σbk

(
L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] − M̄ kµh[i]k

)}),

σbk
=(

L
∑

i=1

{µ
z[i]k
ᾱk}+λ

[0]
k )

−1,

µ
m[v ]k
=σ

m[v ]k
(

L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] −µbk

)µ
h[v ,i]

k
}),

σ
m[v ]k
=(

L
∑

i=1

{µ
z[i]k
ᾱk((µh[v ,i]

k
)2+σ

h[v ,i]
k
)}+ λ̄[v ]k )

−1 = (Σ
M[V ]k
(v , v ))−1,

µ
h[i]k
=Σ

h[i]
k
(

K
∑

k=1

µ
z[i]k
ᾱkM̄ T

k (µw [i] −µbk
)),

Σ
h[i]

k
=(

K
∑

k=1

µ
z[i]k
ᾱk(M̄

T
k M̄ k + dΣ

M[V ]k
) + γk IV )

−1,

c̄k =c[0]k +
d

2
,

d̄k =d[0]k +
1

2
(µ

m[v ]k

Tµ
m[v ]k
+ dσ

m[v ]k
),

āk =a[0]k +
d

2

L
∑

i=1

{µ
z[i]k
},
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b̄k =b[0]k +
1

2

L
∑

i=1

{C + t r[Σw [i]] + t r[σbk
Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k
+ t r[Q],

µ
z[i]k
=

ρ
[i]
k

∑K
j=1ρ

[i]
j

,

ρ
[i]
k =exp(logπk +

d

2
(K (āk)− log b̄k)−

ᾱk

2
[C + t r[Σw [i]] + t r[σbk

Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k
+ t r[Q]],

with

M̄ k =[µm[1]k
, . . . ,µ

m[V ]k
],

Q =(M̄ T
k dM̄ k +ΣM[V ]k

)Σ
h[i]

k
, and

C =(µw [i] −µbk
− M̄ kµh[v ,i]

k
)T (µw [i] −µbk

− M̄ kµh[v ,i]
k
).

The symbol K denotes the digamma function, while the remaining notation is the same as

in Section 4.1.1. The derivations of the update equations are given in Appendix B.2.

Again the initialization of the iterative update schema is crucial. We applied the same

initialization from the model for a single movement type. Additionally, we perform k-means

clustering on the weight vectors obtained by linear regression to determine to which mixture

component an approximated weight vector belongs. Finally, for each component we perform

PCA with the weight vectors assigned to the specific cluster. The problem with K-means is

that the number of clusters need to be pre-specified. Taking inspiration from [3] we initialize

the model with a large number of clusters. Similar to the projection matrix M some of the

components only provide insufficient contribution to explaining the data and therefore their

mixing coefficients πk will be driven to zero during training. Such components whose mixing

coefficients fall below a certain threshold in an iteration are removed. We therefore obtain

an approximately optimal number of mixture components without the need of expensive

techniques like cross-validation.

4.2.2 Predictions for multiple movements

Computing predictions with the mixture model is also straight forward. For each component

we compute the conditioned distribution on the latent control variables p[k](h|o) using Equa-

tion (4.4) and Equation (4.5).The posterior over the weight vectors p[k](w |o) are computed

using Equation (4.6) and Equation (4.7). Thereafter the posterior distributions are weighted

by the responsibilities z[k] of each mixture component

z[k] =
πkN

�

o
�

�

�µ
[k]
w |o ,Σ[k]w |o

�

∑K
j=1π jN

�

o
�

�

�µ
[ j]
w |o ,Σ[ j]w |o

� ,

Σw |o =
K
∑

k=1

z[k]Σ[k]w |o ,
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µw |o =
K
∑

k=1

z[k]µ[k]w |o .

We could also use the component with the maximal responsibility instead of our proposed

method. But as we want to do predictions for unseen tasks weighting the different compo-

nents is a more appropriate approach and as shown in the result section the responsibilities

for one component are dominating if we want to predict task we have already seen in training.
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5 Results
First we evaluate our model on a synthetic dataset and inspect the prior distributions of

the ProMPs and of LMProMPs This gives some insight on how the different proposed prior

distributions model the data. We afterwards evaluate our method on two real robot and

one human task. In the first task the robot played a table tennis game and we use the

Cartesian coordinates of a racket mounted at its end-effector and the Cartesian coordinates

of the ball. A Barrett WAM anthropomorphic arm was used for this experiment [19]. The

robot provides regular updates about its joint positions at a rate of 1KHz that are used by the

forward kinematics to compute the Cartesian position of the racket. The ball is tracked by a

high-speed, multi-camera vision system [17] that provides updates at a rate of 200Hz. The

extracted dataset contains twenty ball and racket trajectories shown in Figure 5.1(B).

In the second task we placed an obstacle in front of a KUKA lightweight arm and demon-

strated by kinesthetic teaching different ways to approach a desired target point in Cartesian

space. During the demonstrations we avoided hitting the obstacle and we bypassed it either

by moving to the left or to the right. The demonstrations are depicted in Figure 5.2. For this

experiment we recored the Cartesian position and orientation of the end-effector. The state

vector y t for this experiment is seven dimensional, three dimensions for the position and four

for the quaternion based orientation.

In the human task we use visual markers from a motion capturing system from humans

playing golf. We especially focus on the three Cartesian coordinates of the Club P marker,

which is placed at the top of the shaft. The extracted dataset contains 30 swings of novices

and 30 swings of experts. We evaluate the differences between novices and experts in the

latent control space. This experiment only contains first results as it primarily shows how the

model can be used to analyze the data in different setups and can be used in other disciplines

like sport science.

5.1 Comparing the proposed prior distributions

We consider a synthetic dataset with four different movement types, shown in Figure 5.3.

We created two-dimensional weight vectors w [i] that are sampled on of the four clusters.

We learn the prior distribution for the original ProMP as well as for our proposed LMProMP

model assuming a single and multiple movement types. Afterwards we plot the parameter

space of the weight vectors as well as the prior distributions. One can see that the prior of

the original ProMPs averages over all tasks. If we want to generate trajectories by sampling

weight vectors from the prior distribution in most cases we would obtain trajectories which

are quite different from the learned tasks since the mean of the prior distribution was not

demonstrated during training. Also it has a high variance denoted by the black ellipse which

also would result in trajectories which differ from the training set. The LMProMP model for

a single movement type has already a tighter prior distribution. In fact it is a good approxi-

mation for the variance of one of the four clusters. We use a two-dimensional latent control

variable drawn as red lines, which shifts the prior distribution along the hyperplane in the

26



Figure 5.1.: Ping-Pong: (A) Trajectory prediction task on a table tennis dataset. The data con-
sists of 20 end-effector and ball trajectories illustrated in (B). We thank Katharina
Muelling and Axel Griesch (photographer) for providing the picture and the table
tennis data.

Figure 5.2.: Bi-Modal: Experimental setting and two dimensions out of the 7-dimensional
dataset (three end-effector coordinates and the four dimensional quaternions).
We thank Guilherme Maeda, Rudolf Lioutikov and Marco Ewerton for providing
the data.
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Figure 5.3.: Synthetic: The parameter space for a synthetic dataset with four different move-
ment types denoted by the different colored circles. (A) The prior of the original
ProMP denoted by the black ellipse averages over all task clusters. (B) The prior of
the LMProMPs assuming only a single movement type and also averages over the
data. The main difference is that the prior can be shifted along the 2-dimensional
latent control variable h denoted by the red lines. (C) The prior of the LMProMPs
for multiple movements is more accurate since two mixture components are used.
The covariance is also very similar to the variance of the different movement types,
which makes the model even more accurate.

parameter space. One can generate appropriate trajectories which are similar to the train-

ing data if the corresponding value of the two-dimensional latent control variable is given.

However it might be very hard to obtain this value of the control variable. The LMProMP

for multiple movements avoids this problem by introducing multiple mixture components. In

this setup we initialized the model with two mixture components. Getting the value of the

control variable to generate trajectories for one of the movement types is easier, since we

first can distinguish between the mixture components and afterwards choose the value of the

latent control variable. One also can see that the nonlinear latent manifold of the four differ-

ent movement types is approximated best with the LMProMP model for multiple movement

types.

5.2 The effect of noise and missing data

We use the table tennis setup to predict the final impact location of the ball at the opponent’s

court. We evaluate our prediction by computing the Euclidean distance in the x,y-plane to

the true impact location. The dataset used for learning is shown in Figure 5.1. It should be

noted that the colors (red and blue) in Figure 5.1 are only used for the visualization as no

labels were used for modeling the data. For a baseline comparison we trained the ProMPs

on the same data. The learned distributions over trajectories for ProMPs are illustrated for

three Cartesian coordinates of the racket and the ball in Figure 5.4. We denote the mean of

the trajectory distribution with a solid black line and the standard deviation by the shaded

region.

In the collected dataset, the robot returns the ball within 550ms to 650ms in advance to

the final ball impact. In our comparison, we analyze the prediction performance with respect

to the time until the impact event, where we focus on the movement phase right after the

stroke, ≈ 625ms before the end. We used leave-one-out cross-validation to compute the test

error.

A fast multi-camera vision setup, good lighting conditions, and access to the opponents

sensor readings are amenities we can not always afford. Therefore, we simulate the effect
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Figure 5.4.: Ping-Pong: Learned distributions over trajectories for all six dimensions using
ProMPs. The six dimensions contains the 3 Cartesian coordinates of the racket
as well as the ball.

Figure 5.5.: Ping-Pong: The effect of noise (A) and missing data (B) on the prediction per-
formance of ProMPs and LM-ProMPs. In (A), from left to right the amount of
applied noise to the data is increased. In (B) four different frame rates of obser-
vations (∈ {50,100, 200, and 300}ms) are investigated.

of noisy and incomplete observations, and we evaluate their impact on the prediction perfor-

mance. First, we add zero-mean Gaussian observation noise to the Cartesian coordinates of

the racket and to the Cartesian coordinates of the ball. The standard deviation of the noise

used in our evaluation is σh ∈ 10−2{0, 2,4, 6} and σb ∈ 10−2{0, 5,10,15} for the racket and

the ball, respectively. The results are illustrated in Figure 5.5(A), where we show the ad-

vantage of the learned prior distribution using latent variables. Additionally, we evaluate the

effect of sparse observations using different sampling intervals, {50,100, 200, and , 300}ms.

The proposed model is more robust with respect to sparse observations, whereas the stan-

dard ProMPs overfit to the training data, especially in the early phase of the movement. The

performance comparison of the two approaches is illustrated in Figure 5.5(B).
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Figure 5.6.: Ping-Pong: (A) The parameter β denotes the data precision. It can be used to
adapt the model complexity (first panel in A). With increasing β values the train-
ing error decreases and the model overfits to the training data. This is shown for
two prediction horizons (625ms and 0ms until the ball impact) in the 3rd panel in
(A). The numerical stability of the proposed model can be increased by adding an
gamma prior on the precision parameters λ, which has little effect on the predic-
tion performance (for c0 ≥ 1).

5.3 Analyzing the model parameters

As opposed to most movement primitive approaches, our model has only one free parameter

to choose that is the precision of the data denoted by β . For large β values the number of

contributing latent variables in the generative model is increased, and, at some point, the

model will overfit to the training data. To analyze this effect, we approximate the complexity

of the learned model by computing the rank of the linear feature weights denoted by Mh[i]

in Equation (4.1)

For values of β ∈ {1,10, 50,100, 200,500, 1000,5000}we compute the training and test er-

ror. The prediction performance is shown in Figure 5.6(A). The lowest test error was achieved

for β = 10. Note that the test error will not converge to zero due to noise introduced with

σh = 0.02 and σb = 0.05, and the sparse observations at 50ms intervals.

The numerical stability of the LMProMPs can be increased with the addition of a gamma

prior on the λ[v ] parameters, discussed in Section 4.1. To investigate the influence of this reg-

ularization on the test error, we evaluated gamma priors with a constant mean (c0/d0 = 100)

and increasing precision in the interval c0 ∈ [0.05,500]. For small values of c0 the prior con-

verges to a uniform distribution. For c0 ≥ 1 the variational updates were numerically stable

and the gamma prior had only little influence on the test error, as shown in Figure 5.6(B).

Finally, we semantically analyze the table tennis dataset to evaluate how the latent vari-

able affect the learned prior distribution. We trained the model with 10-dimensional latent

variables h[i] in Equation (4.8). The effect of the first two latent dimensions in the gener-

ative model is illustrated in Figure 5.7(A-B). The two latent dimensions of the model affect

the final position and the waviness of the x-coordinate of the racket trajectories shown in

Figure 5.7(B).
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Figure 5.7.: Ping-Pong: (A) Semantic analysis of the data varying the first 2 dimensions of the
latent control variable h. (B) The first dimension of h describes the final position
while the second dimension relates to the waviness of the trajectories.

Figure 5.8.: Golf: The first two dimensions of the control variable h for the novices are de-
noted as the blue points in (A) while they are shown for the skilled player in (B).
The red ellipse illustrates the structure contained in the data. (C) The other di-
mensions of the control variable do not have an impact on the learned manifold.

As shown in Figure 5.7(B) we can assign meaningful features to many of the dimensions

of the extracted control variables h. Here we have shown that the final position can be

modulated by varying the first dimension of the control parameter, while changing the second

dimension modulates the waviness of the trajectory. If we now want to improve they way we

play table tennis we could analyze the strokes of experts and analyze the differences in their

movements in the lower dimensional control parameter space, which is much easier than in

the high-dimensional weight vector space or using raw trajectories.

We also applied our model to analyze the similarities of movements between novice and

experts in golf. Therefore we use data from 30 swings from novices and 30 swings from

experts, which are recorded using visual markers. We use the velocity profile for the Club P

marker, which is placed at the top of the shaft. We trained the model with 10-dimensional

latent control variables h[i]. In Figure 5.8(A-B) we show the first two dimensions of the

learned control variables. While the control variables for experts form approximately an

ellipse which is illustrated by the red line, the ones for novices does vanishes more from the

intended structure. This is the only structure contained in the data since all other dimensions
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Figure 5.9.: Bi-Modal: Learned distributions using ProMPs. The mean is denoted by the black
line and the standard deviation by the shaded region. ProMPs cannot represent
the bi-modal distribution in the 2nd panel.

of the control variable decreased to zero. This shows that how our model is not bound to the

pre-specified dimension of control variables but extracts the dimension to some extend from

the data.

This experiment also demonstrates that our model can be applied to a multitude of different

tasks like table tennis and golf without a lot of tuning to the specific task.

5.4 Learning bi-modal trajectory distributions

To demonstrate that LMProMPs can model multi-modal distributions, we study demonstra-

tions of a bi-modal target-reaching task. A KUKA lightweight arm was used to reach for

different target locations on a table while avoiding an obstacle. We used kinesthetic teaching

and we demonstrated two different ways to approach the target.

For a comparison, we trained ProMPs to learn from the demonstrations, which were unable

to represent the two modes. As a result, generalization by conditioning to not encountered

target locations may result in trajectories that pass through the obstacle shown in Figure

5.10(B). The learned distributions and example trajectories are shown in Figure 5.9.

In contrast, the LMProMPs model is able to capture the two modes of the demonstrations,

as shown in Figure 5.10. We initialized the experiment with K-means clustering method using

two components. The learned prior distribution and the influence of the first two dimensions

of the latent variable are illustrated in Figure 5.10(A-B).

Each mixture component specializes on one mode of the data. Using the learned bi-modal

prior distribution, our model is able to generate trajectories to new target locations that

avoid the obstacle as shown in Figure 5.10(C). The inferred trajectories are smooth and can

be executed on the real robot using inverse kinematics to obtain a reference joint trajectory

and inverse dynamics control to execute it. The resulting trajectories of the end-effector of

the real robot are illustrated in Figure 5.10(D).

The LMProMP outperforms the original ProMPs as they avoid the obstacle due to the more

appropriate prior distribution.

5.5 Summary of the investigated features

We compare the proposed LMProMP model to the standard ProMP approach in the two

robotic setups and one synthetic dataset.
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Figure 5.10.: Bi-Modal: Learned bi-modal distribution using the proposed mixture model with
two mixture components (A-B). The latent variable is used to specialize on sub-
regions within the distribution of the mixture component. This is illustrated for
two dimensions of h, where solid black lines denote the mean. (C) Results for
conditioning on unseen targets for each mode using LMProMPs. (D) Real robot
results where LMProMPs avoid the obstacle, while the conditioned trajectories
with ProMPs fail.
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For the synthetic dataset we investigated how the different approaches model the data. We

inspect the prior distributions of ProMPs and LMProMPs and their importance of generating

trajectories which reproduces the training data.

In the table tennis scenario we investigate the effect of noise and missing data on predicting

the final ball impact location at the opponent’s side of the table and we demonstrate how the

learned latent variables can be used to semantically analyze the data.

Additionally, we show in the golf setting using visual markers how the model can be used to

semantically analyze data in a different setup without the need of tuning a lot of parameters.

We analyze the structure in the space of the latent control variables to show the difference

between experts and novices.

Finally, we demonstrate the beneficial properties of the mixture model in representing

the bi-modal distribution required to successfully execute the KUKA reaching task. We use

the learned mixture model to generate trajectories to new target locations, not encountered

during training, and execute them on the real robot. We demonstrate that our proposed

approach successfully avoids the obstacle, while the standard ProMPs average over the two

modes and the generalization fails.

In both experiments we used linear regression to compute the feature weights w and we

subsequently applied a principal component analysis. We initialized our model with the first

ten principal components.
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6 Outlook
In this section we first summarize how we introduced control variables into Probabilistic

Movement Primitives and present possible future work afterwards.

6.1 Conclusion

In motor control approaches having a low number of control parameters is a desired ap-

proach. These control parameters can be used to generalize from learned movements to new

or changing situations. Predefining such parameters is a naive approach that can not adapt to

the complexity of the task and is lacking flexibility. To face this problem we proposed a prob-

abilistic movement primitive representation with a hierarchical prior. The control parameters

are encoded in the prior distribution and are learned from demonstration using variational

inference. As in the original formulation of probabilistic movement primitives our model is

able to predict unseen tasks by conditioning on the control parameters. The advantage of our

model is that the control parameters are lower dimensional than the weight vectors, which is

less prone to overfitting.

The model naturally extends to mixture models that can be used to represent multiple

movement types. With our proposed model probabilistic movement primitives got more pow-

erful as they now additionally implement control parameters. We demonstrated on synthetic

and kinesthetic teaching datasets that these control variables can be used to generate new

trajectories or to analyze the data. Additionally, we showed that our model can easily be used

in different setups without tuning a lot of parameters. and that our proposed method learns

more accurate models which helps analyzing the data.

6.2 Future work

In future work one could think of extending the model in multiple ways. For instance a

Dirchlet prior for the mixing coefficients can be used as it is often done in the variational

inference for Gaussian mixture models. Also one could use different or additional hyper-

priors. Using a Laplace prior on the latent control variable will obtain sparser models, which

might be helpful in analyzing the data. One can start with a high number of latent control

variables which is automatically reduced to the effective number of hidden states contained in

the data. Since this is closely related to non-parametric methods another enhancement might

be using established non-parametric methods as Dirchlet process to obtain the number of

mixture components for multiple movement types. One also can think of using more complex

methods such as Gaussian Processes to capture nonlinearities. One either could use Gaussian

Process latent variables models or adapting the method of cost-regularized kernel regression

[14]. Finally, one should evaluate the proposed method on more challenging real-robot tasks

which contain a larger number of modes to inspect how the proposed method scales in more

complex scenarios.
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A List of publications
[1] E. Rueckert, J. Mundo, A. Paraschos, J. Peters, G. Neumann. (2014). Extracting Low-

Dimensional Control Variables for Movement Primitives. In Review process for IEEE

International Conference on Robotics and Automation (ICRA 2015), Washington, USA,

2015.

A.1 Comments and Contributions to Publications

The paper Extracting Low-Dimensional Control Variables for Movement Primitives was written

by myself (JM), Elmar Rueckert (ER), Jan Peters (JP) and Gerhard Neumann (GN). While GN

and ER developed the basic ideas of this paper and created a simpler hierarchical Bayesian

model, I extended their method. In particular, an additional prior distribution was used to

improve numerical stability. The implementation of the model was done by JM while ER

implemented most of the experiments. Section 3 and Section 5 build partially on results

presented in the paper.
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B Update equations LMProMPs
We derive the update equations for the Latent Manifold Probabilistic Movement Primitives

(LMProMPS). We start with the proposed model for single movement types and conclude

with the model of multiple movement types.

B.1 Single movement type

First we define 4 helper functions, which are used heavily throughout this derivation:

1.
V
∑

v=1

m[v ]h[v ,i] = Mh[i],

2.< h[v ,i]T m[v ]
T
m[v ]h[v ,i] >h[v ,i]=h[v ,i]m[v ]

T
m[v ]h[v ,i] + t r[m[v ]

T
m[v ]σh[v ,i]]

=m[v ]
T
(h[v ,i])2m[v ]

T
+m[v ]

T
σh[v ,i]m[v ]

=m[v ]
T
(h[v ,i]T h[v ,i] +σh[v ,i])m[v ]

T
.

This is because m[v ]
T
m[v ]σh[v ,i] ∈ R1x1.

3.< M T M >M= M̄ T M̄ + d











σm[1] · · · 0
...

. . .
...

0 · · · σm[V ]











= M̄ T M̄ + dΣM[V ] ,

4.< h[i]
T
M T Mh[i] >h[i],M=< h[i]

T
< M T M >M h[i] >h[i]

=< h[i]
T
(M̄ T M̄ + dΣM[V ])h

[i] >h[i]

=µh[i]
T (M̄ T M̄ + dΣM[V ])µh[i] + t r[(M̄ T M̄ + dΣM[V ])Σh[i]].

This is valid because we do not have a correlation between h[i] and M since we assume a

complete factorization of the q distributions. Note that also the expectation over M factorizes

< · >M=< · >m[1],...,m[V ] since all the columns of M are considered as independent latent

variables and are only combined into a matrix for easier computation.

The update equations for the approximate variational posterior of the parameter vector

w [i] reads as follows:

log q∗(w [i]) =< log p(y[i]|Ψ[i], w [i],β)p(w [i]|b, M , h[i],α)>h[i],b,M ,α,λ[1:V ]

=< logN (y[i]|Ψ[i]w [i],β−1IS)N (w [i]|b+Mh[i], (α)−1Id)>h[i],b,M ,α,λ[1:V ]
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=
S

2
log 2πβ −

β

2
(y[i] −Ψ[i]w [i])T (y[i] −Ψ[i]w [i])+

<
d

2
log 2πα−

α

2
(w [i] − b−Mh[i])T (w [i] − b−Mh[i])>h[i],b,M ,α,λ[1:V ]

=−
β

2
(−2w [i]

T
Ψ[i]

T
y[i] + w [i]

T
Ψ[i]

T
Ψ[i]w [i])

−
ᾱ

2
(w [i]

T
w [i] − 2w [i]

T
µb − 2w [i]

T
M̄µh[i]) + const

=−
1

2
w [i]

T
(βΨ[i]

T
Ψ[i] + ᾱId)w

[i] + w [i]
T
(βΨ[i]

T
y[i] + ᾱ(µb + M̄µh[i])) + const

This is a cannonical Gaussian distribution. We get the optimal solution

q∗(w [i]) =N (w [i]|µw [i] ,Σw [i]), with

µw [i] =Σw [i](βΨ
[i]T y[i] + ᾱ(µb + M̄µh[i])),

Σw [i] =(βΨ
[i]TΨ[i] + ᾱId)

−1.

The offset vector b updates are

log q∗(b) =< log
L
∏

i=1

p(w [i]|b, M , h[i],α)p(b|λ[0])>w [1:L],h[1:L],M ,α,λ[1:V ]

=< log
L
∏

i=1

N (w [i]|b+Mh[i], (α)−1Id)N (b|0, (λ[0])−1Id)>w [1:L],h[1:L],M ,α,λ[1:V ]

=<
L
∑

i=1

d

2
log2πα−

α

2
(w [i] − b−Mh[i])T (w [i] − b−Mh[i])>w [1:L],h[1:L],M ,α,λ[1:V ]

+
d

2
log2πλ[0] −

λ[0]

2
bT b

=
L
∑

i=1

{−
ᾱ

2
(bT b− 2bTµw [i] + 2bT M̄µh[i])} −

λ[0]

2
bT b+ const

=−
1

2
bT (

L
∑

i=1

{ᾱ}+λ[0])b+ bT
L
∑

i=1

{ᾱ(µw [i] − M̄µh[i])}+ const

This is a cannonical Gaussian distribution where

q∗(b) =N (b|µb,σb Id), with

µb =σb(
L
∑

i=1

{ᾱ(µw [i] − M̄µh[i])}),

σb =
L
∑

i=1

{ᾱ}+λ[0] = Lᾱ+λ[0].

The projection vector m[v ] updates are

log q∗(m[v ]) =< log
L
∏

i=1

p(w [i]|b, M , h[i],α)p(m[v ]|λ[v ])>w [1:L],h[1:L],b,α,λ[v ]
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=< log
L
∏

i=1

N (w [i]|b+Mh[i], (α)−1Id)N (m[v ]|0, (λ[v ])−1Id)>w [1:L],h[1:L],b,α,λ[v ]

=<
L
∑

i=1

d

2
log2πα−

α

2
(w [i] − b−

V
∑

v=1

m[v ]h[v ,i])T (w [i] − b−
V
∑

v=1

m[v ]h[v ,i])

+
d

2
log2πλ[v ] −

λ[v ]

2
m[v ]

T
m[v ] >w [1:L],h[1:L],b,α,λ[v ]

=
L
∑

i=1

{−
ᾱ

2
(2m[v ]

T
µh[v ,i]

Tµb − 2m[v ]
T
µh[v ,i]

Tµw [i]

+m[v ]
T
µh[v ,i]

Tµh[v ,i]m[v ] +m[v ]
T
σh[v ,i]m[v ])} −

λ̄[v ]

2
m[v ]

T
m[v ] + const

=−
1

2
m[v ]

T
(

L
∑

i=1

{ᾱ(µh[v ,i]
Tµh[v ,i] +σh[v ,i])}+ λ̄[v ])m[v ]

+m[v ]
T
(

L
∑

i=1

{ᾱ(µw [i] −µb)µh[v ,i]
T}) + const

This is a cannonical Gaussian distribution where

q∗(m[v ]) =N (m[v ]|µm[v ] ,σm[v ] Id), with

µm[v ] =σm[v ](
L
∑

i=1

{ᾱµh[v ,i](µw [i] −µb)}),

σm[v ] =(
L
∑

i=1

{ᾱ((µh[v ,i])2+σh[v ,i])}+ λ̄[v ])−1 = (ΣM[V ](v , v ))−1,

where σh[v ,i] is the v − th row and v − th column of Σh[i] The vectors µm[v ] are combined

into the matrix M̄ = [µm[1] , . . . ,µm[V ]]. The precision parameters σm[v ] are combined into

the matrix

ΣM[V ] =











σm[1] · · · 0
...

. . .
...

0 · · · σm[V ]











.

The updates of the control variable h[i] read

log q∗(h[i]) =< log p(w [i]|b, M , h[i],α)p(h[i]|γ)>w [i],b,M ,α,λ[1:V ]

=< logN (w [i]|b+Mh[i], (α)−1Id)N (h[i]|0,γ−1IV )>w [i],b,M ,α,λ[1:V ]

=<
d

2
log2πα−

α

2
(w [i] − b−Mh[i])T (w [i] − b−Mh[i])>w [i],b,M ,α,λ[1:V ]

+
V

2
log2πγ−

γ

2
h[i]

T
IV h[i]

=−
ᾱ

2
(2h[i]

T
M̄ T
µb − 2h[i]

T
M̄ T
µw [i] + h[i]

T
(M̄ T M̄ + dΣM[V ])h

[i]

−
γ

2
h[i]

T
IV h[i] + const

=−
1

2
h[i]

T
(ᾱIV (M̄

T M̄ + dΣM[V ]) + γIV ))h
[i] + h[i]

T
(ᾱIV M̄ T (µw [i] −µb)) + const
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This is a cannonical Gaussian distribution where

q∗(h[i]) =N (h[i]|µh[i] ,Σh[i]), with

µh[i] =Σh[i](ᾱIV M̄ T (µw [i] −µb)),

Σh[i] =(ᾱIV (M̄
T M̄ + dΣM[V ]) + γIV )

−1.

In difference to the updates for the projection vectors m[v ] we learn a covariance between

the different dimensions of µh[i] .

The updates for the precision parameter λ[v ] of the projection vector read

log q∗(λ[v ]) =< log p(m[v ]|λ[v ])p(λ[v ]|c[0], d[0])>m[v ]

=< logN (m[v ]|0, (λ[v ])−1Id)Γ(λ
[v ]|c[0], d[0])>m[v ]

=
d

2
log2π+

d

2
logλ[v ]−<

λ[v ]

2
wT

v wv >m[v ]

−Γ(c[0]) + c[0] log d[0] + (c[0] − 1) logλ[v ] − d[0]λ[v ]

=(c[0] +
d

2
− 1) logλ[v ] − (d[0] +

1

2
(µm[v ]

Tµm[v ] + dσm[v ])λ
[v ] + const

This is a Gamma distribution, where we get the optimal solution

q∗(λ[v ]) =Γ(λ[v ]|c̄, d̄), with

c̄ =c[0] +
d

2
,

d̄ =d[0] +
1

2
(µm[v ]

Tµm[v ] + dσm[v ]).

The expectation of the precision parameter λ̄[v ] is given by

λ̄[v ] =< λ[v ] >λ[v ]=
c̄

d̄
.

The updates for precision parameter of the weight vector α read

log q∗(α) =< log
L
∏

i=1

p(w [i]|b, M , h[i],α)p(α|a[0], b[0])>w [1:L],h[1:L],b,M ,λ[1:V ]

=< log
L
∏

i=1

N (w [i]|b+Mh[i],αId)Γ(α|a[0], b[0])>w [1:L],h[1:L],b,M ,λ[1:V ]

=<
L
∑

i=1

d

2
log 2πα−

α

2
(w [i] − b−Mh[i])T (w [i] − b−Mh[i])>w [1:L],h[1:L],b,M ,λ[1:V ]

−Γ(a[0]) + a[0] log b[0] + (a[0] − 1) logα− b[0]α

=
L
∑

i=1

d

2
logα−

α

2
[(µw [i] −µb − M̄µh[i])

T (µw [i] −µb − M̄µh[i])

+ t r[Σw [i]] + t r[σb Id] +µh[i]
T dΣM[V ]µh[i] + t r[(M̄ T M̄ + dΣM[V ])Σh[i]]]
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+ (a[0] − 1) logα− b[0]α+ const

=((a[0] +
d L

2
− 1) logα− (b[0] +

1

2

L
∑

i=1

{(µw [i] −µb − M̄µh[i])
T

(µw [i] −µb − M̄µh[i]) + t r[Σw [i]] + t r[σb Id] +µh[i]
T dΣM[V ]µh[i]

+ t r[(M̄ T M̄ + dΣM[V ])Σh[i]])α+ const

This is a Gamma distribution. We get the optimal solution

q∗(α) =Γ(α|ā, b̄), with

ā =a[0] +
d L

2
,

b̄ =b[0] +
1

2

L
∑

i=1

{(µw [i] −µb − M̄µh[i])
T (µw [i] −µb − M̄µh[i])

+ t r[Σw [i]] + dσb +µh[i]
T dΣM[V ]µh[i] + t r[(M̄ T M̄ + dΣM[V ])Σh[i]].

The expectation of the precision parameter ᾱ is given by

ᾱ=< α >α=
ā

b̄
.
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B.2 Multiple movements types

We use the helper functions from Section B.1. The update equations for the approximate

variational posterior of the parameter vector w [i] reads

log q∗(w [i]) =< log p(y[i]|Ψ[i], w [i],β)
K
∏

k=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )>Z\w [1:L]

=< logN (y[i]|Ψ[i]w [i],β−1IS)
K
∏

k=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k >Z\w [1:L]

=
S

2
log2πβ −

β

2
(y[i] −Ψ[i]w [i])T (y[i] −Ψ[i]w [i]) +

K
∑

k=1

< z[i]k [
d

2
log 2παk

−
αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )]>Z\w [1:L]

=−
β

2
(−2w [i]

T
Ψ[i]

T
y[i] + w [i]

T
Ψ[i]

T
Ψ[i]w [i])

−
K
∑

k=1

µ
z[i]k
ᾱk

2
(w [i]

T
w [i] − 2w [i]

T
µbk
− 2w [i]

T
M̄ kµh[i]k

) + const

=−
1

2
w [i]

T
(βΨ[i]

T
Ψ[i] +

K
∑

k=1

µ
z[i]k
ᾱk Id)w

[i] + w [i]
T
(βΨ[i]

T
y[i]

+
K
∑

k=1

µ
z[i]k
ᾱk Id(µbk

+ M̄ kµh[i]k
)) + const.

This is a cannonical Gaussian distribution. We get the optimal solution

q∗(w [i]) =N (w [i]|µw [i] ,Σw [i]) with

µw [i] =Σw [i](βΨ
[i]T y[i] +

K
∑

k=1

µ
z[i]k
ᾱk(µbk

+ M̄ kµh[i]k
)),

Σw [i] =(βΨ
[i]TΨ[i] +

K
∑

k=1

µ
z[i]k
ᾱk Id)

−1.

Here we used < · >Z\w [1:L] to denote the expectations with respect to all variational distri-

butions expect for w [1:L]. The updates of the offset vector bk for each mixture component

reads

log q∗(bk) =< log
L
∏

i=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(bk|λ
[0]
k )>Z\bk

=< log
L
∏

i=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k N (bk|0, (λ[0]k )
−1Id)>Z\bk

=<
L
∑

i=1

z[i]k [
d

2
log2παk −

αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )]>Z\bk

+
d

2
log 2πλ[0]k −

λ
[0]
k

2
bk

T bk
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=
L
∑

i=1

{−
µ

z[i]k
ᾱk

2
(bk

T bk − 2bk
Tµw [i] + 2bk

T M̄ kµh[i]k
)} −

λ
[0]
k

2
bk

T bk + const

=−
1

2
bk

T (
L
∑

i=1

{µ
z[i]k
ᾱk}+λ

[0]
k )bk + bk

T
L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] − M̄ kµh[i]k

)}+ const

This is a cannonical Gaussian distribution

q∗(bk) =N (bk|µbk
,σbk

Id), with

µbk
=σbk

(
L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] − M̄ kµh[i]k

)}),

σbk
=(

L
∑

i=1

{µ
z[i]k
ᾱk}+λ

[0]
k )

−1.

The projection vectors m[v ]k are updated as

log q∗(m[v ]k ) =< log
L
∏

i=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(m
[v ]
k |λ

[v ]
k )>Z\m[v ]k

=< log
L
∏

i=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k N (m[v ]k |0, (λ[v ]k )
−1Id)>Z\m[v ]k

=<
L
∑

i=1

z[i]k [
d

2
log2παk −

αk

2
(w [i] − bk −

V
∑

v=1

m[v ]k h[v ,i]
k )T

(w [i] − bk −
V
∑

v=1

m[v ]k h[v ,i]
k )] +

d

2
log2πλ[v ]k −

λ
[v ]
k

2
m[v ]k

T
m[v ]k >

Z\m[v ]k

=
L
∑

i=1

{−
µ

z[i]k
ᾱk

2
(2m[v ]k

T
µ

h[v ,i]
k

Tµbk
− 2m[v ]k

T
µ

h[v ,i]
k

Tµw [i]

+m[v ]k

T
µ

h[v ,i]
k

Tµ
h[v ,i]

k
m[v ]k +m[v ]k

T
σ

h[v ,i]
k

m[v ]k )} −
λ̄
[v ]
k

2
m[v ]k

T
m[v ]k + const

=−
1

2
m[v ]k

T
(

L
∑

i=1

{µ
z[i]k
ᾱk((µh[v ,i]

k
)2+σ

h[v ,i]
k
)}+ λ̄[v ]k )m

[v ]
k

+m[v ]k

T
(

L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] −µbk

)µ
h[v ,i]

k
}) + const

This is a cannonical Gaussian distribution

q∗(m[v ]k ) =N (m
[v ]
k |µm[v ]k

,σ
m[v ]k

Id), with

µ
m[v ]k
=σ

m[v ]k
(

L
∑

i=1

{µ
z[i]k
ᾱk(µw [i] −µbk

)µ
h[v ,i]

k
})

σ
m[v ]k
=(

L
∑

i=1

{µ
z[i]k
ᾱk((µh[v ,i]

k
)2+σ

h[v ,i]
k
)}+ λ̄[v ]k )

−1 = (Σ
M[V ]k
(v , v ))−1
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where σ
h[v ,i]

k
is the v − th row and v − th column of Σ

h[i]
k

The vectors µ
m[v ]k

are combined

into the matrix M̄ k = [µm[1]k
, . . . ,µ

m[V ]k
]. The precision parameters λ[v ]k are combined into

the matrix

Σ
M[V ]k
=













σ
m[1]k

· · · 0

...
. . .

...

0 · · · σ
m[V ]k













for each component k.

The updates for the control variables h[i]k are

log q∗(h[i]k ) =< log p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(h
[i]
k |γk)>Z\h[i]k

=< log
K
∏

k=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k N (h[i]k |0, (γk)
−1IV )>Z\h[i]k

=<
K
∑

k=1

z[i]k [
d

2
log2παk −

αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )]>Z\h[i]k

+
V

2
log2πγk −

γk

2
h[i]k

T
IV h[i]k

=
K
∑

k=1

−
µ

z[i]k
ᾱk

2
(2h[i]k

T
M̄ T

kµbk
− 2h[i]k

T
M̄ T

kµw [i] + h[i]k

T
(M̄ T

k M̄ k + dΣ
M[V ]k
)h[i]k

−
γk

2
h[i]k

T
IV h[i]k + const

=−
1

2
h[i]k

T
(

K
∑

k=1

µ
z[i]k
ᾱk(M̄

T
k M̄ k + dΣ

M[V ]k
) + γk IV ))h

[i]
k +

h[i]k

T
(

K
∑

k=1

µ
z[i]k
ᾱkM̄ T

k (µw [i] −µbk
)) + const

This is a cannonical Gaussian distribution

q∗(h[i]k ) =N (h
[i]
k |µh[i]k

,Σ
h[i]

k
), with

µ
h[i]k
=Σ

h[i]
k
(

K
∑

k=1

µ
z[i]k
ᾱkM̄ T

k (µw [i] −µbk
))

Σ
h[i]

k
=(

K
∑

k=1

µ
z[i]k
ᾱk(M̄

T
k M̄ k + dΣ

M[V ]k
) + γk IV )

−1

In difference to the updates for the projection vectors m[v ]k we learn a covariance between

the different dimensions of h[i]k .

The updates for the precision parameters λ[v ]k of the projection vector read

log q∗(λ[v ]k ) =< log p(m[v ]k |λ
[v ]
k )p(λ

[v ]
k |c

[0]
k , d[0]k )>m[v ]k

=< logN (m[v ]k |0, (λ[v ]k )
−1IV )Γ(λ

[v ]
k |c

[0]
k , d[0]k )>m[v ]k
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=
d

2
log2π+

d

2
logλ[v ]k −<

λ
[v ]
k

2
m[v ]k

T
m[v ]k >

m[v ]k

−Γ(c[0]k ) + c[0]k log d[0]k + (c
[0]
k − 1) logλ[v ]k − d[0]k λ

[v ]
k

=(c[0]k +
d

2
− 1) logλ[v ]k − (d

[0]
k +

1

2
(µ

m[v ]k

Tµ
m[v ]k
+ dσ

m[v ]k
)λ[v ]k + const

This is a Gamma distribution. We get the optimal solution

q∗(λ[v ]k ) =Γ(λ
[v ]
k |c̄k, d̄k), with

c̄k =c[0]k +
d

2
,

d̄k =d[0]k +
1

2
(µ

m[v ]k

Tµ
m[v ]k
+ dσ

m[v ]k
).

The expectation of the precision parameters λ̄[v ]k is given by

λ̄
[v ]
k =< λ[v ]k >

λ
[v ]
k
=

c̄k

d̄k

.

The updates for precision parameter of the weight vector αk read

log q∗(αk) =< log
L
∏

i=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(αk|a
[0]
k , b[0]k )>Z\αk

=< log
L
∏

i=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k Γ(αk|a
[0]
k , b[0]k )>Z\αk

=
L
∑

i=1

< z[i]k [
d

2
log2παk −

αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )]>Z\αk

−Γ(a[0]k ) + a[0]k log b[0]k + (a
[0]
k − 1) logαk − b[0]k αk

=
L
∑

i=1

µ
z[i]k
[

d

2
logαk −

αk

2
[(µw [i] −µbk

− M̄ kµh[i]k
)T (µw [i] −µbk

− M̄ kµh[i]k
)

+ t r[Σw [i]] + t r[σbk
Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k

+ t r[M̄ T
k M̄ k + dΣ

M[V ]k
)Σ

h[i]
k
]] + (a[0]k − 1) logαk − b[0]k αk + const

=(a[0]k +
d

2

L
∑

i=1

{µ
z[i]k
} − 1) logαk − (b

[0]
k +

1

2

L
∑

i=1

{(µw [i] −µbk
− M̄ kµh[i]k

)T

(µw [i] −µbk
− M̄ kµh[i]k

) + t r[Σw [i]] + t r[σbk
Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k

+ t r[(M̄ T
k M̄ k + dΣ

M[V ]k
)Σ

h[i]
k
])αk + const

This is a Gamma distribution

q∗(αk) =Γ(αk|āk, b̄k), with

āk =a[0]k +
d

2

L
∑

i=1

{µ
z[i]k
},
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b̄k =b[0]k +
1

2

L
∑

i=1

{(µw [i] −µbk
− M̄ kµh[i]k

)T (µw [i] −µbk
− M̄ kµh[i]k

)

+ t r[Σw [i]] + t r[σbk
Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k
+ t r[(M̄ T

k M̄ k + dΣ
M[V ]k
)Σ

h[i]
k
].

The expectation of the precision parameters ᾱk is given by

ᾱk =< αk >αk
=

āk

b̄k

.

The updates for the mixture indices z read

log q∗(z) =< log
L
∏

i=1

K
∏

k=1

p(w [i]|bk, M k, h[i]k ,αk, z[i]k )p(z
[i]
k |πk)>Z\z

=< log
L
∏

i=1

K
∏

k=1

N (w [i]|bk +M kh[i]k , (αk)
−1Id)

z[i]k (πk)
z[i]k >Z\z

=
L
∑

i=1

K
∑

k=1

z[i]k logρ[i]k ,

where we define

logρ[i]k = logπk+<
d

2
logαk −

αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )>Z\z

= logπk +
d

2
(Ψ(āk)− log b̄k)−

ᾱk

2
[(µw [i] −µbk

− M̄ kµh[i]k
)T (µw [i] −µbk

− M̄ kµh[i]k
)

+ t r[Σw [i]] + t r[σbk
Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k
+ t r[(M̄ T

k M̄ k + dΣ
M[V ]k
)Σ

h[i]
k
]].

With taking the exponential on both sides above, we get

q∗(z)∝
L
∏

i=1

K
∏

k=1

(ρ[i]k )
z[i]k

We normalize for each i the quantities since they must sum to one because it is a probability

distribution. Summarizing the variational factor for the mixture indices z is a multinomial

and reads

q∗(z) =
L
∏

i=1

K
∏

k=1

(µ
z[i]k
)z
[i]
k , with

µ
z[i]k
=

ρ
[i]
k

∑K
j=1ρ

[i]
j

,

ρ
[i]
k =exp(logπk +

d

2
(Ψ(āk)− log b̄k)−

ᾱk

2
[(µw [i] −µbk

− M̄ kµh[v ,i]
k
)T

(µw [i] −µbk
− M̄ kµh[v ,i]

k
) + t r[Σw [i]] + t r[σbk

Id] +µh[i]k

T dΣ
M[V ]k

µ
h[i]k

+ t r[(M̄ T
k M̄ k + dΣ

M[V ]k
)Σ

h[i]
k
]].
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Finally the mixture coefficients πk are optimized. Since we want to keep the model simple

we did not place a prior on the mixture coefficients they are optimized as

πk =
1

L

L
∑

i=1

z[i]k .

In future work one could consider a Dirichlet prior on the mixture coefficients and evaluate

how this additional prior increases the performance of the proposed model.
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C Lower bound - LMProMPs
In this section we derive the lower bound L for the Latent Manifold Probabilistic Movement

Primitives (LMProMPs). We start with the proposed model for single movement types and

conclude with the model of multiple movement types.

C.1 Single movement type

For a reminder the latent variables of the LMProMP for single movement types reads

ξ= {w [1:L], h[1:L], b, M ,α,λ[1:V ]}.

The lower bound is computed as follows:

L (q) =< log p(y[1:L],ξ)> −< log q(ξ)>

=
L
∑

i=1

{< log p(y[i]|Ψ[i], w [i])> +< log p(w [i]|b, M ,µh[i] ,α)> +< log p(h[i])>}

+< log p(b)> +< log p(M)> +< log p(α)> +< log p(λ[1:V ])>

+
L
∑

i=1

{−< log q(w [i])> −< log q(h[i])>}−< log q(b)> −< log q(M)>

−< log q(α)> −< log q(λ[1:V ])> .

We left out the parameters θ = {β ,λ[0],γ, a[0], b[0], c[0], d[0]} to keep the notation unclut-

tered, as well as the subscripts of the expectation, because each expectation is taken w.r.t all

the variational posterior distributions of the corresponding latent variables.

In the following we derive all of the summands separately. All terms which does not change

during the updates are denoted as constant by the term const and are not considered in the

lower bound.

< log p(y[i]|Ψ[i], w [i])>=< log p(y[i]|Ψ[i], w [i],β)>=< logN (y[i]|Ψ[i]w [i],β−1IS)>

=
S

2
log 2πβ−<

β

2
(y[i] −Ψ[i]w [i])T (y[i] −Ψ[i]w [i])>

= −
β

2
(−2µw [i]

TΨ[i]
T

y[i] +µw [i]
TΨ[i]

T
Ψ[i]µw [i]

+ t r[Ψ[i]
T
Ψ[i]Σw [i]]) + const

< log p(w [i]|b, M , h[i],α)>=< log p(w [i]|b+Mh[i],αId)>

=< logN (w [i]|b+Mh[i],αId)>

=
d

2
log 2πα−<

α

2
(w [i] − b−Mh[i])T (w [i] − b−Mh[i])>
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=
d

2
< logα >α −

α

2
[(µw [i] −µb − M̄µh[i])

T (µw [i] −µb − M̄µh[i])

+ t r[Σw [i]] + t r[σb Id]

+µh[i]
TΣM[V ]µh[i] + t r[(M̄ T M̄ +ΣM[V ])Σh[i] + const

=
d

2
(K (ā)− log b̄)−

ᾱ

2
[(µw [i] −µb − M̄µh[i])

T (µw [i] −µb − M̄µh[i])

+ t r[Σw [i]] + t r[σb Id] +µh[i]
TΣM[V ]µh[i]

+ t r[(M̄ T M̄ +ΣM[V ])Σh[i]]] + const

For more details see derivation of the update equation of q∗(α). Again K denotes the

Digamma function.

< log p(h[i])>=< log p(h[i]|γ)>=< logN (h[i]|0,γ−1IV )>

=
V

2
log 2πγ−<

γ

2
h[i]

T
h[i] >

=−
γ

2
(µh[i]

Tµh[i] + t r[Σh[i]]) + const

< log p(b)>=< log p(b|λ[0])>=< logN (b|0,λ[0]
−1

Id)>

=
d

2
log2πλ[0]−<

λ[0]

2
bT b >

=−
λ[0]

2
(µb

Tµb + t r[σb Id]) + const

=−
λ[0]

2
(µb

Tµb + dσb) + const

< log p(M)>M=< log
V
∏

v=1

p(m[v ]|λ[v ])>=<
V
∑

v=1

logN (m[v ]|0,λ[v ]
−1

Id)>

=
V
∑

v=1

d

2
log 2πλ[v ]−<

λ[v ]

2
m[v ]

T
m[v ] >

=
V
∑

v=1

−
λ[v ]

2
(µm[v ]

Tµm[v ] + t r[σm[v ] Id]) + const

=
V
∑

v=1

−
λ[v ]

2
(µm[v ]

Tµm[v ] + dσm[v ]) + const

< log p(α)>=< log p(α|a[0], b[0])>=< logΓ(α|a[0], b[0])>

=<−Γ(a[0]) + a[0] log b[0] + (a[0] − 1) logα− b[0]α >

=< (a[0] − 1) logα− b[0]α > +const

=(a[0] − 1)(K (ā)− log b̄)− b[0]
ā

b̄
+ const

< log p(λ[v ])>=< log p(λ[v ]|c[0], d[0])>=< logΓ(λ[v ]|c[0], d[0])>
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=<−Γ(c[0]) + c[0] log d[0] + (c[0] − 1) logλ[v ] − d[0]λ[v ] >

=< (c[0] − 1) logλ[v ] − d[0]λ[v ] > +const

=(c[0] − 1)(K (c̄)− log d̄)− d[0]
c̄

d̄
+ const

< log q(w [i])>=< logN (w [i]|µw [i] ,Σw [i])>

=−
1

2
log |2πΣw [i] | −

1

2
< (w [i] −µw [i])

T (Σw [i])
−1(w [i] −µw [i])>

=−
1

2
log |2πΣw [i] | −

1

2
[(µw [i] −µw [i])

T (Σw [i])
−1

(µw [i] −µw [i]) + t r[(Σw [i])
−1Σw [i]]

=−
1

2
log |2πΣw [i] | −

1

2
t r[Id]

=−
1

2
log |2πΣw [i] |+ const

Here we need to compute the log of the determinante which might result in numerical issues.

We therefore rewrite the term by

log |X |= log
∏

j

λ j =
∑

j

logλ j ,

where λi is the i-th eigenvalue of X . We obtain

< log q(w [i])>=−
1

2

d
∑

j

log |2πλ j |+ const

< log q(h[i])>=< logN (h[i]|µh[i] ,Σh[i])>

=−
1

2
log |2πΣh[i] | −

1

2
< (h[i] −µh[i])

T (Σh[i])
−1(h[i] −µh[i])>

=−
1

2
log |2πΣh[i] | −

1

2
t r[IV ]

=−
1

2
log |2πΣh[i] |+ const

< log q(b)>=< logN (b|µb,σb Id)>

=
d

2
log 2πσb −

1

2
< (b−µb)

T (σb)
−1Id(b−µb)>

=
d

2
log

1

σb
−

1

2
t r[Id] + const

=
d

2
log

1

σb
+ const

52



< log q(M)>M=< log
V
∏

v=1

N (m[v ]|µm[v ] ,σm[v ] Id)>

=
V
∑

v=1

d

2
log2πσm[v ] −

1

2
< (m[v ] −µm[v ])

T (σm[v ])
−1Id(m

[v ] −µm[v ])>

=
V
∑

v=1

d

2
log

1

σm[v ]
+

1

2
t r[Id] + const

=
V
∑

v=1

d

2
log

1

σm[v ]
+ const

< log q(α)>=< logΓ(α|ā, b̄)>

=<− logΓ(ā) + ā log b̄+ (ā− 1) logα− b̄α >

=− logΓ(ā) + ā log b̄+ (ā− 1)(K (ā)− log b̄)− b̄
ā

b̄
=− logΓ(ā) + log b̄+ (ā− 1)K (ā)− ā

< log q(λ[v ])>=< logΓ(λ[v ]|c̄, d̄)>

=<− logΓ(c̄) + c̄ log d̄ + (c̄− 1) logλ[v ] − d̄λ[v ] >

=− logΓ(c̄) + c̄ log d̄ + (c̄− 1)(K (c̄)− log d̄)− d̄
c̄

d̄
=− logΓ(c̄) + log d̄ + (c̄− 1)K (c̄)− c̄
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C.2 Multiple movements types

For multiple movements we obtain an extended version of the lower bound, since the joint

distribution contains multiple mixture components.

L (q) =< log p(y[1:L],ξ)> −< log q(ξ)>

=
L
∑

i=1

{< log p(y[i]|Ψ[i], w [i])> +
K
∑

k=1

{< log p(w [i]|bk, M k, h[i]k ,αk, z[i]k )>

+< log p(h[i]k |γ)> +< log p(z[i]k )>}}

+
K
∑

k=1

{< log p(bk)> +< log p(M k|λ
[1:V ]
k )> +< log pk(λ[1:V ]

k )> +< log p(αk)>}

+
L
∑

i=1

{−< log q(w [i])> −
K
∑

k=1

{< log q(µ
h[i]k
)> −< log q(z[i]k )>}}

−
K
∑

k=1

{< log q(bk)> −< log q(M k)> −< log q(αk)> −< log q(λ[1:V ]
k )>}

The individual terms read

< log p(y[i]|Ψ[i], w [i])>=< log p(y[i]|Ψ[i], w [i],β)>=< logN (y[i]|Ψ[i]w [i],β−1IS)>

=
S

2
log2πβ−<

β

2
(y[i] −Ψ[i]w [i])T (y[i] −Ψ[i]w [i])>

=−
β

2
(−2µw [i]

TΨ[i]
T

y[i] +µw [i]
TΨ[i]

T
Ψ[i]µw [i]

+ t r[Ψ[i]
T
Ψ[i]Σw [i]]) + const

< log p(w [i]|bk, M k, h[i]k ,αk)>=< log p(w [i]|bk +M kh[i]k ,αk Id)>

=< logN (w [i]|bk +M kh[i]k ,αk Id)>

=
d

2
log2παk−<

αk

2
(w [i] − bk −M kh[i]k )

T (w [i] − bk −M kh[i]k )>

=
d

2
< logαk >αk

−
αk

2
[(µw [i] −µbk

− M̄ kµh[i]k
)T

(µw [i] −µbk
− M̄ kµh[i]k

) + t r[Σw [i]] + t r[σbk
Id]

+µ
h[i]k

TΣ
M[V ]k

µ
h[i]k
+ t r[(M̄ T

k M̄ k +ΣM[V ]k
)Σ

h[i]
k
+ const

=
d

2
(K (āk)− log b̄k)−

ᾱk

2
[(µw [i] −µbk

− M̄ kµh[i]k
)T

(µw [i] −µbk
− M̄ kµh[i]k

) + t r[Σw [i]] + t r[σbk
Id]

+µ
h[i]k

TΣ
M[V ]k

µ
h[i]k
+ t r[(M̄ T

k M̄ k +ΣM[V ]k
)Σ

h[i]
k
]] + const

For more details see derivation of the update equation of q∗(αk). Again K denotes the

Digamma function.
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< log p(h[i]k )>=< log p(h[i]k |γk)>=< logN (h[i]k |0,γ−1
k IV )>

=
V

2
log2πγk−<

γk

2
h[i]k

T
h[i]k >

=−
γk

2
(µ

h[i]k

Tµ
h[i]k
+ t r[Σ

h[i]
k
]) + const

< log p(bk)>=< log p(bk|λ
[0]
k )>=< logN (bk|0,λ[0]k

−1
Id)>

=
d

2
log 2πλ[0]k −<

λ
[0]
k

2
bk

T bk >

=−
λ
[0]
k

2
(µbk

Tµbk
+ t r[(σbk

)−1Id]) + const

=−
λ
[0]
k

2
(µbk

Tµbk
+ d(σbk

)−1) + const

< log p(M k)>Mk
=< log

V
∏

v=1

p(m[v ]k |λ
[v ]
k )>=<

V
∑

v=1

logN (m[v ]k |0,λ[v ]k

−1
Id)>

=
V
∑

v=1

d

2
log2πλ[v ]k −<

λ
[v ]
k

2
m[v ]k

T
m[v ]k >

=
V
∑

v=1

−
λ
[v ]
k

2
(µ

m[v ]k

Tµ
m[v ]k
+ t r[σ

m[v ]k
Id]) + const

=
V
∑

v=1

−
λ
[v ]
k

2
(µ

m[v ]k

Tµ
m[v ]k
+ dσ

m[v ]k
) + const

< log p(αk)>=< log p(αk|a
[0]
k , b[0]k )>=< logΓ(αk|a

[0]
k , b[0]k )>

=<−Γ(a[0]k ) + a[0]k log b[0]k + (a
[0]
k − 1) logαk − b[0]k αk >

=< (a[0]k − 1) logαk − b[0]k αk > +const

=(a[0]k − 1)(K (āk)− log b̄k)− b[0]k

āk

b̄k

+ const

< log p(λ[v ]k )>=< log p(λ[v ]k |c
[0]
k , d[0]k )>=< logΓ(λ[v ]k |c

[0]
k , d[0]k )>

=<−Γ(c[0]k ) + c[0]k log d[0]k + (c
[0]
k − 1) logλ[v ]k − d[0]k λ

[v ]
k >

=< (c[0]k − 1) logλ[v ]k − d[0]k λ
[v ]
k > +const

=(c[0]k − 1)(K (c̄k)− log d̄k)− d[0]k

c̄k

d̄k

+ const

< log p(z[i]k )>z[i]k
=< logπ

z[i]k
k >

=< z[i]k logπk >

=µ
z[i]k

logπk
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< log q(w [i])>=< logN (w [i]|µw [i] ,Σw [i])>

=−
1

2
log |2πΣw [i] | −

1

2
< (w [i] −µw [i])

T (Σw [i])
−1(w [i] −µw [i])>

=−
1

2
log |2πΣw [i] | −

1

2
[(µw [i] −µw [i])

T (Σw [i])
−1(µw [i] −µw [i])

+ t r[(Σw [i])
−1Σw [i]]

=−
1

2
log |2πΣw [i] | −

1

2
t r[Id]

=−
1

2
log |2πΣw [i] |+ const

< log q(h[i]k )>=< logN (h[i]k |µh[i]k
,Σ

h[i]
k
)>

=−
1

2
log |2πΣ

h[i]
k
| −

1

2
< (h[i]k −µh[i]k

)T (Σ
h[i]

k
)−1(h[i]k −µh[i]k

)>

=−
1

2
log |2πΣ

h[i]
k
| −

1

2
t r[IV ]

=−
1

2
log |2πΣ

h[i]
k
|+ const

< log q(bk)>=< logN (bk|µbk
,σbk

Id)>

=
d

2
log2πσbk

−
1

2
< (bk −µbk

)T (σbk
)−1Id(bk −µbk

)>

=
d

2
log

1

σbk

−
1

2
t r[Id] + const

=
d

2
log

1

σbk

+ const

< log q(M k)>Mk
=< log

V
∏

v=1

N (m[v ]k |µm[v ]k
,σ

m[v ]k
Id)>

=
V
∑

v=1

d

2
log 2πσ

m[v ]k
−

1

2
< (m[v ]k −µm[v ]k

)T (σ
m[v ]k
)−1Id(m

[v ]
k −µm[v ]k

)>

=
V
∑

v=1

d

2
log

1

σ
m[v ]k

+
1

2
t r[Id] + const

=
V
∑

v=1

d

2
log

1

σ
m[v ]k

+ const

< log q(αk)>=< logΓ(αk|āk, b̄k)>

=<− logΓ(āk) + āk log b̄k + (āk − 1) logαk − b̄kαk >

=− logΓ(āk) + āk log b̄k + (āk − 1)(K (āk)− log b̄k)− b̄k
āk

b̄k

=− logΓ(āk) + log b̄k + (āk − 1)K (āk)− āk
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< log q(λ[v ]k )>=< logΓ(λ[v ]k |c̄k, d̄k)>

=<− logΓ(c̄k) + c̄k log d̄k + (c̄k − 1) logλ[v ]k − d̄kλ
[v ]
k >

=− logΓ(c̄k) + c̄k log d̄k + (c̄k − 1)(K (c̄k)− log d̄k)− d̄k
c̄k

d̄k

=− logΓ(c̄k) + log d̄k + (c̄k − 1)K (c̄k)− c̄k

< log q(z[i]k )>z[i]k
=< logµ

z[i]k

z[i]k

>

=< z[i]k logµ
z[i]k
>

=µ
z[i]k

logµ
z[i]k
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