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Abstract

Nonlinear Model Predictive Control (NMPC) is a powerful control framework, which strongly
relies on a good model of the system dynamics. In the case, such a model is not available a-
priori, non-parametric regression using Bayesian regression or Gaussian Processes (GPs) have
been shown promising in inferring the dynamics from collected data. An advantage of Bayesian
methods and GPs over other regression methods is the availability of a predictive distribution
expressing the uncertainty about the true function induced by the finite amount of observations.
Although recent work indicates that propagation of this uncertainty can be used to design robust
controllers, it has not been considered in NMPC yet. This thesis presents an approach to robust
Semi-Implicit NMPC of Bayesian linear models and Gaussian Process dynamics subject to control
constraints. The propagation of the uncertainty is done by means of the Moment-Matching (MM)
technique to track the central moments of the state distribution and a recent approximation frame-
work is used for fast online NMPC. Although the approach has several advantages from a theoret-
ical perspective, its performance on a highly nonlinear benchmark system is worse than expected.
Several possible sources for the degradation are investigated and discussed.

Zusammenfassung

Nonlinear Model Predictive Control (NMPC) ist eine michtige Methode der Steuerung und
Regelung. Diese setzt allerdings ein gutes Modell des Systemverhaltens voraus. Wenn ein
solches Modell nicht verfiigbar ist, konnen Verfahren der nicht-parametrischen Regressionss-
chitzung, besonders Gaussian Processes (GPs), erfolgreich eingesetzt werden um das Systemver-
halten aus Beobachtungen zu schitzen. Bayes’sche Modelle und Gaussian Processes zeichnen
sich gegeniiber anderen Methoden dadurch aus, dass sie die Mdoglichkeit bieten mittels einer
Wahrscheinlichkeitsverteilung die Unsicherheit in der Vorhersage, bei einer moglicherweise gerin-
gen Anzahl von Beobachtungen, zu quantifizieren. Obwohl in aktuellen Veroffentlichungen bereits
gezeigt werden konnte, dass mithilfe der Fortpflanzung dieser Verteilung iiber Zeit robuste Regler
entworfen werden konnen, wurde diese Methode bisher noch nicht in NMPC verwendet. In dieser
Arbeit wird ein Ansatz zur Semi-Impliziten NMPC von Bayes’schen lineare Modellen sowie Gaus-
sian Processes bei zusitzlichen Steuerungsbeschrinkungen vorgestellt. Die Unsicherheit wird
hierbei durch die Moment Matching (MM) Technik fortgesetzt, wihrend die Online-Steuerung
durch ein modernes Approximationsverfahren erfolgt. Obwohl der vorgestellte Algorithmus von
theoretischer Seite vielversprechend ist, zeigte sich die tatsdchliche Regelungsqualitit auf einem
nichtlinearen Testsystem als schlechter als erwartet. Die moglichen Ursachen fiir das schlechte
Abschneiden werden deshalb dargestellt und diskutiert.
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Notation

To prevent misunderstandings due to the fact that this thesis consists of optimization and machine
learning parts, in the following the notation is defined for controversial cases and less common
operators.

General

* Bold symbols denote abstract tubles, e.g. M means the tuple (M;, M,, M3). If the objects
are vectors, involved into calculations, it means the concatenation into a single column, e.g.

Mx =M (xl) .
X

* Matrices are always capital letters.

* Standard scalar operations, like exp, \/;log, <, #, are applied element-wise if the arguments
are vectors or matrices. Similar, operations on vectors ¢(x) = y, x € R",y € R™ are
extended to matrices, by applying them to each column ¢ (X) =Y, X € R™k Y € R™*k,

Linear Algebra

¢ Symmetric matrices € R™*" are denoted by S".

* Positive definite matrices are denoted by = O, whereas positive semi-definite matrices are
indicated by ~.

1
« The Cholesky-factor L of a positive definite matrix Q = LLT is denoted by Q2.
* The function tr is the sum of all diagonal elements.
 The operator diag extracts the diagonal of a matrix resulting in a column vector.

* The operator blkdiag builds the block-diagonal matrix, by diagonal concatenation of a tuple
of matrices.

 The operator vec maps a matrix to a single column vector, consisting of the concatenation of
the individual columns. vec™! is the inverse map, which is generally not well-defined, but
only used if the dimensionality of the original matrix is known.




* ® is the Kronecker Product of two matrices, e.g.

A B - AgyB
AeR”™ BeR**=>A@B=| .. .. . |erixmk
AymB -+ ApnB

>

* The identity matrix is denoted by 7J, if the dimensionality is of importance, it will be denoted
by a super-script. J; is the i-th unity vector.

* ||.]l denotes the standard euclidean norm, whereas ||.||, for a positive definite matrix Q is
1
defined as ||Q2.]|5.

Additionally, standard formulas from the Matrix Cookbook [Petersen and Pedersen, 2006] will be
used in this thesis without further citation .

Probability Theory and Machine Learning

* If x;, y; are individual samples, then X, Y denote the matrices of a data set, were each column
corresponds to a sample .

* [E,V denote the expectation and the covariance matrix of a random-variable or distribution.

* We use the common, yet sloppy, notation in machine learning of not distinguishing between
distributions and their densities with respect to either the Dirac- or Lebesgue-measure. The
standard notation is p(x), g(x), whereas special distribution, namely GP-posteriors 4% and
Gaussian distributions A/, are in calligraphic symbols.

» ~ is the abbreviation for “identical independent distributed”
iid

¢ R, £ denote the kernel-matrix and the kernel-function of a GP.

* Integrals of several variables are denoted by f .d(x1, x5) for sake of brevity.
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1 Introduction

Controlling a complex nonlinear system in real-time is still a challenging task in process engi-
neering. Standard closed-loop feedback controllers like fixed Proportional Differential regulators,
which are fast enough for real-time application and straightforward to implement might be too
crude to achieve sufficient stability. Often the reasons is that they only take into account the recent
time-step. On the other hand, off-line open-loop optimal control can be inapplicable because the
system can not be modeled sufficient well and is additionally subject to disturbances [Diehl, 2001].

Model Predictive Control (MPC) is a framework for real-time control, which tries to exploit the
advantages of both closed-loop feedback and open-loop control [Diehl, 2001]. The high-level idea
is to solve an optimal control problem on a finite Prediction-Horizon [ty,ty + T], measure the
state x.,, apply the first control signal u,, and then move on to [t, + &, to + & + T] using the
previous solution to initialize.

In the case of linear deterministic, possibly constrained systems already a variety of commercial
applications (~ 4600) were reported [Qin and Badgwell, 2003] in 2003, which can be explained
by the achieved maturity from both theoretical and numerical sides. However, in NMPC, commer-
cial applications were still few in 2003 [Qin and Badgwell, 2003], due to the higher computational
burden. Unfortunately, more recent statistics are not available, but the number of applications has
for sure increased further.

In academics NMPC has long been studied from theoretical view, more recent algorithms for real-
time application have been developed [Diehl et al., 2009] and been successfully tested on real
systems. Especially the open source ACADO Toolkit! shows very promising performance as re-
ported in [Houska et al., 2011]. The used method achieves high performance in terms of speed,
as it is able to start numerical optimization even before the state is measured using Parametric
Optimization. Additionally it only iterates once before moving to the next time-step, while still
achieving a reasonable bound on sub-optimality [Diehl, 2001].

An key requirement with Model Predictive Control is the model of the system to control. If
the physical laws the system obeys are known, appropriate equations of motion can be derived.
Nevertheless, in many cases, these equations contain open parameters, which can not be defined
directly, but must be estimated using sample data, e.g., by least-squares estimation. From a sta-
tistical view these point-estimates are problematic, especially when the amount of sample data is
small. Hence, in statistics and Bayesian machine learning, confidence regions or posterior distri-
butions are preferred. Additionally, in some real systems certain parameters have to be considered
stochastic, e.g., normally distributed weight of the load carried by a robot in automatic luggage
transport at an airport [Zantz, 2006]. Hence, for use in application, NMPC is desired to be robust
against parameter uncertainty and external disturbances.

' http://acadotoolkit.org/
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Recent approaches for robust control under parametric uncertainty, based on the concept of Robust
Positive Invariant Tubes, have emerged [Houska, 2011]. A disadvantage of these techniques com-
pared to probabilistic ones is that they do not use the entire distribution of the parameters but only
a confidence region, often leading to “pessimistic descion[s]” [Marti and Stein, 2012] (section 1.2.,
last stanza).

Robot-trajectory planing under stochastic uncertainty has been studied by the group of K. Marti:
Given a geometrical path, optimizing the joint trajectory subject to stochastic parameter uncer-
tainty can be formulated as variational problem with uncertain parameters and solved by spline
approximation and stochastic Nonlinear Programming (NLP) [Marti and Qu, 1998]. However, the
computational costs are enormous, hence, for real-time application Neural-Network approxima-
tion is used [Zantz, 2006]. More recently MPC of linear affine systems, where the time-varying
displacement is subject to stochastic parameter uncertainty, has been considered [Marti and Stein,
2012].

If not only few parameters, but parts of the model are unknown,e.g., because they cannot be
modeled analytically, non-parametric regression on sample trajectories can be used. Here Bayesian
regression methods like GPs, offer the possibility of a "distribution over candidate functions" [Ras-
mussen and Williams, 2006] instead of a point estimate. GPs are state-of-the-art regression tech-
niques and have been used for a variety of tasks in machine learning, among them depth estimation
from stereo images [Sinz et al., 2004], approximation of stochastic differential equations [Archam-
beau et al., 2007] and the automatic generation of play-lists [Platt et al., 2001].

In the last years several authors started using GPs to learn dynamical models for control: [Nguyen-
Tuong et al., 2008] used an online-learning approach for Computed Torques, a single-step feedback
controller based on a system-model, with a GP and [Kocijan et al., 2004] presents several appli-
cations of GPs in control, among them NMPC on the mean-function and control with a learned
auto-regressive forward-model.

Based on the article [Quinonero-Candela et al., 2003], which gives an approximation framework
for the propagation of uncertainty in probabilistic dynamic models based on certain classes of
GPs, applications to model-based Reinforcement-Learning [Deisenroth and Rasmussen, 2011] and
Imitation Learning [Englert et al., 2013] as instances of stochastic optimal control under model-
uncertainty have been proposed.

In this thesis, a new combination of the approximation framework with Bayesian models, espe-
cially GPs, is presented. Chapter 2 gives an introduction to MPC and then focuses on the aspects
of the techniques developed by Moritz Diehl [Diehl et al., 2009] and his group members, includ-
ing homotopy methods for hot-starting and theoretical results on sub-optimality. Bayesian linear
regression in the context of learning system linearizations and Gaussian Processes are presented in
chapter 3. In chapter 4, we show how both previous methods can be combined for robust NMPC
with GP models, leading to our proposed algorithm. Finally, a benchmark system is presented in
chapter 5 on which the method is tested , followed by a discussion of the performance and possible
reasons in chapter 6.




2 Model Predictive Control

As mentioned in the introduction, MPC is an approach to closed loop control by iteratively solving
open-loop problems in real-time.

Therefore, the definition of the MPC-framework requires:

* A state variable x, € R, which is assumed to be given by direct measurement

A control variable u, € R™, which is applied to the real system

A planning horizon T € N

A series of planning states sl.t e Rs,i € {1,2,...,T + 1}, which are the predicted future
system behavior, starting at time t.

A series of planning controls q; € R™,i € {1,2,..., T}, which are not applied but used for
the planning of the next time steps.

A model of the system dynamics x,,; = f(x,,u,), which is assumed to be twice continu-
ously differentiable f € €2(R™+u R™x),

Inequality constraints ¢,(x,,u,) <0 Vt

A tracking objective, defined by the sum of the squared deviation from a given reference
* *

xX5,ur
t> 7t

2 2
;= 12, + I — w2, @.1)
with weight matrices Q, € S™*"x R, € S ™ Q,,R, > 0
At every time step t in the MPC framework, the constrained optimal control problem

t

. * 2
ming g |lspyq = %7 Mg,
T * 2 * 2
3 (e =i, gy a2, )
t_ g
S-MPC(x,) ={ St $17% =0 2.2)

ief{l,...,T}
f(sltsqlt) _Sit+1 =0
c(s;,9;)<0

10



has to be solved. The current control u, = ql.t is then applied to the system, while the next MPC-
problem is initialized with the shifted control variables

(sH—l t+1 ) —

t t
1.7, 11/~ (82,...,T+1’ q2,...,T)' (2.3)

The entire procedure can be summed up in a prototypic algorithm 1.

Algorithm 1: Prototypic Model Predictive Control algorithm
Input: Model of the system dynamics f (.), constraints c,(.), reference x*, u* and weights

QR
fort €{1,...,T,,,;} do
x;, =Measure state()
T «—min(T, Ty —t — 1)
(s',q") —Solve MPC-Problem (x|t, T,x*,u*,Q,R,(s',q"))
Apply control to system(q})
Initalize by shift: (siHT, qif__l’T_l) =(s5 7495 1)

end

true

- N:\\A
/ 7 \\\/// /:/ " \\/,/

Figure 2.1: Model Predictive Control on a tracking task. To minimize the deviation from the reference
[blue], a sequence of states from a disturbed state [red] is planned. As additional
disturbances [gray] occur during execution, replanning has to be done at every step.

planning of the future control signals, this approach often has superior performance in practice.
In [Gruene and Pannek, 2011] exhaustive material on theoretical control properties can be found,
including Lyapunov-stability and comparison to infinite-horizon dynamic programming.

11



2.1 Linear Quadratic Model Predictive Control

An important class of MPC-Problems are those with linear affine dynamics
Xepq = f(xp,u) :=Ax, + By, +a,

A, e R™**"™x B e R™x*™ g, € R,

2.1.1 Linear Quadratic Regulator

With the quadratic cost (2.1) and without constraints, the corresponding optimal control problem
(2.2) is defined as:

Tend
: 2 2 2
min g, = x5l o+ D (I =sdd, + g = aul)
’ t=1

s.t. $; _XOZO,
Aisi+Big +a,—s,1=0, te{l,..., Tyl

Although the optimization problem is a simple Quadratic Program (QP), which could be solved
by an arbitrary solver, a different approach will be presented.

The Dynamic Programming (DP) framework developed by R. Bellman in the 1950s [Bellman,
1954] is not only one of the first practical optimal control algorithms, but also gives, if tractable,
the solution of the problem dependent on the initial value. Therefore we can computed all optimals
controllers offfine for the entire time-horizon T,,4. The first application of dynamic programming
in form of the Hamilton-Bellman-Jacobi equation to the Linear Quadratic Regulator (LQR) control
problems is R.E. Kalman’s paper [Kalman, 1960] “Contributions to the theory of optimal control”
from 1960.

Dynamic Programming for LQR

DP can be described as a procedure, which solves the optimization problem by recursively solving
parametric sub-problems.

First a Value Function V,(x,) is defined as the optimal value of the shrunken optimization problem

Tend
s ek 2 * 2 * 2
Vi) =min [lsg1 med+1||QTendH+;(||xk sil2, + g — qeli?,)

st. s, —x; =0,

Aksk +quk+ak—sk+1=O, ke{t:"'sTend}'

12



It is easy to verify that the Bellman-Equation
Vir) = min | llx; = I3, 41l = qclf, + Vera(Ax + Bege + )|
t
holds for all value functions.

. _ L 2 . . . T
Using Vg (7, ) =lls7, 41 X 41 Il Qr,g1° which can be written in the form x;.  Pr_ xr  +

pYTwendeen . 1 vz, and iteratively applying the Bellman-equation, the optimal controller

mo(x) = arg min [ [lx7 = x I3, + 1} = I3, + Ve (Acx, + Beg, + ) | x, |
qt ~ ~~ ~
Xt+1

can be computed:
Assuming V,(x,;) = x/ P.x, + p/ x, + v, the Bellman-Equation turns into
 1ns * 2 * 2
Vera (o) = min iy =l 1l =gl

+(A;1xo1 +Bi1q,1 + at—l)TPt(At—lxt—l + B 1q;—1 +a,—1) (24)
+PfT(At—1xt—1 +B; 19,1+ a,1)+ Vt] .

The necessary first-order optimality condition of (2.4) with respect to q,_; yields
0= 2Rt—1(u: —qr—1) t 2BtT_1PtBt—1qt—1 + 2Bzw_1PtAt—1xt—1 + ZBtT_1Ptat +BtT_1pt,
showing that the optimal controller is linear affine in the state variable:

_ . 1
qr—1 = (Re—1 — BtT_1PtBt—1) 1(BZ_1PtAt—1xt—1 + R, U, -|—BtT_1Ptat + EB;T_1Pt)
=K.x,_1+k,

K, :=R;1— B;r_1ptBt—1)_1BtT_1PtAt—1:

~ 1
k=R — BtT_1PtBt—1) 1(Rt—1ut +B;T—1Pfat + EBtT_lpt).

13



The results can finally be used to compute the value function V,_;(.):

Vi1(xe—1) =||x§_1 - xt_l”ét—1 + ”u: - Kt—lxt—llllzgt_l
+ (A1 X1 + B K yx 4 + at—l)TPt(At—lxt—l + B 1Ki_1xe—1 +a,_4)
+p,;F(At—1xt—1 + B, 1Ki1x 1 taq)+ v,

T T
=X, _PraX 1+ P Xe F U

P 1=Q; 1 +KtT_1Rt—1Kt—1 +AZ_1PtAt—1 +KtT_1BtT_1PtBt—1Kt—1
+K B PA,_,+Al PB _K_,
=—2Q,_1x"_, —2K' u*+2AT _p +2Kk B .P
De—1 t—=1X¢_1 t—1Ut t—15tqe-1 t—1Pr— 11
+(A_, +K B p,

The problem can be further extended to stochastic dynamics of the type
Xip1 =Ax, +Bau, +a;, +e €~ p(e), E[e]=0, V[e] =027,
where €, is an external noise.

Changing (2.4) to the expectation of the cost,

Vera(ren) = min B [lxy = el +luf = qealf,
t

+(A;1x1+B, 4G, +a,q + et)T

2.5)
“P(A;_1x;_1+ B, 19,1+ a4 +€,)

+p[T(At—1xt—l + B 1q;—1 a1 +€)+ Vt:| s

all calculations stay the same, as the noise contribution cancels out due to zero mean.

14



2.1.2 Constrained Linear Quadratic Model Predictive Control

The general linear constrained quadratic problem is defined as

T
. * 2 * 2 2
min Zl (lg = el + g = qel12,) + llsrn = 354112,
st. s;,—xy=0,

(2.6)
tefl,..., T},
Aese +Biqr +a; —s,41 =0,
Cist + ngt < ¢

Umin S d; = Umax>
H; € R"*"s, H] € R"*M.

Although DP is very efficient in the case of LQR-problems, it is less useful in presence of con-
straints. The reason is that the value function

ming, [Jx; - xt”(zzt + lluf = Qt”}zz[ + Ve (Aex +Big, +a;)
Vi(x)=1 st Cis,+Clq <c
Umin = q; = Umax

is in general not quadratic and can be shown to lead to piecewise linear-affine optimal control-
laws [Bemporad et al., 2002]. As the domain of each of these controllers is a polyhedron defined
by the inactive and active constraints, explicit calculation usually becomes unwieldy even for small
state space dimensions [Ferreau et al., 2008].

Hence, for online control of linear systems subject to constraints, the quadratic programs (2.6)
have to be solved online. Compared to the explicit offline calculation of the optimal controllers,
this approach is sometimes referred to as implicit MPC because the controller is only implicitly
given by the solution of the QPs.

As the online solution of the MPC problems has to be computed in real-time, tailored tech-
niques, which exploit the special structure of the QPs, are used. Especially in NMPC this is
crucial as linear MPC appears as sub-problem of the Sequential Quadratic Programming (SQP)
method.

15



Condensing

The first step for efficient online computation is the reduction of the MPC-QP (2.6) to a QP in the
control-variables q and the first state s; only using the so called Condensing approach.

An important observation is that all states besides the first one can be expressed by the controls
and the initial state

S2
_ . _ S1 _ _
s := : , = , §S=Mq-+m,
q
ST+1
Mo My my
Mso M3y Msp ms
M - . . . . 5 m = .
Mri0 Mriapn Mryag oo Mrgqr mriq

The entries of both M, m can be computed recursively using the equality constraint of the dynamic
equationA;s, +B,q, +a;, — s, 1 = O:

M2|o =A,
Mi|O:Ai—1 Mi—1|0 i€ {3,...,T+1}‘,

T _
Vo1 Mita); = Bj,
v;zl Mi|j:Ai—1 Mi—1|j lE{]+2,.,T+].},

m2 - al,

T+1 —
Vi:3 m; —Ai_lmi_l + a;.

Finally, let p;, P;; the gradient and Hessian of the MPC-objective with respect to §, p,, Py gra-
dient and Hessian w.r.t. q and P;, denote the joint part of the Hessian. Define C; and C, as the
concatenation of the constraint matrices w.r.t. to § and q.
Applying § = Mq + m the substitution yields a equivalent condensed QP in q only:
min §'Pg+p'q
q
S.t. St - XO == O, (2.7)
Cq+c<0,

Upmin < q < Umaxs

16



where we define

P=M"P;;M +M"Py; +Py;M + P,,,
p =M'p;+py+2Py;m,
C=C,M+C,,

c=c+Cym.

[Bock and Plitt, 1984] describe an efficient algorithm for the computation of the parameters of the
condensed QP P, p,C, ¢ exploiting the block-diagonal structure of Pyq, P55, P;5,C;,C, and the
block-triangular structure of M, which is also used in the implementation of the MPC.

Solving the condensed QP (2.7) produces additionally to q, the multipliers w, 3 of the linear

and the bound constraints. If additionally the multipliers of the dynamics of the MPC (2.6) A have

to be computed, the so called Adjoint Variables, also a recursive technique can be used:

Deriving the Langrangian £ (s, q, W, 8, A) of (2.6) with respect to a certain state s, leads to
vstg(sbq’“‘bﬁ: A) =2Q,(s, — x:) +A'11;A't + [Ci]TUt — A — B+ [5:_

From the necessary optimality condition V.£(s,q,u, 3,A) = 0 all adjoints A can be computed
by the backwards recursion

Ar =2Qr41(S741 — X741);

Ao =2Qui1(ses1 — X1 ) +HAL A +[CL 1 s t=T-1,...,1.

Parametric Quadratic Programs, Ferreaus’ Homotopy-Method and qpOASES

The performance of the MPC-algorithm can be increased further by first solving (2.7) with a pre-
diction of the next start xgred and preparing the solver for the measurement. This section introduces
the the open-source solver qpOASES! developed by Ferreau et al. at Optimization in Engineering
Center of KU Leuven published in [Ferreau et al., 2008], which uses a homotopy method, to im-
plement this idea.

The method shall be presented in the application to a prototypical QP (the MPC-QP (2.7) can easily
brought into the same form), y € R", H € S", g(x,) € R", x, € RP,c(x,) € R™,C € R™"™:

. 1.,T T
QP(x0)={mmy 2V HYy+y g(x(’). (2.8)

s.t. Cy <c(xg)

' www.gpoases.org
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First a few prerequisites are needed:
If the constraints of QP(x,) can be fulfilled, the set of all feasible Points

F(xo) ={y €R"|Cy < c(x0)}
is not empty, the QP(x,) is called feasible. An important property of & (.) is that all sets
F(txg+(1—-1t)x;), te[0,1],
are not empy given that & (x,) and & (x;) are not empty [Bemporad et al., 2002].
Furthermore, for y € % (x,) let A(y;x,) € M := {1,...,m} be the set of active constraints

where C;y = c;(x,) holds. The set of inactive constraints C;y < c;(x) is denoted by I(y; x,).

The following optimality conditions can be found in any textbook on optimization, e.g. [Geiger
and Kanzow, 2002].

Karush-Kuhn-Tucker conditions for convex QPs (KKT) Let H be a positive-definite Matrix
and Z (x,) # 0. Then there exists a unique y* € Z(x,) and at least one A(y*;x,) and one
multiplier u* € R™ satisfying the conditions

Hy*+Clu, = —g(xo),
Cy™ < c(xop),
:u‘]I = O:
uy = 0.

y”* is unique minimizer of QP (2.8).

Additionally, for simplicity it is assumed that also A(y*, x) is unique and C, has independent
rows, which is called Linear Independence Constraint Qualification (LICQ) leading to a unique
pair (y*,u”). This is indeed a simplification, but the management of possible exceptions can be
found in [Ferreau et al., 2008].

Assuming that the solution of the initial QP(xq), (¥§,up). is known and that a new
QP(x;) Z(x1)# 0 is to solve. We define

Ax = X1 — Xo, Ag = g(xy)— g(xo), Ac =c(x1) —c(xg)
and for t € [0, 1]

x(t) :=x9+ tAx, g(t) :=g(xy) +tAg, c(t) :=c(xg) + tAc.
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Since Z (x(t)) # 0, the idea to solve QP(x;) for (y7,u}), is to move from t = 0 to t = 1 while
keeping the KKT-conditions fulfilled, resulting in the homotopies
y(): y 0=y, y @)=y,
w(t): w0)=ug; wp(1)=u],
At == Ay () x(1)) : A0)=A(yg;x0), A1) =A(y];x7).

The KKT conditions (2.9) with LICQ result in well defined, piecewise linear and continuous func-
tion y*(t) and u*(t) [Bemporad et al., 2002].

H Cg(t) y*(t) — ( _g(t) )
CA(t) 0 .U'g(t)(t) C(t)A(t) ’

Ui =0, (2.9)
Croyy " (t) = ¢y (t),
uw(t)>0

Figure 2.2: Homotopy from X, to x; with two intermediate changes in the active set A(t;) and A(t5).
Each active set defines a polyhedron with a linear affine optimal feedback-controller [Be-
mporad et al., 2002]

Starting at t = O the homotopies are of the form

y(t) =y, +tAy",
Ng(o)(t) = 'U’X(O) + tA.uj;(o),
HE(O)(t) = HE(O),
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T *
H C A0) Ay _ —Ag 510
A * 5 ( . )
Cay O NGO Acy(o)

as long as the active set A(t) stays the same .
There are two possible events when a change occurs:

1. An inactive constraint becomes active
Ci(ys +7AYy") =¢;(0)+ TAc, (2.11)
2. An active constraint u7(0) > 0 becomes inactive

ui(0)+tAur =0, (2.12)

which determines the homotopy stepsize T as the biggest step until either (2.11) or (2.12) is ful-
filled.

The resulting Algorithm can be summarized by

Algorithm 2: Ferreau’s Homotopy-Algorithm [Ferreau et al., 2008]

Input : QP(x,) and solution (y, ug), A(0) and new parameter x;
Output: Solution (y7, u7) and A(1) of QP(x;)

while T < 1 do

Calculate Ag and Acy o) ;

Solve (2.10) for Ay* and A,ug(o) using Ag, Acy(o):
Determine step T by checking (2.1.2);

X — Xo+ TAX

Ve yotTAy”

fF — py + TAU

if T <1 then

Adapt A(0) according to (2.11) or (2.12);

Set xg « X, y; < ¥, and ugy < 0";

else

Set A(1) « A(0), xg « X, y; < ¥" and ugy < 4*;
STOP;

end

end

Using a sophisticated management of the factorization of the KKT-System (2.9), the solution to a
new QP(x;) can be computed fast even in case of large problems [Ferreau et al., 2008]. This is
especially efficient if x; is “close” to x; as prediction and measurement in MPC.
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2.2 Nonlinear Model Predictive Control

The general MPC-Problem

ming g lsra = xpp 2, + S0, (ke = sl + llut — q.l12)
s.t. s1—x=0,
MPC(x) = 1 (2.13)
te{l,..., T},
f(s6,q¢) —$¢41 =0,
\ c(s¢,9) <0

is an instance of a NLP, which can be solved by a variety of algorithms, e.g., interior-point
methods. Another approach, which is especially interesting in the case of NMPC, is sequential-
quadratic-programming.

Given an initial guess sk, qk the next iterate in SQP s*™! = sk + T As, qu = qk + TAQq is
computed solving the QP

(ming, ng 2AGsT,qTIHA(sT,q") +A(s,q7)g

s.t. sll‘ + As; —x =0,
QP (x) = {
ief{l,...,T},

f(S]:, qltc) + Fs(sl:: qI:)ASt + Fq(sl:: qI;)Aqt - S]t<+1 - ASt-i—l =0,

c(sK, g+ C(sK, g As, + Cy(sF, ) Ag, <0

t t t

(2.14)

using the Hessian H = V? q.ff and gradient g = V , £ of the Lagrangian

T
(s, q,2m) =Y (I} =s.l3, + I} = g2, +AT(F(s0,00) = seen) + 7 es5100,) )
t=1
+llsr41 — X;HHéT

defined by the adjoints A of the dynamics and the multipliers w of the constraints. For globalization
a step size rule to determine 7T is needed. The algorithm can be shown to converge globally to a
local minimizer and locally quadratic in non-degenerate problems [Geiger and Kanzow, 2002].
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2.2.1 Diehl’s Suboptimal Scheme for Online NMPC

In real-world applications the exact solution of (2.13) is often computationally too costly. Because
usually multiple QPs (2.14) have to be solved, the approach is likely to exceed the time constraints
even if efficient solvers are used.

On the other hand, a good initial guess of the NMPC problem is available: The open-loop optimal
solution s*, @ is close to the reference if only small disturbances occur. In this case [Diehl, 2001]
suggested to calculate only one SQP step per sampling instance before proceeding to the next in-
stance using the variable-shift initialization (2.3). Although this might seem heuristic, bounds on
suboptimality and the deviation from the optimal solution can be derived [Diehl, 2001] and are
briefly discussed below:

The first important property of the SQP-method on (2.13) concerns the solution-manifold

M= {(x,s,q) eR™ x RS(T+D x RMT|  (s,q) = arg min MPC(x)}.
5.q

Given the solution (s, q )y of an instance MPC(x,), the first SQP step A(s,q), using (s,q), as
initial guess, on a “neighboring” MPC(x ) is proportional to the directional derivative of (x,s,q),
to (x,s,q) along ./ :

I(s,9) — A(s,q) + (5,9l = O(llx — xo]1), (2.15)

even if the active set changes ( [Diehl, 2001], pp.45-48).

This indicates that given the optimal solution to an undisturbed MPC(x,) problem, one SQP step
might already suffice to adapt to moderate disturbances xy+e€. For linear constraint MPC-problems
the manageable disturbances are, intuitively speaking, those in which the linearization in x still
captures the true dynamics well enough.

In order to establish a bound on sub-optimality, a series of MPC problems with shrinking hori-
zon SH-MPC, has to be considered:

. T
(mingg lsgin—x5013,, + 50, (I = s+l = qil2)

s.t. st —x; =0,
SH-MPC,(x; xo) = {
ieft,...,T},
f(s,q) —si41 =0,
c(s;,q;) < 0.

Compared are the exact solution (including multipliers) (s, q, A, w)* of SH-MPC,(x,; x,) and the
real-time solution (s, q, A, )™, starting at an initial guess (s,q, A, w)°.
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The real-time approach consists of one SQP-step for SH-MPC,(x,; x,) and passing over all but
the first variables (s,q, A, W), to the next problem SH-MPC, (%41 = S;41; X0)-

Given a sufficient good initial guess, considering the variables starting at t, it holds:

t+1

1_6”A(saq:}’uu’)0”1 5:C1+C2||A(S,q,l,‘u,)0”,

(2.16)

”(saq)}’uu’): - (saqala.u’);eal” <2

with constants ¢, c,, where ¢; = O for exact Hessian and ¢; > 1 for SQP based on an approx-
imation to the Hessian and ||A(s,q, A, w)°|| the size of the first step ( [Diehl, 2001], pp.74—87
“The On-Line Problem”). This bound also shows that the approximation framework can increase
in performance if the time horizon T is increased.

Both previous results (2.15), (2.16) can be combined to prove a bound on the sub-optimality when
using the real-time algorithm on the disturbed problem MPC(x,+ €) initializing with (s, q, A, w)*
of the reference problem MPC(x,). Comparing the cost of the real-time approach V™ to the
optimal cost V* it holds

Vel — vt < el (2.17)
for an exact Hessian SQP and
Vel — v < (g + eollel)?lell? (2.18)
for a SQP with an approximation to the Hessian, latent in the constant ¢; ( [Diehl, 2001], pp. 87—
89).

These theoretical results also have practical consequences for the performance of NMPC algorithm
in application and will be readdressed in the discussion (see chapter 6).
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2.2.2 Efficient Approximation of the Hessian

So far SQP was only considered in the case that the Hessian H of the Lagrange function
%(s,q,A,u) is known and tractable to compute. However, in NMPC, the computation of the
full Hessian

(ZQI(XI —s1)+F/(s1,q1)A + Cl (s1,q1)ug — Ao\

2Qr 11 (X7 —S741) — A7

q (2.19)

2R1(u§ —q1)+ FqT(51,CI1)A1 + CqT(51,CI1)M1

\ 2R (u} —qr) +FJ(ST;QT)AT + CqT(ST,CIT).UT ]

is too demanding (especially if already the Jacobians F(s,,q,) involve numerical computations).
In the following, we will discuss two standard approximations to the Hessian, which have be
suggested for NMPC.

Broyden-Fletcher-Goldfarb-Shanno Update

A widely used technique in nonlinear programming is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) rank 2-Update for a approximation H to the Hessian [Broyden, 1970] [Fletcher, 1970]
[Goldfarb, 1970] [Shanno, 1970]. This rule is well suited for NMPC as the dependence-structure
in the gradient of the Lagrangian can be exploited. As only s, and g, cooccur in the gradient the
Hessian has a block-diagonal structure and, therefore, updates can be done block-wise:

Let d, be the recent step in both s, q, and y, be the difference of the gradients of the Lagrangian

Yt = vst,qtg((s: q) + d: 2’: ,U,) - vs[,qtg((s, q): Z': ,U,)
The approximation to the Hessian block H, is updated using

T & T

- - H.d.d'H
Ht<—Ht+ytTyf -

d; y; d/'H.d,

If H, is positive definite, the update is also positive definite, provided d tT y: > 0.
In implementation, Powell’s safeguard-rule

~

Ve=ry.+Q1 _Y)I:Itdt

. T T
1 it d’y,>0.2d"f,d,
Y= 0.8d! H,d,
d["TI:Itdt_d;Tyt

3

else
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~ oT & T3
1, 0 +}’tyt _thtdth,

‘o dly, dlf,d,

ensures positive definite updates. The approximation can be proven to converge to the true Hessian
in direction of the step leading to super-linear local convergence [Geiger and Kanzow, 2002]. For
the real-time iteration this results in constants ¢, in (2.16), (2.18) approaching O with increasing op-
timization horizon T as a direct consequence of the proofs in [Diehl, 2001] chapter “Contractivity
of the Real-Time Iterations”.

Gauss-Newton Approximation

Another approximation method, especially suited for NMPC, is the Gauss-Newton approach.
Given that the NMPC problem has only box-constraints U;;n < q < U ax. it holds

( 2Q(x} —s)) + F/ (51,9104 — Ao \ [ 2Q;(x7 —s1) \
2Qr41(XF g —S741) — Ar 2Qr41(x741 —ST41) )
vs,q N T + _ ~ vs,q = HGN
2R (u] — q1) + F, (s1,9)A + B — B, 2R, (u] —q1)
\2Rr(u — qr) + F7 (57,4727 + B7 — b7 ) 2Ry —qr)

From the necessary optimality condition it follows:

2Qt(x?_st)+FsT(st7qt)At — A —0
2Rt(u:_Qt)+FqT(5t;CIt)At+[5t+ _ﬁt_ -

Assuming full rank of Q, F” this, starting in 2Q (x>, +1 — ST41) — Ar, recursively yields A, =

OUx]_ sy = Se..rsall+ I = e, 7). Therefore it holds

.....

IH, —[Hox ]l = | Z (A1 V2 [F1i(se, gl = O(llx™ = sl + [lu” — qlD).
i=1

Therefore, the approximation quality is good if planned states and controls are close to the refer-
ence, which is also the goal of the NMPC approach.

[Kosmol, 1993] shows local quadratic convergence for optimal residuals |[x*—s*||+||lu*—q*|| =0
and [Stoer et al., 2004] linear convergence for small residuals. Especially in [Diehl, 2001] it
is shown that this approach is a Newton-type algorithm in the sense that it is suitable for the
realtime-iteration (‘“The Constrained Gauss-Newton Method” pp. 68—73).

In the realtime-approach the constants c¢; in (2.16), (2.18) can be shown to decrease in ||x* — s || +

lu™ —q7].
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3 Bayesian Regression

Regression is the task of inferring a model f : R"input — [RMarget

y=f(x)+e

y,e € Rurzet x € RUmut, ¢ ~ A(0,027) from observed Data D = (Y,X), where Y €
RMareet*d X < RMinpu*d | The joint density X, € is assumed to be of the form p(x, €) = p(x)p(e).
Therefore, € and x are independent, and € is considered an unknown external influence. The data
is assumed to be independently distributed

d
p(v,x) =] |p(ix). (3.1)
i=1

The problem of regression is amongst the oldest in statistics and the basic approach linear Least-
Squares-Estimation can be dated back to works of Legendre and Gauss in 1805 and 1809, respec-
tively.

The basic assumption is that the true function is of the form f(x); = 6/¢(x), where the
feature-map ¢ : R"Mmut — RP gerves to extract important information of the input and © :=
(04,..., Gntarget)T € R™MareetP jg a matrix containing all parameters.

It is easy to prove that for the conditional expectation E[ y|x] = f (x) it holds

f = argmin JIIg(X)—yllzp(yIX)p(X)d(x,y), 3.2)

g -R"input _, pMtarget

for sufficient regular (measurable) g.
The least-squares objective

d
m@m; ly: = @ (I (3:3)

can be seen as a finite sample approximation to (3.2). Approximation quality and convergence in
the limit of infinitely many samples can be found in textbooks on mathematical statistics, e.g., [Van
De Geer, 2000] ( 147 ff., Convergence Rates for Least Squares Estimation).

Using the operator vec and ®(X) = (¢ (X)! ® JMazet) the solution can be written in the form

vec(©*) = arg min || vec(X) — (X)) vec(©)||?,
®

vec(©0") = ((X) ®(X)) ' ®(X)" vec(Y).
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If regularization of © is desired, the equations become

vec(©*) = arg min || vec(Y) — ®(X) vec(©)||* + p|| vec(©)]?,
vec(©) (34)
vec(0%) = (&(X)T@(X) + pJ) " @(X)" vec(Y)

with a regularization parameter p.

3.1 Bayesian Linear Regression

Bayesian Linear Regression is motivated differently from the minimization approaches to least-
squares (3.3),(3.4), but will end up in the same results.

Again the assumption is that f(x) = ©¢(x). In addition to that a-priory information of the
parameters, vec(®) ~ A(0, Xg) is available. Instead of minimizing a loss-objective Bayes’ rule
is applied to calculate the posterior p(0[Y,X):

likelihood  prior
(Y|e,x)p(©)
p A )P
p(OlY,X) = )
—— [p(¥|6,x)p(©)d®

posterior

Asp(Y]©,X) = l_[ii N (©¢(x;),02T) the posterior results in

p(vec(©)]Y,X) = A (vec(©), =)

vec(©)" = Svec(Y),
2* = 2@ - SCI)(X)ZG:
§ = Ze@(X)" (#(X) 6@ (X) +073) 7,

using well-know Gaussian identities [Bishop and Nasrabadi, 2006] [Barber, 2012].

As this result seems cryptic on the first glance, the role of the parameters involved will be ex-
plained:

. 2 .. . .. .
 Choosing 2g = %J , vec(©)” coincides with the minimizer of the regularized least-squares

%

(3.4), therefore, the Signal-to-Noise Ratio 15—

determines the amount of regularization.

* The covariance X of the prediction is decreasing in the prior covariance ¥y — X" = 0.

« ©* decreases, if the norm of the Gramian ®(X)T®(X) increases. This happens when the
number of observations d grows, or if the ¢(x;) are spread. Therefore, increasing the cover
of the input space decreases the predictive uncertainty.
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Hence, using the Bayesian approach has the advantage that 3* provides additional information
of the data. Especially in cases where the amount of data is limited, exploitation of the predictive
uncertainty can make further steps building on the linear regression model more robust and reliable.

Kalman-Learning of Series of Linear Systems on Trajectory Data

In a control task, where the dynamical model is not known, regression can be used to infer the true
model for trajectory data D, = (X,, U,). However, there are problems when using linear Bayesian
regression:

» The assumption of independence of the data is no longer valid (3.1), as x., is strongly
dependent on x,u, and, therefore, using both (x;,2;X;41,U;41) and (x,,1; X, U, ) in the
data is a violation from a theoretical perspective

* In the case that the true dynamics are nonlinear, a single linear model for the entire time
horizon might not be flexible enough.

* There might also be not enough data to learn a separate model for each time step.

A simple idea to learn a series of linear models on trajectory data, that hasn’t been considered so
far in literature to the best of our knowledge, is to use the Rauch-Tung-Striebel smoother [Rauch
et al., 1965] and utilize that the system matrices usually do not change much in one time step.

Let us assume a state-space model for the system matrices:
vec(©,11) =Jvec(044)+ &, & ~ N0, %),

codes the knowledge about the slowly varying system matrix starting from an initial distribution
A (UG, Tg).
The likelihood

d i
i X

pX1119.,X,,U,) = | |=/V(xt+1|@t (ult) » )
i=1 t

can be used to define an observation model:

vec(X)ey1 =G vee(©) + ¢, L~ N(O,XY),  Ge=((X/,U)®T™)

~
d¢:=# of observations at t

Thus, the filter and smoothing equations can be derived from the general solution [Bishop and
Nasrabadi, 2006] (pp. 637- 641):
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1. Forward-Pass:

a) Prediction:

Uejp—1 = Ue—1,5
Ligje—1 = -1 T Zg.

b) Update:

W = Ueje—1 T K1y
2= (3- Kth)Ztlt—l’

re i =vec(X)iy1 — Gelhye—1s

-1

2. Backward-Pass:

Uer = U¢ +Jt(.ut+1|T - .ut—i—llt),
Lyr = 24 +Jt(2t+1|T - Zt+1|t)JtT9

Je =T,

The open parameters ,uoe, Zloe, Yg, 2, can be inferred using Expectation-Maximization (EM) as
suggested by [Ghahramani and Hinton, 1996]:

To maximize the so-called incomplete log-likelihood

W.I.t. ,ug, Eg), Yg, Ly, EM iterates switching between a forward and backward-pass (E-Step) and
the update (M-Step)

.Ug) =E[6,], Zf? =V[6],
N
e = iZ ( [vec(©), vec(©)/] — V[vec(©),1J[ | —E[vec(®),]E[vec(©), 11"

N t=1

— (V[©.1J,_; +E[vec(©),]E[vec(©),_,]")" +E[vec(©),_, Vec(@)f_l]),
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1 N 1 d¢
ZC = Nzl d_tzl ([Xt+1]j[xt+1]}1 - Gt’jE[VeC(G)t] [xt-l-l]JT
t= j=

= [Xe11]Elvec(€), ]G], + G, jE[vec(®), vec(®) 167, ),
Gey=(([x1, ] ®T™),

which results in a sequence converging to a local maximizer [Dempster et al., 1977], [Wu, 1983]
( [Bishop and Nasrabadi, 2006], chapter “Mixture Models and EM” for a illustrative introduction).

3.2 Gaussian Processes

GPs are a family of non-parametric regression methods, which extend the ideas of Bayesian linear
regression. Their basis was founded by the works of Wiener [Wiener, 1949] and Kolmorgorov
[Kolmogorov, 1941]. The first applications came up in geostatistics in the 1950s [Krige, 1951]
and they are nowadays one of the state-of-the-art approaches in machine learning [Rasmussen and
Williams, 2006] for regression and classification.

3.2.1 Gaussian Process Regression

Similar to linear Bayesian regression, Gaussian Process Regression is not motivated by minimiza-
tion of a certain risk but from an assumption on the conditional distribution p(Y|x ) of the observa-
tions. Given a dataset D = (Y, X) with one-dimensional targets Y € R?*! and multidimensional
inputs X € R4 the following joint conditional distribution is assumed:

p(yIX) = A(0,8)

B(xq,x1) B(xq,x3) o+ E(xq,%,)
. E(Xz, xl) E(XZ) XZ) e E('X'Z’ Xn) (35)
E(xn.’xl) E(xn': XZ) e E(-x‘n; xn)

where the symmetric £(.,.) : R" X R" — ]Rg is a kernel-function, i.e., the kernel-matrix K (3.5) of
any finite collection of X C R" is positive-definite. The kernel-function ¢ is chosen, such that it
captures the important correlation in the data.

Given a new input x’, applying Gaussian conditioning [Bishop and Nasrabadi, 2006], the GP
yields a posterior distribution

p (¥'1x,Y,X) = (b(x, X)RTTY | (', x') — t(x’, X)A'e(X, X)) (3.6)

which expresses the predictive uncertainty dependent on the correlations of x” and the given data X .
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The widely used Squared Exponential (Kernel) with Automatic Relevance Detection (SEARD) is
defined as

1
E(xq,x,) =exp (— E(XI —x) L7 (xq — x3)),

where L = diag(lf,...,li) contains the squared characteristic scales of the different input-
dimensions. Figure 3.1, taken from [Rasmussen and Williams, 2006], illustrates the equations

2
5 "0 5 5 ) 5
input, x input, x
(a), prior (b), posterior

Figure 3.1: [Rasmussen and Williams, 2006] (a) Prior samples f (x) of a dense set X and (b) pos-
terior samples given some observations, using the SEARD kernel. Gray indicates the
u £ 20 area.

from above. In absence of observations the sampled values of a dense set X € R form the shape
of a smooth function', which can be seen as an underlying prior assumption on the candidates of
interpolation functions. If observations D are given, the functions interpolate the data and vary
in regions distant from the observed points. This behavior is an immediate consequence from the
predictive variance, which can, therefore, be used to asses the predictive uncertainty.

3.2.2 Model Selection

In application, the observed data often contains additional unknown measurement noise, which
can be incorporated by a slight modification of the kernel matrix of the data £(x):

RX) = a?R(X; L)+ 027.

As a, 0 and also L have an influence (compare figure 3.2) on the quality of the GP prediction, a
natural question is how to set them best. A commonly used method, first suggested in [Mardia and

! This should only serve as an intuition. In fact even a very dense input set will produce sample functions with

oscillation, which are simply not visible in this figure. But as never explicit samples are used and because of the
smooth predictive mean function E(y’|x”), this is neglect-able in application.
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Figure 3.2: [Rasmussen and Williams, 2006] (a)—(c) show the influence of the length-scale [ on the
model quality. A Small [ results in strong oscillations, whereas a big [ smooths out fine
structure .

Marshall, 1984], to find the best hyper-parameters is to maximize the marginal likelihood of the
observed data

1 ... 1 - n
logp(Y|X;a,0,L) = —EYTﬁ(X; a,o,L)Y — 3 det (R(X;a,0,L)) — 3 log2m.  (3.7)
Given the derivatives of the kernel & with respect to L, a, o, standard solvers for unconstrained

optimization problems can be used to compute the optimal (a, 0, L)". As the objective is not
concave, however a good initialization has to be provided.
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4 Control with Probabilistic Models

In the case that an unknown system has to be controlled along a predefined reference, the methods
of both previous chapters can be combined. However, as MPC relies on a good model of the
dynamics, using a regression model on a small amount of trajectory data can be dangerous. In
model-based reinforcement learning, which consists roughly speaking of learning a model and
optimizing a controller, it is reported that this approach can induce bias and lead to non-robust
controllers [Atkeson and Santamaria, 1997].

Recently, GPs have been used for different control tasks . Although Bayesian regression techniques
give posterior distributions most of these methods do not use this additional information for robust
control. However, in [Deisenroth and Rasmussen, 2011] a method for reinforcement learning is
presented that strongly exploits the predictive uncertainty leading to a very data-efficient learning,
also in real application. This approach was further extended to imitation learning [Englert et al.,
2013].

The next sections show how the same ideas can be used for MPC with both Bayesian linear models
and GPs.

4.1 Stochastic Optimal Control

The high level idea is to solve stochastic instead of deterministic optimal control problems

: t 2
ming . [E [||5T+1 - x;"—i-tHQHT

T 2 2
+ 30 (o —sE02 A+l —af2, ) ]
S-MPC(x)={st  si—x, =0, (4.1)

ief{l,...,T},
fGsf,q)+e.=s;,4, €~ N(0,3,),

where €, is a external noise.

A very important difference to deterministic open-loop optimal control is, that g} always depends
on the realizations of €: The solution of (4.1) is necessarily a controller q, = 7,(€;_ ). A basic

result from the theory of stochastic control [Bertsekas and Shreve, 1978] (see also [Gruene, 2007]),
is that the optimal controller depends on the recent only state:

ﬂ:(el,...,t) = ﬂ::(st)-
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Although there exists a stochastic maximum principle it is only applicable in special problems
[Gruene, 2007] as the random variables induce complex dependencies. Therefore, the standard ap-
proach is DP. For nonlinear dynamics hereby usually approximation techniques, which discretize

the state space and take use of function approximation, must be used [Bertsekas and Tsitsiklis,
1996].

The problem can be further extended to dynamical models with stochastic parameter uncertainty

(minq(s) Ee o [||5tT+1 - x;-HHéH-T

T 12 12
D (FE R e A

BS-MPC(x,) =1 g, si—x,=0,
ief{l,..., T},
L f(sltaqlt; 61‘)+€t:sit+1a

4.2)

if we include the posterior distribution on the independent parameters 8,'. If the problem (4.2)
can be solved for an optimal controller 7t7(.), we can expect it to be robust with respect to both
external disturbances and model errors.

4.2 Uncertain Linear Quadratic Regulator

Although the general problem (4.2) is in most cases intractable to solve exactly, DP for distribu-
tions over linear system matrices, e.g., obtained by Bayesian linear regression, is a straightforward
extension of the LQR section 2.1.1 [De Koning, 1982].

In (2.5) now the expectations w.r.t. A;, B;, a, have to be considered,

: 2 2
Vt—l(xt—l) = l’l’(ﬂl’l Ee[,At,Bt,at |:||x7:_1 - xt—l”Qt_1 + ”u: - qt—1||Rt_1

+(A1xe1 +Bi1Geq t A + et)Tpt
“(Ar_1x1+B, 19,1+ a4 +€,)

+PtT(At—1xt—1 + B 1q;—1+ a1 +€)+ Vt} ,

From a theoretical perspective BS-MPC 4.2 is not exactly the problem, which we would like to solve, a single
fixed random variable 6 seems more sound. However, a fixed variable would make the problem even more
complicated as the optimal controller 7t} might not depend on the recent state only.
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The changes appear in the expectations

E[Az—1pt—1At—1], E[BtT_lpt—1Bt_1],
E[B;‘T—lpt—lAt—l:L E[az_lpt_lat_l], (4.3)
E[A’{—lpt—laf—l]) E[B;T_lpt_]_at_l],

which can be computed using the bias-variance decomposition for the expectation of quadratic
forms:

EDJ Az_lpt—lAt—lji] 3JTE[At—1]TPt—1E[At—1]3i +tr (P V[A,17;,A_173;])

jfE[At—l]TPt—lE[At—l]ji + j;Mt—lji’ M, €S, M, =0,

=  E[A_,P1Ar1] =E[A, 1] P E[A 1]+ M,_;.
“4.4)

Here, tr (P,_;V[A,_1J;,A,_1J;]) can be represented by JJ.TMt_l’Ji and M,_; = O because the
term is a symmetric bilinear form and always non-negative for j = i. All other terms in (4.3) can
be computed in similar fashion.

An interesting property of this approach is that it does not depend on the distribution of € and
therefore, only on the moments of the state distribution.

4.3 Moment-Matching and Linear Affine Controllers

A direct approach to solving (4.2) is to directly optimize a controller from a certain class 7, € II,
propagating the necessary information of the state distribution.

The first idea would be to discretize the entire state and solve for the optimal density and con-
trol signal. Although this approach can also be done in continuous time using a Fokker-Planck
framework [Annunziato and Borzi, 2013], it quickly becomes computationally too expensive with

increasing dimensionality.

An important observation in problem (4.2) is that the objective
T
t * 2 * t2 * t2
Be | 55 =5 13, + 20 (I =03+ iy — a2 )]
i=1

= |IE[st,] — xb I3 +t(Quir Vst ])

T
3 (I ye — LTI, + Qe VISD)
i=1

sy, — ELGIZ_ |+ (R, VIgD))
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only depends on the Central Moments E,V. Therefore, knowing the moments would suffice to
solve the optimization problem.
The main difficulty of this approach for Bayesian dynamical models is that the nested integrals

IE|:5t+1:| = f st+1p(st+1|5t) q:50.)p(s¢,q,.)p(6,) d(5t+1’5t, q:,0;) 4.5)

as well as

Vsl +E[St+1]E[5t+1]T :f5t+15fT+1p(5t+1|5ta‘Zt3et)p(st;%)p(et)d(5t+115t:CIt: 6,),

(4.6)
P(se,q:) = p(q;lse; o )p(se), 4.7)
p(s) = J p(selse—1,q¢-15 0,—1)P(5¢-1,q,—1)P(O,_1) A(5,S¢-1,q¢—1, Or—1) (4.8)

have to be evaluated.

In the case that s, ~ A (u3,X}) and p(q,ls;; 6,) = K,s, + k, both integrals (4.5) and (4.6)
can be solved in closed form for the GP with the SEARD and Bayesian linear systems. How-
ever, equation (4.8) still remains intractable even for a Gaussian input distribution. The idea of
MM is to use the tractable equations (4.5), (4.6) and approximate the true density with a Gaus-
sian defined by those moments. In [Kollar and Friedman, 2009] (chapter 8, Theorem 8.6), it is
shown that this approach is an M-inference, meaning that the Gaussian with the same moments g
minimizes the Kullback-Leiber Divergence KL(p||q) = f p(x)log % d x, a common distance
measure for probability densities, with respect to the true distribution p in the class of Gaussians.

Besides the simplicity and the closure properties of Gaussians, the approximation can also be
motivated by the variational problem

arg min — s2(q)
qeeé

st. E[G] = Jst-i-lp(st-i-llst:qt; 0)p(se,q.)p(0,)d(s11,5¢, ¢, 0,),

V(4] +E[€I]E[Q]T = fst+lsz+1p(st+1|stﬁqt;Qt)p(staqt)p(et)d(5t+1)5taqt7 0,),
4.9)

for a smooth density G, where the negative Entropy — € is defined as

—7(q) = f q(s.)log(q(s,))ds,.

It is a straight-forward proof (see [Barber, 2012]) that the Gaussian with the same moments
q= N(E[s,],V[s,]) is the optimizer of (4.9).

36



This so-called maximum-entropy principle is common in machine learning [Bishop and Nasrabadi,
2006] and can be summed up to “always fit the available information with the broadest density”.
A motivation from principles of statistical physics can be found in [Jaynes, 2003]. In the context
of predicting the state distribution, this leads to a cautious approximation, that captures the broad
shape and the tails rather than the modes of the true density. For robust control this behavior is also
desirable, as the solution should be good for a broad range of possible states.

Figure 4.1 gives a example of MM of a SEARD-GP, given some observation data. As the GP-
function candidates are nonlinear, the posterior density can be non-Gaussian even for Gaussian
input densities. The MM rather takes care of the distributions tails than of the two modes, leading
to a conservative approximation.

9 05 0 05 1

Figure 4.1: [Deisenroth and Rasmussen, 2011] Given a Gaussian input density p(x) and possi-
ble candidate functions h(x) ~ 42, the output density p(h(x)) is approximated by a
Gaussian with same central moments.

Although it is also possible to use a single non-linear controller and apply additional MM (as
in [Deisenroth and Rasmussen, 2011], [Englert et al., 2013]), a time-varying linear-affine control
is a better choice. First, because using only [E and V, a fully parametrized linear affine controller
suffices to represent every input/output-pair. Second, the calculation of the output moments is ex-
act for every distribution and also very simple. Finally, the LQR solution, for the linearization of
the model fixed to the mean, offers a good initialization for an iterative approach to NMPC.

Alternatives to MM can be any approach for nonlinear filtering, e.g., extended or unscented
Kalman-filters [Julier and Uhlmann, 1997] that also allow to compute the derivatives of the prop-
agated quantities for the optimization.
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4.3.1 Moment-Matching for Bayesian Linear Systems

The basic technique to compute the moments in Bayesian models is the use of the Law of Total
Expectation or the Law of Total Variance:

E[x] =E,[E,[x]y]],
Vix] =V, [E,[x|y]] +E, [V, [x]y]].

Assuming a Bayesian model of the form
y=0x, p,:=E[x],Z:=V[x], pe:=E[vec(0)], g :=V[vec(0)]
the expectation of y is

E[y] =Eo[E,[0x|0]] =Eo[Ou, ] = vec (g,
whereas the covariance is

V[}/] = VG) [Ex[@X|@]] + ]E@ [Vx [lex]] = (.UI ® jnx)Z:G)(‘u'x ® jnx) +Ew [@ZXGT]
= (ul ® 3™)Se (1, ® T™) +vec  (ue) T, vee  (ug)" +M(Z,).
~—

see (4.4)

The derivatives are also straight-forward to compute:

IE[y] _ OE[y]
a ‘Ll/x = Vec 1(“9)1 a Zx - OJ
e W) =" ®1NTe(Au, ®I)+(u, ® NZe(u®I),
ov
5 Z[]y] =vec ' (ug)dn, vec (ug) + M(2%,).

It should be mentioned, that the distributions (compare 4.2) of both x and vec(©) do not matter.
As a consequence the propagation of the moments of the state variables E[x,], V[x,] is exact.

4.3.2 Moment-Matching for the Squared Exponential Kernel Gaussian Processes

For Gaussian processes, in principle the same laws can be applied, but unlike the linear case, the
assumption of Gaussian input distributions is crucial. In addition to that, the derivation of the mo-
ments is more complicated than in Bayesian linear systems and only given in analytic form for
certain kernel functions, e.g., SEARD or polynomial kernels. First the propagation of uncertainty
through GP models by MM was proposed [Quinonero-Candela et al., 2003] for multiple-step pre-
diction in time-series forecasting. [Deisenroth and Rasmussen, 2011] later used MM prediction to
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optimize a controller in model-based reinforcement learning.
The formulae for the SEARD-GP y ~ 42 (x) will be presented without proof for sake of brevity.

Given an input-distribution x ~ A (u, ), x € R" and data D = (Y,X),Y € R™*¢ X € R the
moments of the output y € R™ are:

Vi, Elyli= WiToi’ 0, =(R’; + 01-23)_1}’1, Yi=;1,. --,Yi,d)T

w; = (Wi,l:---:Wi,d)T> (4.10)

1 1 -
wig = ol det(ZL7 +3) 2 exp (— E(xk =W (S +L) 7 (x = ),

0 W,;0, —E[y]E[y]; it Q]

QiTWi’jGi - E[y]lz + al~2 —tr ((ﬁl + O-l-zj)_lwi’j) else

J

Vie Viyl= {

exp(n};)

JdetR; )’ 4.11)
Ty-1 Ty-1 klqT kil

vl ve+v Ly — 21 R; 2 g

n¥] = 2(log(a;) + log(at;)) - —— —

Kl _ oy - _ — -14.15
z; =1 ' +Lj1Vz: Up = X — WU, R;;j=%(L; +L;) T+,

4 okl _
Vi Wi =

Therefore, together with the derivatives of the MM, which can be found in [Deisenroth and Ras-
mussen, 2011], approximate Bayesian optimal control can also be done for GPs.

4.4 Approximated Nonlinear Model Predictive Control with Gaussian Processes

The results of the previous chapters can now be combined to a robust NMPC algorithm to control
a system, which is only known up to sample data.
So far bounds on the control input have not been considered. However, in practice in almost every
control scenario torque limits are given and have to be respected in NMPC in both planning and
application of the control. A common way to include bounds in stochastic optimization problems
are so-called chance-constraints. Here the deterministic bound

Upin S q S Umax
is relaxed to be only fulfilled with a certain probability .
Combined with the linear affine controller, this leads to the nonlinear constraints

—Upax + Kt + k + v(9)4/diag(KZ,KT) <0,
Umin — (Knu's +k— U(ﬁ) V dlag(KZsKT)) <0,

(4.12)
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where v (1) is the #-quantile of the Gaussian. The constraints (4.12) can be seen as a safety margin
from the original bounds depending on the uncertainty in the state.

From an optimization perspective, however, these constraints are problematic as they are non-
convex.

The NMPC algorithm for Gaussian processes can be summed up in the optimization problems

- 2
(mings ke bro— 27,06, +0QurZry)

T *
+ 3 (e = ll3, A+ Q%)

+||u:—1+t - Kilu'i - ki”}%t—1+i + tr(Rt—1+iKiZiKiT))
S.t. U — X, = O’
GP-NMPC(x,) = 1 2 =0,
ief{l,..., T},

GPM(MU Y Koo ke) = Wy,
GPy(ue, 2y Ky k) = 2y,
—~Unax + Kelbe + k¢ + 0(1)/diag(K, Z,K]) < tol,
Upin — (Kelte + ke — (D) \/diag(KtZthT)) = tol,

(4.13)

where we use MM GP,,, GP5, to propagate the uncertainty. The initial state is deterministic y, —
x, =0, 27 =0,as we assume exact measurement of the system state. The additional tolerance
tol is introduced to prevent infeasibility problems and set to the order of the system noise.

true

Figure 4.2: GP-NMPC on a tracking problem. To minimize the expected deviation, with respect to
model errors and disturbances, from the reference [blue], a state-tube from a
disturbed state [red] is planned.
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Figure 4.2 shows how the original planning in NMPC changes to robust planning by means of a
state-tube, which includes the possible uncertainties.
As a linear-affine controller is directly optimized, one can think of the method as a explicit ap-
proach. However, the first controller K;, k; can be reduced to a control input only, because the
the first state is deterministic. Using Diehl’s techniques from section 2.2 and replanning in every
time-step, the presented method can be described as Semi-Implicit: The direct parametrization of
the controller in the planning controls the state-tube and is sub-optimal w.r.t. the control-bounds
(see [Bemporad et al., 2002]), but the correction at every time step keeps the control-signal feasible.
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5 Evaluation

To test the proposed algorithms and investigate whether the theoretical appealing properties lead
to good performance, we implemented all in MATLAB. The QPs appearing in NMPC were solved
with the presented homotopy method using the MATLAB interface of qpOASES'. All code nec-
essary for simulation, the NMPC solution and training of the GP is available upon request.

As a benchmark problem we decided on the double-pendulum and the cart-pole in the implemen-
tation of [Deisenroth, 2008]. In both scenarios, the dynamics of the system are highly nonlinear,
have control constraints and are simulated with a external noise-influence.

5.1 Implemented Methods

We implemented and compared different methods using the weights Q, =27, R, =7:

1. The (Full) Gaussian Process Nonlinear Model Predictive Control (GP-NMPC) method
(4.13) introduced in chapter 4 with a BFGS-update rule (section 2.2.2) within Diehl’s frame-
work (section 2.2.1) on a time horizon of 10 steps on the double-pendulum and a horizon of
25 steps on the cart-pole,

2. Deterministic NMPC with the GP-mean function

a) with the standard quadratic objective
;= 12, + I = w2,

(Deterministic Gaussian Process Nonlinear Model Predictive Control (D-GP-NMPC)),

b) with the quadratic objective augmented with the the predictive variance Z?g’ at input
(xe—1,Ue—1)

llac; = x I3, + Q=) + lluy — wellg,

(Augmented Gaussian Process Nonlinear Model Predictive Control (AUG-GP-NMPC)),

within Diehl’s framework using the Gauss-Newton approximation (see section 2.2.2) on a
time horizon of 10/25 steps,

3. Linear MPC (section 2.1.2) using the linearization of the GP along the reference (Gaussian
Process (Linear) Model Predictive Control (GP-MPC)) on a horizon of 10/25 steps.

4. Linear MPC (section 2.1.2) using the exact linearization of the dynamics (exact MPC) on a
horizon of 10/25 steps.

' Jatest version 3.0beta downloaded from www . gpoases.org
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5. Full horizon LQR using the exact linearization of the dynamics, control signals truncated to
torque-limits in execution (exact LQR),

6. Full horizon LQR using the linearization of the trained GP, control signals truncated to
torque-limits in execution (GP-LQR),

All deterministic iterative methods were initialized with the reference, while the full GP-approach
was initialized with a feasible controller, which was computed offline. The first five methods
hereby serve to evaluated the GP model and the use of the predictive uncertainty in NMPC, while
the last two ones are benchmark heuristics, which show, what performance is possible if the full
horizon is considered.

5.2 Double-Pendulum Scenario

The double-pendulum is the concatenation of two ordinary pendulums and is used in nonlinear
control theory because of its simplicity and yet rich variety of dynamics including even chaotic
behavior.

5.2.1 Description of Scenario

Using Lagrangian mechanics (compare [Deisenroth, 2008], Appendix C pendubot, which differs
only in actuation) the equations of motion of the joint-angles (see figure 5.1) w;, w,, when torques
u;, U, are applied in the joints, of the double-pendulum result in the Differential-Algebraic Equa-
tion

-1
(d}l) _ ( lg(%ml +my)+ 1 %mzlllz cos(w; — coz)) )

. 1 1 2
% sMalil; cos(w; — wj) amaly + 1

. gl sin(wl)(%ml +m,) — %mzlllzd)g sin(w; — w,) + 14
N %mzlz(lld)f sin(w; — w,) + g sin(w,)) +u, ’

Table 5.1: Double-Pendulum: Parameters

m; | 0.5kg mass of first link
m, | 0.5 kg mass of second link
[, |05m length of first pendulum
[, |0.5m length of second pendulum
g |05 ?2 acceleration of gravity
I, | m lf moment of inertia around midpoint of first pendulum
I, mzlg moment of inertia around midpoint of second pendulum
u; | |u;] £<2Nm torque limits for i € {1, 2}

where the links of the pendulum are modeled as straight rods and the joints are assumed to be
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friction-free.

The given reference trajectory is an indirect swing-up (see figure 5.1) into the unstable full upright
pose, which has to be held for a certain amount of time. With the given parameters (see tabular 5.1),
especially the torque limits, it is impossible to perform a direct swing-up. Hence, potential energy
has to be built up and then turned into kinetic energy first to perform the swing-up.

Figure 5.1: The indirect swing-up into the full upright pose

If the time-dependent system linearization should be inferred by Bayesian regression using a prior,
problems arise because of the differing stability properties of the system at start and end point. As
the double-pendulum starts in a stable rest-position and reaches an unstable terminal state, the first
and last Jacobians differ. Hence, a assumption of global similarity is not valid, whereas a prior on
neighboring system matrices as in Kalman-regression is reasonable.

The sample data (see figure 5.2) was generated using PILCO? [Deisenroth and Rasmussen, 2011]
to learn a nonlinear controller and the noise free roll-out of the final controller, starting in the rest
position, defines the reference.

The inputs are both angular velocities w1, w5, both angles wq, w, and the two applied torques
uq, Uy, whereas the output consists of the differences in velocities and angles A(q, 9, W1, W5).

2 Implementation downloadable at http://mlg.eng.cam.ac.uk/pilco/pilcov0.9.zip
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Therefore, the final model is the sum of the identity map of the states and the GP-model on both
states and controls. To deal with the periodic nature of the angle inputs, the angle data was centered
to the point with the least distance in periodic space to all samples, the so-called Fréchet-Mean.
Additionally, the data was periodically continued at the boundaries (see figure 5.2). However, the
learned GP-model is not perfect yet, which causes the reference to not exactly match the GP-mean
prediction dynamics.

The simulation of the double-pendulum was done at a sampling time of 0.02 s using MATLAB’s
oded45 solver and Gaussian noise with variance ¥ = diag(0.001,0.001,0.01,0.01).

8 7 T T T T
Q &l Froet IR, Vg ] Collected samples
> S DY Initial state
° 5 . o 1 Reference
9 Ky :
£ .
(/1) 4+ R
B y
£ 3 T
3 %
3
2 2t '
()]
c
[+
_E 1r " i
=
T oo -
o
(8]
$ _1 1 1 1 1
-2 0 2 4 6 8

First joint angle o, in rad shifted by +1.3622

Figure 5.2: Collected trajectory data and reference. To manage the periodic nature of angles, the data
was centered to the Fréchet-Mean of the periodic manifold and samples next to boundary
where copied
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5.2.2 Results on the Double-Pendulum
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Figure 5.3: Comparison of full GP-NMPC, D-GP-NMPC and exact MPC on 200 roll-outs
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Figure 5.4: Comparison of full GP-MPC, D-GP-NMPC, AUG-GP-NMPC and exact MPC on 200 roll-

outs

The first figure 5.3 shows the direct comparison of the NMPC approach with full propagation of
the uncertainty to deterministic NMPC using the mean function and the ‘optimal’® constrained

3 The NMPC version was not implemented as the necessary sensitivity computation of the differential algebraic

equation would have been out of scope of this thesis
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Figure 5.5: Comparison of AUG-GP-NMPC, exact MPC, GP LQR and exact LQR on 200 roll-outs

MPC on the exact system linearization on the time horizon of 10 steps. Unfortunately all the ef-
fort put into MM and the chance constraints, did not pay off, as the full NMPC approach was the
worst. Aspects form both theoretical and numerical side that are likely to have caused this bad
performance are discussed in chapter 6.

The second figure 5.4 shows two aspects: First, despite the failure of the full GP-NMPC approach
the predictive variance is still useful, as it leads to significantly better performance compared to
NMPC without its use. Second, the slight improvement of GP-NMPC to GP-MPC shows that the
main contribution to the deviation is not caused by the system noise but from the imperfect model.
Therefore, the linearization of the GP around the reference has almost the same quality than the
iterative linearization in NMPC.

Finally, the last figure 5.5 shows that AUG-GP-NMPC is competitive to MPC controllers that use
the full time horizon, the true linearization or even both. Hereby, the good performance of the
truncated LQR approaches indicates that especially in this scenario the horizon length has a strong
influence on the performance of MPC-methods.

Table 5.2 gives a summation of the results for all tested methods.

Table 5.2: Double-Pendulum: Total Squared Deviations
7.5382 x 10° GP-NMPC
7.1918 x 10! D-GP-NMPC
5.5732 x 10" || AUG-GP-NMPC

8.1623 x 10! GP-MPC
2.0537 x 101 exact MPC
1.8854 x 10! GP-LQR
1.5161 x 10° exact LQR
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5.3 Cart-Pole Scenario

In addition to the double-pendulum we also evaluated the methods on the cart-pole for comparison
and validation of our hypotheses. Therefore, we will only briefly introduce the scenario and present
the results. Similar to the double-pendulum, the cart-pole is a nonlinear system with stable and un-
stable rest-positions. It consists of a pendulum mounted on a cart, which can only move horizontal.

5.3.1 Description of Scenario

The derivation dynamic equation can again be found in [Deisenroth, 2008]. If an external force u is
applied to the cart-pole, the horiontal position x and the joint-angle of the cart-mounted pendulum
w (defined in figure 5.6) evolve according to the Ordinary Differential Equation

2mlw? sin(w) + 3mg sin(w) cos(w) + 4u — 4bx

(X) _ 4(M + m) — 3mcos(w)? ’
~ | —3mlw?sin(w)cos(w) —6(M +m)g sin(w) — 6(u — bx) cos(w)

41(m+ M) — 3ml cos(w)?

Table 5.3: Cart-Pole: Parameters

m | 0.5kg mass of pendulum
M | 0.5kg mass of cart
[ |0.5m length of pendulum
g | 0.5 S% acceleration of gravity [
b | 0.1 % coefficient of friction between cart and ground
u | |u/<10N force limits

The reference is a indirect up-swing to the unstable up-right position (see figure 5.6) and a direct
up-swing is prevented by the force-limit in combination with the parameters of the system.

Figure 5.6: The indirect swing-up into the full upright pose
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The sampling interval is 0.02 s, the noise covariance % = diag(0.001,0.001,0.01,0.01) and
the GP was learned on the state-differences of roll-outs of the PILCO-method as in the double-
pendulum scenario.

5.3.2 Results on the Cart-Pole
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o
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Figure 5.7: Comparison of full GP-NMPC, D-GP-NMPC and exact MPC on 200 roll-outs

Figure 5.7, is similiar to the results on the double-pendulum. Here the full approach is not even able
to stabilize at all, as from time step 100 on the system behaves chaotic. This might be explained
with the fact, that we spend more time on learning the hyper-parameters of the GP and especially
designing a suitable penalty for extreme lenght-scales on the double-pendulum
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Figure 5.8: Comparison of full GP-MPC, D-GP-NMPC, AUG-GP-NMPC and exact MPC on 200 roll-
outs
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Figure 5.9: Comparison of AUG-GP-NMPC, exact MPC, GP LQR and exact LQR on 200 roll-outs

In figure 5.8 and 5.9, the same results as in the case of the double-pendulum can be observed: The

simplified approaches built on the mean-function give good performance compared to approaches

with the exact model.

The average total deviation of all tested methods can be found in table 5.4.

Table 5.4: Cart-Pole

: Total Squared Deviations

7.0514 x 10° GP-NMPC
1.0744 x 10? D-GP-NMPC
1.0462 x 10? | AUG-GP-NMPC
1.2508 x 10? GP-MPC
5.3040 x 10" exact MPC
7.3590 x 10* GP-LQR
4.5827 x 10! exact LQR
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6 Discussion

The experimental results show worse performance of the NMPC approach building on the propaga-
tion of the uncertainty according to noise influence and parametric uncertainty. As this is opposing
to the success of similar methods in reinforcement learning [Deisenroth and Rasmussen, 2011] and
imitation learning [Englert et al., 2013], in the following possible reasons for the degeneracy are
investigated and discussed. Hereby, the first section focuses on problems that arise from the used
optimization model and algorithm, while the second discusses numeric effects. The hypotheses
are backed up by numerical values obtained from the double-pendulum.

6.1 Theoretical Issues

A first possible reason for the bad performance can be found in the combination of the propagation
of uncertainty with Diehl’s suboptimal real-time scheme (see section 2.2.1). The prediction error
€ = Xo — X; between the estimated and true state played a major role in all bounds on sub-
optimality. On the first glance, this seems to be quite unimportant in the case of GP-models, as
even the uncertainty of the prediction can be quantified, but it is actually problematic.

In deterministic NMPC the recent state x, corresponds to a series of planned optimal states and
controls (s, q),, where the prediction X, ; is the next planned state s, . If the difference X, —x ;44
of prediction and true next state x, 1 is small, then also the optimal next planned states and controls
(s,q).4+1 (except the last control and state) differ little from the previous. In GP-NMPC this might
not be the case, as the noise and the model uncertainty have additional influence.

Figure 6.1: Two consecutive state-tubes, first [gray] and second , in GP-NMPC in case of
perfect prediction.

As in GP-NMPC the planned states (s), also contain the planned covariances X, there is always
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a difference to the successive step because the uncertainty decreases. Figure 6.1 illustrates these
differences in the covariances by the difference of the state tubes. Although this behaviour is
desirable , it causes problems in the optimization algorithm underlying Diehl’s scheme. In fact it
is questionable, if the conditions for the bounds on sub-optimality (see section 2.2.1) can be full-
filled. As the effect is inherent to any model with propagation of uncertainty in combination with
Diehl’s scheme, the possible options are:

* Increasing the number of iteration steps of the optimizer per time step, which is likely to
produce a significant delay in measurement of the state and execution of the control.

* No use of the propagation of the uncertainty. Here, the AUG-GP-NMPC (see figure 6.2)

true

Figure 6.2: The predictive uncertainty is part of the optimization objective but not incor-
porated in the dynamics

approach might serve as an example, as the model uncertainty is included in the objective
but not in the dynamics. The good experimental results compared to GP-NMPC and NMPC
using the mean-function indicate that this approach is a good trade-off between taking the
model quality into account and efficient optimization.

Second, the non-convex (underlined) objective
Ix? = gl + r(QE,) + llu? — Ky, — k|7 + tr(RKEKT) (6.1)

and constraints

U — Kty — k + 94/ diag(K LK) < tol (6.2)

cause additional difficulties for the optimizer. Although every NMPC instance is potentially non-
convex because of the nonlinear dynamics, offline optimization of full GP-NMPC and NMPC on
the mean function show drastic differences in necessary iterations to convergence. Especially the
complicated mixed state-control constraints (6.2) lead to SQP-iterations with infeasible QPs (see
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QP (2.14)) and are generally hard to fulfil. Additionally, it turned out that additional regularization
in form of step-size limitation is needed to stabilize the algorithm in online application.

As a possible solution-approach we suggest fixing the controller gain to an offline optimized matrix
and only optimizing the offset k in the online algorithm. This results in a convex objective (6.1)
and also parts of the constraints become convex. To simplify the constraints further we tried to
use linear regression to approximate the square-root on covariance-matrices collected in offline-
optimization. However, the approach turned out to cause even more problems with infeasibility,
therefore, the results are not presented. In further work other convex approximation techniques as
presented in [Nemirovski and Shapiro, 2006] should be considered.

6.2 Numerical Issues

Besides the theoretical problems, there were also issues with the implementation. Necessary for
numerical optimization is the exact computation of the gradients and Jacobians. To compute the
derivatives of the MM we used the routines included in the implementation of PILCO' [Deisen-
roth and Rasmussen, 2011]. Although the thorough implementation takes use of several matrix-
identities for maximal numerical stability, still visible numerical errors in the evaluations occur.
errors of 10™* com-

The GP learned on the given data at first produced average Jacobian (’;E;m
pared to central differences with the standard disturbance of 107°, even at the optimal solution.
The reason for this behavior can be explained by the learned hyper-parameters L, o, a (see equa-

tion (3.7)). The table 6.1 shows the final hyper-parameter learned with a penalty on large length-

Table 6.1: Double-Pendulum: Learned Length-Scales
10°x | 0.0022 | 0.0011 | 0.0107 | 0.0548 | I?
0.0012 | 0.0021 | 1.0727 | 0.0053 | 12
0.0000 | 0.0000 | 0.0003 | 0.0000 | 12
0.0000 | 0.0000 | 0.0006 | 0.0003 | 17
0.0017 | 0.0028 | 0.0448 | 0.0051 | [Z
0.0009 | 0.0007 | 0.0027 | 0.0088 | 12
0.0000 | 0.0001 | 0.0000 | 0.0000 | o®
0.0000 | 0.0000 | 0.0000 | 0.0000 | a?

scales yielding Jacobian errors of 107. On the trajectory data these values yield kernel matrices
K with Condition Number k

k(8R;) =9.9887 x 10'8
k(8R,) = 4.4273 x 10'8
x(8R3) =1.0532 x 10?
x(8R,) = 1.6954 x 10%,

(6.3)

' Implementation downloadable at http://mlg.eng.cam.ac.uk/pilco/pilcov0.9.zip
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K(A) := %, where A, Amax are the largest and smallest eigenvalue of a matrix A.

The condition number has a very important role in numerical mathematics, as it indicates how
pone the solution of an equation Ab = ¢ is to numerical errors. For a disturbance of the right side
¢ + Ac, it holds for an invertible A and the solution b + Ab

|AD]|, | Acl|,
<k(A)
1Bl llcll,

(see any textbook on numerical mathematics, e.g. [Stoer et al., 1993]). Therefore k bounds the
propagation of the relative errors in the solution of the linear equation system.

A(b+Ab)=c+Ac =

In Gaussian processes the condition-number of the kernel matrix strongly affects the possible preci-
sion in which the prediction equations (3.6) and the MM (4.10) (4.11) can be evaluated. Especially
the equations for the variance (4.11) are strongly affected by the hyper-parameters, as also the ma-
trices W, ; are ill-condition because of their similarity to the kernel matrices K.

The connection of the large length-scales to the bad condition of 8 arises from the give data set
(see 5.2). Here the data does not spread uniformly over the entire space, but instead agglomerates
along the reference. In combination with the large length-scales, the rows corresponding to these
samples in the kernel matrix are very similar because of the kernel-function

1
£(xq,xy) = exp ( - E(Xl - Xz)TL_l(xl - xz)),

what then leads to the bad conditioning numbers.

However, a strong penalty on the length-scales, that yields reasonable derivative errors, produces a
bad GP-model and increases the mismatch of model and reference further. The presented length-
scales in table 6.1 are already a result of a compromise between both adversarial objectives.

As the problem is known in the Bayesian machine-learning community, and more general in
Radial Basis Function interpolation with the squared exponential function, already several ap-
proaches have been proposed to compress the data, while reducing the condition number. [Snelson
and Ghahramani, 2006] proposed the FITC algorithm that optimizes a small number of Pseudo-
Samples to approximate the full GP best. Although this approach is also used in PILCO as it
additionally reduces the computational effort in the MM, it can not solve the problem of ill-
condition kernel-matrices, the average condition-number is still of order 10'* and the average
Jacobian error at 107°.

The influence of the bad numerical quality of the Jacobians on the entire GP-NMPC algorithm can
also be seen in the comparison to moment-propagation with a linear system.
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Figure 6.3: Comparison moment-propagation MPC and constrained MPC with the exact linearization
on 200 roll-outs

Figure 6.3 shows, that the quality of the probabilistic approach can increase drastically if the
MM is less complex and if the derivatives are more reliable. However, it should be mentioned
that the initialization could also have been better, as finding a feasible controller for the moment-
propagation in the linear model, starting from the same guess as in GP-NMPC, turned out to be
easier.

As also the Jacobian of the deterministic GP-NMPC (see equation (3.6)) is effected by the extrem-
length scales with a relative error of 108, we suggest using a approximation using sparse local
GP-models as proposed in [Snelson and Ghahramani, 2007] Especially for the trajectory data set,
that has a varying sample-density, the approach seems to be advantageous and might result in less
extreme length-scales while still giving a good prediction model.
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7 Conclusion and Future Work

In this thesis we investigated the combination of model predictive control approaches with
Bayesian system models. We introduced two recent optimization-techniques for online optimiza-
tion and applied them to a moment-matching method for robust optimal control with Gaussian
process models, leading to robust Gaussian process nonlinear model predictive control. Several
different variants of the algorithm, as well as established approaches were tested on a simulated
double-pendulum and cart-pole. Although the original proposed algorithm did not achieve good
performance, simplified methods were competitive with control approaches using the exact dy-
namics. Furthermore, the degeneracy of the presented approach was discussed and potentially
problematic theoretical and numerical aspects could be identified. Finally, we also presented sug-
gestions to solve the occurring problems.

As the numerical issues with the algorithm were time demanding, we were not able to evaluate
the method on hardware. Therefore, an important future issue is the implementation for hardware
application and the evaluation on a real robot. If the real-time constraints can be fulfilled in the
computation of the derivatives of the GP-model, we expect the presented AUG-GP-NMPC to also
work in practise as Diehl’s framework has already been successfully evaluated. Also an evaluation
of the Kalman-approach to the inference of system linearizations and comparison to other Bayesian
approaches, e.g. hierarchical models with a global prior, is a topic we want to investigate. Here
it would also be of interest, if a suitable model of the series of linear models can out-perform the
linearisation of a nonlinear global model, e.g. a GP as in the GP-LQR approach.

In addition to that, we could think of the combination of both online GP-learning and
AUG-GP-NMPC as an extension of previous computed torque approaches [Nguyen-Tuong et al.,
2008].

On the algorithmic side a thorough investigation of the effects of extreme length-scales and more
important the development of GP-approaches that do not suffer from the numerical instabilities is
an important issue.
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