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Abstract
In recent years active prosthetic devices emerged as research area. In comparison to passive

devices, active ones mimic the motion of our intact limbs more perfectly. Hence, they over-

come several drawbacks a user of a passive devices is confronted with. Examples for benefits

caused by switching from a passive to an active prosthesis are a more normal gait and re-

duced metabolic costs of transport. Even though active devices can improve amputee’s every

day life, there are still challenges to be solved. Prosthesis control is besides design one of

those challenges. The controller needs to decide when and how to adapt active support. Re-

garding, for instance, the push off phase, the active push off must be aligned with the timing

and strength intended by the user. This work introduces recent supervised machine learn-

ing methods such as Gaussian process regression and support vector machines for control

of active prosthetic devices. The machine learning methods are used to form a supervisory

controller that infers the user’s intent. As input to the supervisory controller, we use the data

obtained by an inertial measurement unit mounted at the shank of the considered active an-

kle prosthesis. The output or rather the users intent is given by gait, speed and gait percent

predictions. If the intent is known, the desired nut position can be determined by a lookup.

To enforce the desired trajectory a slave controller, here a PD controller, is applied.

The supervisory controller is designed, implemented and tested based on walking and

running data recorded on a treadmill. At first, noise free motion capturing data is used to

demonstrate the applicability of supervised machine learning methods in context of active

ankle control. Afterwards, sensor data obtained with the prosthesis’s intertial-measuremt

unit is used to proof real-world applicability of the introduced supervisory controller. The

obtained supervisory controller is fast and moreover accurate. For gait percent prediction the

error is bounded to ±5%. In case of speed and gait prediction, accuracies close to 100% and

95% are achieved, respectively.
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1 Introduction
Regarding Germany, there are no registers for amputees and no official statistics about ampu-

tation frequency. However, it is possible to estimate the frequency of lower limb amputations

using clinical and health insurance data. In 2001, 45,000 amputations were performed, in

2002 and 2008 there were 55,000 and 60,000, respectively [1, 2]. The leading causes of

amputation are vascular disease and diabetes. For instance, approximately 70 to 80% of all

amputations performed in Germany in 2001 are due to diabetes [3]. In the future the preva-

lence of diabetes is growing world wide [4], so it is likely that the number of amputations

will grow as well.

Most of the transtibial amputees use passive and quasi-passive ankle prosthesis. Both types

only store the energy produced at the beginning of a stance and release it in its end. An

intact human ankle, in contrast, is able to produce net positive work during stance. Con-

sequently, passive devices mimic human gait imperfectly and impose energy deficiencies on

their users. This limitations of passive devices, in turn, lead to locomotion problems like

slower self-selected walking speed, asymmetrical gait and a higher metabolic energy con-

sumption [5]. Moreover, people with an unilateral transtibial amputation are predisposed

to musculoskeletal injuries, since they try to overcome the energy deficiencies with their

unaffected leg, resulting in greater forces on the unaffected side [6].

To improve amputee ambulation, active ankle, also knowns as powered ankle, prosthesis

were introduced. Such active devices can produce net positive work, and hence can mimic the

human ankle more accurately. The improvements due to active devices were demonstrated in

several case studies. For example, Au et al. have shown that an active ankle prosthesis leads

to a more normal gait and reduces the metabolic costs of transport [7]. Nevertheless, the

broad commercialization of active ankle prostheses is hindered by two challenges. The first

challenge was addressed in the last few years and is about shrinking the prosthesis to human

size and weight. This can be done by decreasing peak power and energy consumption of the

active ankle prosthesis, and thereby also the motor, battery and prosthesis size [8]. Inspired

by this approach, several prosthesis designs, e.g., SEA, SEDA (series elastic-damper actua-

tor) and PEDA (parallel elastic-damper actuator), emerged. All approaches are abbreviated

with the mechanical concepts they are based on. SEA, for instance, stands for series-elastic

actuator and is implemented as mechanical transmission in case of a motor in series with

a spring. Recently it was shown that SEA is the best compromise if different human gaits,

like normal level, upstairs and downstairs walking, are considered [9]. The second challenge

is the control of powered ankle prostheses. Only with appropriate control mechanism, it is

possible to fully leverage the potential of active devices. For instance, an powered push off

is only worthwhile, if it is performed at the right time. Until now, several control strategies

were proposed but no strategy established as standard. For instance, Varol et al. use finite-

state impedance controllers to execute a desired trajectory. To detect the desired trajectory

or rather the user’s intent they designed an overlaying supervisory intent recognizer [10].

In contrast, Holgate et al. use the tibia angle and velocity to calculate gait percent. Given

gait percent and stride length in addition, they can determine a unique nut position which is

applied to the prosthesis [11]. A more detailed literature review is given in Section 1.3.
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This work introduces a new control strategy for a powered ankle prosthesis. The control

strategy is based on an overlaying controller which uses supervised machine learning to infer

the user’s intent. Given the intent, the prosthesis achieves best possible user support by

adapting to it. A more detailed description of controller design and objective is given in

Section 1.1. The two remaining sections introduce the structure of this thesis and give an

overview of related work.

1.1 Objective

The goal of this thesis is the design and implementation of a new control strategy for a pow-

ered ankle prosthesis. As depicted in Figure 1.1, the approach is constituted by a supervisory

controller, a lookup and a slave controller. The supervisory controller, or rather master con-

troller, determines the user’s intent based on online sensor data provided by the prosthesis.

When the intent is known, a simple look up gives the corresponding desired trajectory. The

slave controller, in turn, is used to enforce the desired trajectory to the prosthesis. For the

considered prosthesis, the slave controller is a PD controller and the desired trajectory is

given by the nut pattern applied to the prosthesis. Note that the lookup procedure and the

slave controller are not investigated further. For the lookup method we refer to a procedure

given in [11] and for the design of the slave controller standard methods of control theory

are applied.

The focus of this thesis is on introducing a supervisory controller which uses supervised

machine learning methods to infer the user’s intent. As input to the controller, the prosthesis

provides data of an inertial measurement unit mounted at its shank. Given this data, the

supervisory controller performs three predictive tasks such as gait, speed and gait percent

prediction. The outputs of all tasks in conjunction are synonymous with the user’s intent.

From a machine learning point of view, the functionality of the overlaying controller can be

described as follows: At first, classification is used to recognize the intended gait. Afterwards,

the corresponding speed is determined with the use of classification or regression. Classifica-

tion is used if the speeds are discrete and their amount is countable. Otherwise regression is

used. For gait percent estimation regression is used as well.

At first, the supervisory controller shall be designed and implemented based on walking

and running data provided by a motion capturing system. Afterwards, the resulting controller

must be evaluated for real-world applicability as well. Therefore, motion data recorded by

Active Ankle 
Prosthesis

Slave 
Controller

M

Lookup Table
Supervisory 
Controller

         Gait
Speed
Gait Percent

Intent

desired
trajectory

nut position

intent

imu data

Figure 1.1.: Overall control architecture. The supervisory controller is based on machine learn-
ing methods and infers intended gait, speed and gait percent. Given the user’s
intention, a lookup table and a slave controller are used to adapt the prosthesis’s
trajectory to it.
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the prosthesis’s inertial measurement unit is used. The implemented controller should meet

the basic requirements such as accuracy and speed and should require as less input signals

as possible. To optimize the controller with respect to these requirements, different setups

are evaluated. Furthermore, different sensor signal combinations and different frame sizes,

e.g., the data of the last 5 or 10 time steps, can be used. Most likely, accuracy increases when

using more sensor data and a higher frame size, but meanwhile speed may decrease.

1.2 Outline

Chapter 2 introduces the machine learning background required for the presented control

approach. The subsequent chapter analyses the applicability of machine learning as con-

trol mechanism. Therefore, motion data recorded by a motion capturing system is used.

Such kind of data is very accurate and, in contrast to sensor data, noise free. As result

of the applicability analysis, data that serves as input for gait prediction is identified and

a control mechanism is proposed. In Chapter 4, real sensor data is used to proof that the

presented concepts also work for wearable prostheses. Moreover, a transfer function is intro-

duced which dramatically improves speed detection. The thesis concludes with Chapter 5,

where the machine learning based control mechanism for active gait support with a powered

ankle prosthesis is summarized and discussed. In addition an outlook an possible future work

is presented.

1.3 Related Work

Before designing an own control approach, already published approaches for controlling ac-

tive prostheses are reviewed. One of the first approaches is echo control, where the motion

of the sound side leg is recorded and reproduced with the active prosthesis [12]. Because

of the playback, the user is always forced to repeat the action of the unaffected leg which

can be uncomfortable in some situations. Moreover, convenience is reduced by the additional

sensors required at the unaffected leg. Other approaches that require to mount additional

sensors are electromyography (EMG) or even nervous system based approaches. Electromyo-

graphy based approaches mount surface EMG sensors to extract and use muscle activation

signals for control. In this context, the non-stationary nature of EMG signals imposes some

challenges for control. Examples for EMG based control approaches are given in [13, 14].

Nervous system control is the invasive counterpart of EMG based control and gives more

accurate signals. Here, electrodes are either implanted at the central nervous system or at

the brain [15, 16]. All approaches given above require sensors or electrodes in addition to

the prosthesis. Consequently, a remaining approach is about operating and controlling the

prosthesis with just the sensors attached to the device. Such approaches are considered here

in more detail. Regarding transfemoral or transtibial amputees, the groups at MIT, Vanderbilt

University and Arizona State University were especially concerned about the design, imple-

mentation and control of such prosthetic devices. In the following, the control approaches

of those groups are introduced. Afterwards, we present some work unrelated to prosthesis

control but with focus on similar problems as we are facing here.
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(a) State-based prosthesis design. The figure
is taken from [17]

(b) State machine for level-ground walking. The
figure is taken from [17]

Figure 1.2.: Panel (a) shows the state-based prosthesis design proposed in [17]. Each state is
associated with a different mechanical function and control approach. (b) illus-
trates the state machine for level-ground walking in detail. Circles denote states
and rectangle state transition conditions. Depending on the state, position or
impedance control is applied.

MIT Media Lab

First, the research of Hugh Herr’s biomechatronics group at MIT Media Lab is considered.

In [17] the authors describe the implementation of a powered ankle–foot prosthesis and the

corresponding control mechanism. The prosthesis is designed and controlled to mimic the

human motion of an intact limb more perfectly than a passive device. By doing so, amputees

can achieve a more normal gait and reduce their metabolic cost of transport. Note that

the authors of [17] consider only level-ground walking. Prosthesis design and control is

driven by a state based approach. Therefore, the gait cycle is divided into different phases

or rather states. In context of design, each state is associated with a different mechanical

function. For instance, controlled plantarflexion is associated with a linear spring. For more

details about the definition of states and how they are used in prosthesis’s design see Figure

1.2a. Also for control, the state-based approach is chosen. For each of the states a specific

controller is designed and fine-tuned. Common control approaches are position control, e.g.,

for the prosthesis’s nut position, and impedance control. The authors of [17] rely on both,

depending on the state. The control scheme consists of six different states. The corresponding

state machine is given in Figure 1.2b and explained in the following. For the stance phase, the

three states defined in Figure 1.2a are used. Controlled plantraflexion begins at heel-strike

and lasts until midstance. Afterwards the second state, controlled dorsiflexion, continues

until the ankle torque reaches some threshold. The last state of the stance phase is powered

plantarflexion. Each state is controlled to fulfill a special task [17]. Controlled plantaflexion

is about absorbing the power of heel strike, controlled dorsiflexion and powered plantaflexion

are about rotating the body and powered push off, respectively. In contrast to the prosthesis’s

design, the swing phase is divided in three states as well. The first states begins at toe-off.

After some time period is exceeded, the second state starts and lasts until ankle angle reaches

zero. The third state is active until the next heel strike occurs. Regarding the swing phase,

the control task is mainly about positing the prosthesis for the next heel strike. To switch

between the states, sensors inputs are required. As inputs the authors use the ankle angle

and heel and toe contact sensors [17]. The angle ankle is denoted with θ and the heel and

toe contact sensors are abbreviated with H and T . If H or T equals 1 a contact is detected,
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(a) Neuromuscular model used for control. The
figure is taken from [18]

(b) Finite-state machine used for control. The fig-
ure is taken from [18]

Figure 1.3.: (a) depicts the components of the neuromuscular model. The top left figure dis-
plays the neuromuscular model and the top right figure its geometry. The figure
at the bottom shows the Hill-type muscle used by the model. (b) shows the state
machine used for neuromuscular model based control

otherwise a contact is not given. All in all, the prosthesis performs good, since it is able to

mimic the motion of an intact ankle more perfectly than a passive device [17]. This motion,

however, changes with walking speed. To mimic also different speeds, the controller needs to

be fine tuned to those speeds. The fine-tuning is possible, but the presented approach is not

able to infer the speed intended by the user.

The same group is involved in another approach aiming at a more adaptive controller

[18]. As testbed an active ankle-foot prosthesis of iWAlk LLC, which is a successor of the

MIT Media Lab prosthesis, is used. The controller is based on a neuromuscular model of the

human-ankle foot complex and directly generates the ankle torque required for control. Fig-

ure 1.3a depicts the neuromuscular model (a), its geometry (b) and the used Hill-type muscle

model (c). The human ankle is modeled by a hinge joint controlled by two virtual actuators.

For the first actuator an unidirectional plantarflexor, given by a Hill-type muscle model, is

chosen. From a controller point of view, the Hill-type muscle includes a positive force feed-

back reflex scheme which is used to incorporate adaptivity. The second virtual actuator is a

dorsiflexor that is mostly active during early stance phase. Furthermore, the dorsiflexor is

divided into two states. One state is covered with a reactional proportional-derivative posi-

tion controller, whereas the second state uses a unidirectional virtual rotatory spring-damper.

As for the previously presented control approach, the state depends on the gait phase [18].

To generate the control signal, both virtual actuators produce different torques depending on

the state. The net torque at the ankle joint constitutes the final control signal. Considering

the used prosthesis, the torque is produced by a parallel spring and a motorized drive train.

An angle sensor gives the torque produced by the spring. The net torque is achieved, since

the remaining amount is given by the motor controller. For maintaining the controller’s state,

the state machine shown in Figure 1.3b is applied. The state machine distinguishes between

swing phase, and stance phase. In case of stance phase controller plantarflexion (CP), con-

trolled dorsiflexion (CD) and powered plantarflexion (PP) are considered. To identify state

transitions, the ankle torque Tpy and ankle angle θ are used as input signals. The neuromus-
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cular model has free parameters that must be fitted to give good performance. As remainder,

good performance is given when the intact ankle behavior can be mimicked closely. Here,

the parameters of the model are optimized for level-ground walking at 1.0m/s. Therefore,

corresponding motion capturing data was recorded with a healthy, male subject of 81.9 kg

weight. For optimization, the authors used a cost function given by the squared error between

biologic and controller-based trajectory. A genetic algorithm selects the initial optimization

parameters and direct search gives the final results. The resulting controller was tested with

an transtibial amputee of 75kg weight. When walking at 1.0m/s, the amputee’s motion was

close to the recorded intact motion [18]. Even though the controller does not explicitly sense

its environment, it was also able to adapt to ramp ascent and descent scenarios. For ramp as-

cent, the produced net work increases and for ramp descent it decreases. This can be observed

for intact humans as well. The pure force feedback reflex scheme, however, is not sufficient

to adapt to different speeds. That is why the model is extended with length and velocity

feed-back terms [19]. The resulting neuromuscular model is only a coarse approximation of

the human model, but can adapt to different speeds.

CIM at Vanderbilt University
The center of intelligent mechatronics at Vanderbilt University is also developing active

prosthetic devices. The group, led by Michael Goldfarb, implemented an electrically powered

transfemoral prosthesis which is controlled by finite-state impedance control. How the pros-

thesis adapts to the user’s intent is described in [20]. The described mechanism is constituted

by two controllers, namely a supervisory and an intra-modal controller. Figure 1.4 display the

control structure. The supervisory controller analyzes the sensor signals to detect the user’s

intent. When the intent is known, a corresponding finite-state impedance controller is used to

support the user. So, there are several intra-modal controllers, fine-tuned on specific scenar-

ios and the supervisory controller is responsible for picking the right one. The user’s intent is

given by gait, cadence and slope estimators. In the referred paper [20], the gait mode estima-

tor is described. Gait mode estimation discriminates between standing and walking. First, the

intra-modal controllers are fined tuned for the test subject. The test subject is a healthy male

person that uses the prosthesis with an able-bodied adapter. For the intra-modal controllers,

scenario such as standing and slow, intermediate and fast walking are considered. In a next

Finite State based
Impedance Controller

Intent Recognizer

- Gait Mode Intent
     Recognizer

- Slope Estimator

- Cadence Estimator

Transfemoral
Prosthesis

intent

joint torque 
references

prosthesis signals

Figure 1.4.: Overall control structure for a powered transfemoral prosthesis developed at Van-
derbilt University. Note that the figure is adapted from [20]. The depicted supervi-
sory controller detects gait mode, slope and cadence and chooses a corresponding
intra-modal controller for prosthesis control.
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step, the authors generate a database for the considered scenarios. The database covers also

scenarios where the intra-modal controller and the user’s intent do not match. All recordings

were performed at 1000 Hz and are constituted by prosthesis’s signals like knee and angle

joint positions and velocities, socket sagittal plane moments, and heel and ball forces. Since

the gait estimator is optimized with respect to different properties, four trials are recorded

for each database element. The properties result from the different steps required for gait

estimation. In a first step, a specific frame length is chosen. If, for instance, the frame length

is set to 50, the last 50 measurements of each sensor are used as input for gait estimation. In

a second step, features for gait estimation are calculated. The authors chose the mean and

standard deviation of each input signal’s frame as features, since both are computationally

inexpensive. Also the next step, namely a dimensionality reduction, is preformed to decrease

computation time [20]. The results of dimensionality reduction are used as input for the es-

timator itself. Estimations are performed with Gaussian mixture models (GMMs). Therefore,

a Gaussian mixture model with k components is learned for each gait mode. The expectation

maximization algorithm is applied to learn the Gaussian mixture models. For each gait mode,

the algorithm is initialized with the results obtained from k-means clustering performed on

the gait mode’s data. During operation, new inputs are classified by evaluating the mixture

models for each gait and choosing the most probable one as prediction. The authors observe,

that sometimes predictions are temporarily wrong or chatter between walking and running.

That is why, they introduce a voting scheme as last processing step. The voting scheme stores

the last l prediction results and only gives new classification results if at least 90% of those

predictions are in accordance. Consequently, the properties considered during controller op-

timization are frame length, dimensionality reduction, number of mixture components and

voting scheme length. As frame length 50, 100, 200 and 400 samples are considered. For

dimensionality reduction either principal component analysis or linear discriminant analysis

are used. As number of Gaussian mixture models and voting scheme length k ∈ {2, . . . , 8}
and 2 to 100 are examined, respectively. The authors of [20] report that the best performing

model is given by a GMM with 7 mixtures, a frame size of 100 samples, a three dimensional

principal component analysis and a voting length of 38. Note that voting scheme length

and frame length together define the total classification delay. To test the best performing

supervisory controller, it was implemented and tested on the prosthesis. In doing so, the

same subject performed ten trials of level-ground walking on a treadmill. During all trials the

subject walked at a constant speed. At random time steps the treadmill was stopped so that

the subject changed its gait mode to standing. Afterwards the treadmill was started again.

This procedure was repeated to observer several gait mode switches. All in all, the authors

observer that no wrong mode switches were performed by the controller. In [10] the authors

extend the presented gait mode classification also to sitting. Here some errors were observed

during evaluation. The errors, however, had no impact to the user of the prosthesis, since

they occurred only for very similar activities [10].

The slope estimators for standing and walking are described in [21, 22]. For standing, an

inertial measurement unit is attached to the prosthetic foot. Based on their sensor measure-

ments, the ground slope is, for an range of 15%, estimated with an error of ±1% [21]. For

walking also an inertial measurement unit is required. In addition, heel and ball load sensors

are used to detect ground contact. The ground contact is a reference for determining acceler-

ation magnitude which is given by gravity. By observing the change of acceleration along the

axis orthogonal to the foot, the slope is estimated [22].
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(a) Tibia angle-velocity cyclogram. Figure taken
from [11]

(b) Surface plot for polar distance, polar angle and
gait percent. Figure taken from [11]

Figure 1.5.: (a) Tibia-angle plotted against angular velocity multiplied by a scaling factor, and
(b) surface plot for polar distance, polar angle and gait percent. In contrast to
the orange surface plot, the blue one is invertible. So it can be used to determine
stride length given polar angle and gait percent. The blue surface plot results
from the orange one by applying a first order filter to the polar radius.

Department of Engineering at Arizona State University
Another active prosthesis, known as SPARKy, is developed by Thomas Sugar’s group at

Arizona State University’s Polytechnic Campus. This group proposed also different control

methods. A first method is known as robust control and is applied for a powered ankle-foot

orthosis [23]. The method is based on velocity and stiffness control. In more detail, the

stance phase is divided in five different zones. Each zone is recognized by an unique event,

e.g., zone 1 begins at heel strike and zone 2 starts when ankle angular velocity crosses zero.

Depending on the zone, either velocity or stiffness control is applied. By changing the stiffness

or velocity parameters of a zone, different output profiles are achieved. In future work, the

authors want to investigate if they can achieve different activities than walking, e.g., stair

ascent, by just varying these parameters [11].

A second control approach, known as tibia based control, is about determining gait percent

and stride length [11]. If both are know, the motor pattern for level-ground walking is given

by a simple look up. The approach is based on the cyclogram given in Figure 1.5a, where

tibia angle is plotted against tibia angular velocity multiplied by a scaling factor. Regarding

Figure 1.5a, different line colors denote different speeds and the larger the curve the larger

stride length. Instead of using Cartesian coordinates, the authors of [11] switch to a polar co-

ordinate representation. This representation reveals two useful analytical relationships. First,

polar angle is directly related to gait percent. Consequently, the authors use the cyclogram to

fit a function for gait percent computation. This function takes polar angle, determined from

tibia angle and velocity, as input and returns gait percent. Second, the polar radius increases

with longer stride length. The polar radius distance, however, depends on polar angle, as

well. For instance, for a polar angle of 90 degree all distances are relatively small compared

to the distances for a of polar angle of 270 degree. The authors condensed the relationship

of polar distance, polar angle and gait percent into a surface plot [11]. In Figure 1.5b, the

resulting surface is colored orange. In contrast to the blue surface, the orange one is not

invertible. The blue surface is achieved by applying a first order filter to the polar radius.

Since the blue surface is invertible, a function that consumes polar angle and gait percent
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and yields stride length can be found. When gait percent and stride length are known, the

prosthesis’s control signal can be determined with a look-up table, also defined by Holgate

et al. [11]. In this context, the control signal is the desired nut position. To compute stride

length and gait percent, the presented approach requires actual measurements for tibia angle

and velocity. The used prosthesis, however, is only equipped with an angular rate sensor. So,

tibia velocity is known, but tibia angle is not. The authors compute tibia angle with the use

of a pseudo integrator. The pseudo integrator is a transfer function that gives results similar

in shape but not identic to real tibia angle. Note that similarities in shape are enough to

apply the presented approach. Moreover, the authors identify several benefits resulting from

the transfer function [11]. First, the method is easier to apply than a Kalman filter or strap

down integration. Second, the transfer function is stable so that there is no need for resetting

integration bounds. Furthermore, the tibia angle is normally unique for each subject. A third

benefit given by the transfer function is that its output incorporates deindividualization to

some degree. The presented control approach was implemented and tested on the SPARKy

robot attached to an amputee. During testing, the amputee walked speeds ranging from slow

to fast. The results for stride length estimation are with in an error of 10% and the gait

percent error is bounded to ±5%.

Speed Prediction Based on Inertial Measurement Sensors

Concluding, we present a research topic unrelated to prosthesis control, but also concerned

with a task we are facing here. This research is about inertial sensor-based methods for speed

estimation. Since the active ankle prosthesis is equipped with an inertial measurement unit

as well, work published in this field might scale for prosthesis control. In [24] a systematic re-

view of speed prediction based on inertial sensors is given. The review categorizes the existing

approaches in classes such as abstract models for speed prediction, human models and direct

integration. In case of abstract models, artificial neural networks (ANN) were used for speed

estimation. Depending on the overall task, e.g. if incline waling, running, or other extensions

are considered, different numbers of ANNs and different layer configurations per ANN are

used. Moreover, different sensor locations are possible. In [25] the sensor is attached to the

chest and various speeds in between 4.7–17.14km/h are considered. The overall root mean

squared error (RMSE) is reported to be 0.54km/h. In contrast to those black box approaches,

human gait models are based on analytical models of the human leg. For instances in [26],

the human leg is given by just one joint representing a simple pendelum. Here, the sensor

is required to compute the leg angle. Given the angle and the leg model, the stride length is

computed analytically. So, the speed prediction results depend on model accuracy. A more

sophisticated model is given in [27], where the human leg is modeled by two joints. The di-

rect integration approach is mainly used for personal navigation, e.g. to identify the location

and speed of a user within a room. In this case, also different sensor locations are possible.

The foot, however, is mostly used for sensor attachment. Some approaches even attach sen-

sors at both feet and use data fusion [28]. The authors of [24] summarizes all integration

approaches with following step sequence. At first, a start and end point of the gait cycle is

defined. Note that often the foot flat event is chosen. The next step is about identifying the

orientation of the sensor with respect to the global coordinate system. When this relation

is known, the accelerometer measurements are projected into the global coordinate system.

After removing gravity from the measurements, the accelerometer data is integrated to yield
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velocity. Every time the gait cycle starts anew, integration and orientation with respect to the

global coordinate system are reseted.
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2 Supervised Machine Learning
Machine learning aims at recognizing patterns in a given data set. Typical approaches consists

of two subsequent phases: During the first phase, called learning phase, patterns are identi-

fied and condensed into a mathematical model. In the second phase, the model is applied to

make predictions for unseen inputs. Note that also online algorithms exist, where the learning

phase can also take place during operation. Examples for the usage of machine learning are

computer vision tasks like face detection or the control of complex systems like autonomous

cars or robots. A more concrete example given by Vijayakumar et al. demonstrates the bene-

fits of machine learning [29]. They use a method called locally weighted process regression

(LWPR) to learn the inverse kinematics for their 30-DOF humanoid robot. The learned model

outperforms the analytical one, because the robot is too complex for an accurate analytical

model. So, machine learning techniques especially pay off when dealing with a large amount

of data. In such cases, it is hard for humans to design hard-crafted decision rules or even to

extract meaningful information. Concluding, the benefits of machine learning are perfectly

summarized with following quote from Hal Varian “The ability to take data — to be able to

understand it, to process it, to extract value from it, to visualize it, to communicate it — that’s

going to be a hugely important skill [...]. ” [30]

Machine learning can be divided in three application types, namely supervised, unsuper-

vised and reinforcement learning [31]. Here only supervised machine learning is considered.

The differences between the application types are constituted by the input data used for

learning. In supervised machine learning the learned mathematical model is a input-output

mapping or rather a function. The training dataset consists of n observations and is denoted

as D = {(xi, yi)|i = 1, . . . , n}, where xi is a d-dimensional input vector and yi is the corre-

sponding scalar output value [31]. It can be differed between discrete output categories and

and continuous outputs values. In case of discrete categories, the learning task is called clas-

sification problem. An example for a classification problem is the recognition of hand-written

digits, e.g. for automated zip code identification. In this example, the discrete output cate-

gories are all possible digits yi ∈ {0,1, 2, . . . , 9} [31]. If the outputs are continuous, yi ∈ R,

it is a regression problem. Examples for regression problems are polynomial curve fitting or

model estimation for robot control as performed in [32].

The learned function must generalizes to unseen input data, since it is used for future

decisions. The generalization ability, however, cannot be estimated with the prediction error

on the training set. The learned function might remember the training set perfectly, but

perform poorly on unseen data. This case is known as overfitting and is often caused by a too

complicated underlying model. To evaluate the generalization ability a test dataset is used

[31]. The test set is distinct from the training set and is denoted with D∗.

The problems of gait percent, speed and gait prediction are tackled with respect to the

current standard techniques for supervised machine learning. The remainder of this section

introduces the used techniques. First, Section 2.1 describes Gaussian process regression.

Afterwards, classification principles like support vector machines and multi-class classification

are introduced in Section 2.2. In the end, general input-output setups for regression and

classification are presented.
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2.1 Gaussian Process Regression

Regression aims at learning a function f that can be used to predict function values for un-

seen inputs. To learn such a function, a training set D = {(xi, yi)|i = 1, . . . , n} is required. It

consists of n observations, where xi is a d-dimensional input vector and yi is the correspond-

ing function value. Concatenating the training inputs into a d×n matrix and the outputs into

a vector results in a more compact representation of the training set D = {X ,y} [33]. The

learned input-output mapping is of the form yi = f (xi) + ε, where ε is independent, identi-

cally distributed Gaussian noise with zero mean and variance σ2
n [33]. When the function is

used to make predictions for unseen data, the input is called test input and is denoted with

x∗. The output of the prediction is called and denoted accordingly. In the case of predic-

tions for several test points, the test inputs can be concatenated into the matrix X∗ and the

corresponding outputs into the vector y∗.

Gaussian process regression belongs to the category of Bayesian non-parametric regression.

Instead of learning specific parameters of a function, e.g. the coefficients of a cubic function, it

integrates over all possible parameters. Hence, predictions do not depend on the parameters

but only on the data points itself. In the following, Gaussian process (GP) regression is defined

according to Rasmussen [33].

A GP is a distribution over functions,

f ∼ GP (m(xp), k(xp,xq)), (2.1)

which is specified by a mean m(xp) and covariance function k(xp,xq). Because of conve-

nience, the mean function is typically set to zero. However, it is also possible to use the mean

function to encode prior knowledge. The covariance function is needed to compute the co-

variance matrix, so that it determines the properties of all possible functions specified by the

GP. Informally, a GP can be described as Gaussian distribution for functions. More formally,

it is defined as collection of random variables, from which every collection of variables has

a joint Gaussian distribution. In the context of Gaussian processes, a random variables is

identified by the function value f (x) at location x.

The Gaussian process framework can be used for inference. Starting with the prior which

is given by the GP specified by Equation (2.1). The prior encodes all possible functions before

observing any training data. When incorporating the training data, the possible functions are

reduced to those functions that pass through the training points. The resulting distribution

of functions is known as posterior. The mean of the posterior is used to make predictions and

its variance is a measure for the prediction’s uncertainty. An graphical example is given in

Figure 2.1. Regarding this example, Figure 2.1a illustrates samples drawn from the prior and

Figure 2.1b shows the prior conditioned on 4 training points (posterior).

Since a GP is a collection of random variables, it is possible to specify the joint distribution

of training and test outputs





y

f∗



∼N

 

0,





K(X , X ) +σ2
n I K(X , X∗)

K(X∗, X ) K(X∗, X∗)





!

, (2.2)

15



(a) Samples drawn from the prior. Figure taken
from [34]

.
(b) Posterior. Figure taken from [34].

Figure 2.1.: (a) shows some samples drawn from the prior distribution specified by GP(0,0).
(b) depicts samples from the posterior which is the prior conditioned on four train-
ing points. The confidence, shown in both plots, is a measure for the uncertainty
and is defined as x̄∗ ±

p

cov (x∗). Close to a training point the confidence is
small, since all possible functions must pass through this point. When moving
further away from the training points, the function’s variability increases and con-
sequently the confidence grows, as well.

where f∗ is the predictive distribution of the test outputs and K(X , X ′) denotes the covariance

function evaluated between all points contained in X and X ′ [33]. The posterior is simply

computed by conditioning the joint distribution on the training points

f∗|X ,y, X∗ ∼N ( f̄∗, cov ( f∗)), where (2.3a)

f̄∗ = K(X∗, X )[K(X , X ) +σ2
n I]−1y, (2.3b)

cov(f∗) = K(X∗, X∗)− K(X∗, X )[K(X , X ) +σ2
n I]−1K(X , X∗). (2.3c)

Predicting is done by evaluation Equation (2.3b) and the uncertainty of the prediction is given

by Equation (2.3c) [33]. Considering this equations, the relevance of the covariance function

becomes apparent.

As described earlier, the covariance function is responsible for the prior or rather the prop-

erties of all possible functions. Different covariance functions and combinations have been

proposed. The most common covariance function is the squared exponential covariance func-

tion

k(xp,xq) = σ
2
f exp(−

1

2
(xp− xq)

>M(xp − xq)) +σ
2
nδpq, (2.4)

where δpq is the Kronecker delta which equals one if p = q and is zero otherwise. The re-

maining parameters are called hyperparameters and consists of the signal variance σ2
f , the

noise variance σ2
n and the characteristic lengthscales M = diag(l)−2 [33]. Note that the i-th

element of l describes how far we need to move in the i-th dimension of the input space to

perceive a change. The larger the i-th lengthscale the farer we need to move to observes

changes and, consequently, the i-th dimension becomes less important for performing pre-

dictions. Different hyperparameters result in different function properties and consequently
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cause different predictions. In case of Gaussian process regression, learning can be identified

with hyperparameter determination. Only good hyperparameters result in good predictions

for unseen data. Since the squared exponential covariance function is infinitely differentiable,

it favors smooth functions. Such an assumption can be unsound for physical processes. The

Matérn covaraince function is often used as an alternative [33].

A common approach to determine the hyperparameters is to maximize the log marginal

likelihood

log p(y|X ) =−
1

2
y>[K(X , X ) +σ2

n]
−1y−

1

2
log|K(X , X ) +σ2

n| −
n

2
log 2π. (2.5)

Regarding its equation, it can be seen that the log marginal likelihood automatically performs

a trade off between model fit and complexity. The first term of eq. (2.5) addresses data fit, the

second term introduces a complexity penalty and the last term is a normalization constant.

2.2 Support Vector Machines

Already in 1995 Vapnik introduced support vector machines (SVM) based on the statistical

learning theory. After some years support vector machines established as standard for classi-

fication. The core idea of SVMs is to enforce the smallest generalization error by formulating

the problem of binary classification as quadratic optimization problem. In doing so, the input

data is transformed in a higher dimensional space where an optimal separating hyperplane is

defined. The solution is sparse, since the hyperplane depends on a subset of training points

called support vectors. Support vectors are those points closest to the hyperplane. To classify

new inputs, it is sufficient to check on which side of the hyperplane the input resides [35].

In the following support the SVM formulation is introduced according to [31]. The training

set is denoted as D = {(xi, yi)|i = 1, . . . , n}, where xi are d-dimensional input vectors and

yi ∈ {−1,1} are the corresponding binary class labels. Note that the class labels are also

known as target values are in [31] denoted with t i . The hyperplane that linearly separates

the training data is given by

d(x) =w>σ(x) + b = 0, (2.6)

where d(x) is called decision boundary, w is the d-dimensional adjustable weight vector, b is

the bias and σ(x) maps the input data into another, often high dimensional space [31]. If the

input data is initially not linearly separable, the mapping may introduce a space where it is.

The sign of the decision boundary is used to classify new input data which is denoted with x∗.

If d(x∗)> 0, x∗ lies on the left of the decision boundary it is classified as y∗ = 1. Otherwise it

is on the right of the decision boundary and is classified as y∗ = −1. To achieve the smallest

generalization error, the concept of the margin is introduced. The margin is set as the smallest

perpendicular distance between the decision boundary and the nearest points of the training

set. So, that their is an identical margin on both sides of the decision boundary. According

to the definition of the margin, all other training points are located on or behind the margin.

Each point on the margin is a support vector. For a graphical illustration see Figure 2.2.
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Figure 2.2.: Graphical illustration of the hard-margin support vector machine formulation. The
red and green points represent the different class labels involved in support vector
machine training. For the given training points, the optimal decision boundary,
also known as optimal separating hyperplane, is given by the black line. The black
line is chosen, since it maximizes the perpendicular distances to the margins which
are denoted by the blue lines. It becomes clear that the margins and consequently
the decision boundary depend only on the encircled points lying on the margin.
Those encircled points are called support vectors.

For optimization purpose, Equation (2.6) is rescaled so that for points on the margin holds







w>σ(x) + b = 1 if yi = 1

w>σ(x) + b =−1 if yi =−1
⇔ d(x) = yi(w

>σ(x) + b) = 1. (2.7)

Consequently, the training data is linearly separable if following condition, given in [31],

is satisfied

d(x) = yi(w
>σ(x) + b)>= 1, i = 1, . . . , n. (2.8)

To achieve the smallest generalization error, the margin is maximized. The margin or rather

the distance between both margins is computed as difference between the nearest points of

both margins (left & right) [35]: minx:yi=1 xw/|w| −minx:yi=−1 xw/|w|= 2/|w|. So we must

maximize ‖w‖−1 which is equivalent to

argmin
w,b

1

2
‖w‖2, (2.9)

subject to Equation (2.8). Casting Equation (2.9) to the Lagrangian formulation leads to

L(w, b,a) =
1

2
‖w‖2−

n
∑

i=1

ai{yi(w
>σ(xi) + b)− 1}, (2.10)
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where ai are the Lagrangian multipliers [31]. By derivating equation 2.10 with respect to w

and b and using those results we obtain the Wolfe dual [31].

L(a) =
n
∑

i=1

ai −
1

2

n
∑

i=1

n
∑

j=1

aia j yi y jk(xi,xj) (2.11)

which is maximized with respect to

ai ≥ 0, i = 1, . . . , n (2.12a)

n
∑

i=1

ai t i = 0. (2.12b)

The decision boundary or rather rule can be written as

d(x) =
n
∑

i=1

ai t ik(x,xi) + b (2.13)

In Equations (2.11) and (2.13) k(xi,xj) = σ(xi)>σ(xj) is called kernel function. It is easier to

define k(x i , x j) instead of σ(x), since the space where the data is linear separable is usually

unknown. This procedure is known as kernel trick. The most common kernel function for

SVMs is the radial basis function (RBF) which transforms the input data into an infinite

dimensional space. The RBF is given by

k(x i , x j) = exp

�

−
‖xi − xj‖2

2σ2

�

, (2.14)

where σ is a free parameter [36].

Equation (2.11) is a constrained optimization problem that satisfies the Karush-Kuhn-

Tucker conditions. This conditions imply that ai 6= 0 only for points lying on the maximal

margin (yid(xi) = 1). Since only the points called support vectors are relevant for making

predictions for input data (see Equation (2.13)), the solution is sparse.

Because of high computation and memory requirements, solving Equation (2.11) is an-

alytically infeasible. Instead numerical methods are used. The current standard algorithm

for learning SVMs is called sequential minimal optimization (SMO) [37]. SMO outputs

w and the Lagrangian multipliers. b is computed by averaging over all points that satisfy

yi(w>σ(x) + b) = 1.

The input data is not always linearly separable in kernel space. In this case, the presented

SVM formulation, also known as hard-margin SVM, may lead to poor generalization perfor-

mance. This can be overcome by soft-margin SVMs which allow the misclassification of some

training points. Therefore, a slack variable ξi is introduced for each training point. Each

slack variable represent the misclassification penalty of its corresponding training point. If x i

is classified correctly ξi = 0, otherwise ξi is set to |yi − d(xi)| [31]. Consequently, ξi > 1 if

the training point is misclassified and 0 < ξi < 1, if the training point is classified correctly
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but is in between decision boundary and margin. Considering the slack variables, Equation

(2.8) is reformulated as following condition

d(yi(w
>σ(xi) + b)>= 1− ξi , i = 1, . . . , n. (2.15)

So, we minimize

argmin
w,b

C
n
∑

i=1

ξi +
1

2
‖w‖2, (2.16)

subject to Equation (2.15) instead of Equation (2.9), where C is the trade off between model

complexity and training error [31]. If C →∞, no training error is allowed so that the soft-

margin approach equals the hard-margin formulation. The sum of all slack variables (ξi) is

an upper bound for the misclassification rate, because for misclassified points holds ξi > 1.

The Lagrangian for the soft-margin SVM is given by

L(w, b,a) =
1

2
‖w‖2+ C

n
∑

i=1

ξi −
n
∑

i=1

ai{yi(w
>σ(xi) + b)− 1+ ξi} −

n
∑

i=1

µiξi , (2.17)

where ai and µi are Lagrangian multipliers [31]. The corresponding Wolfe dual is

L(a) =
n
∑

i=1

ai −
1

2

n
∑

i=1

n
∑

j=1

aia j yi y jk(xi,xj) (2.18)

subject to

0≥ ai ≥ 0, i = 1, . . . , n (2.19a)

n
∑

i=1

ai t i = 0. (2.19b)

Predictions are still made with Equation (2.13).

To evaluate the performance of a binary classifier, performance measures such as accuracy,

precision and recall can be used [38]. In case of active ankle control, predictions should be

very precise, because every wrong prediction might influence the prosthesis’s user. Conse-

quently only classifiers that achieve small misclassification rates are of interest. The perfor-

mance measure accuracy defines the overall amount of correct classifications and is given by

the number of correct classifications divided by the total number of classifications. Achieving

a high accuracy is in our context desirable, because it implies a small misclassification rate.

2.2.1 Probabilistic Predictions

SVMs provide only a classification decision, but no probabilistic outputs. Probabilities can be

introduced by using a logistic sigmoid in addition to the trained support vector machine. For

more details see [39].
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2.2.2 Multi-class Classification

SVMs achieve only binary classification. There are, however, two common approaches to use

binary classifiers like SVMs for multi-class classification. In the following, k is the number of

different classes involved in multi-class classification. The first approach is called one-versus-

the-rest [31]. Here, k classifiers di are learned. Classifier di uses the data of class i as positive

examples (yi = 1) and the data of all other k− 1 classes as negative examples (yi = −1). To

classify new input data, all classifiers need to be evaluated. For input data of class i, ideally

only di evaluates to 1. If other classifiers evaluated to 1 as well, we need to determine the

most probable one. One approach is to choose the class with the maximal decision value

d(x) = max idi(x∗). However, the classifiers might have different scales, if they are trained

on different tasks [31]. If probabilistic outputs are used in addition, is also possible to chose

the most probable classifier.

The second approach is called one-versus-one. Here, a support vector machine is trained

for each possible combination of binary classes (1 vs 2, . . . , 1 vs k, . . . , k − 1 vs k). All in all

k(k−1)/2 SVMs are trained [31]. To classify new input data, all trained SVMs are evaluated.

The classification decision is made according to a majority voting.

Both approaches may involve ambiguities as illustrated by an graphical example given by

[31] and shown here in figure 2.3. A problem of the one-versus-the-rest approach might be

that the training data is imbalanced, meaning it contains more negative than positive exam-

ples. In case of a large number of classes, the one-versus-one approach might be slower in

learning and predicting. Their are more advanced methods to address these issues. However,

usually both methods are applicable in practice [31].

If the classifiers are equipped with probabilistic outputs, it can be interpolated between the

classes. By doing so, values in between two classes, e.g., for class transitions, can be obtained.

1 vs 2

2 vs 3

1 vs 3

1

2

3

(a) One-versus-one approach. Figure adapted
from [31].

1 vs rest
3 vs rest

1

2

3

(b) One-versus-the-rest approach. Figure adapted
from [31].

Figure 2.3.: (a) example for ambiguities in case of one-versus-one multi-class classification. The
ambiguous region is the white triangle constructed by all one-versus-one classi-
fiers. For inputs of this region, several classifiers might indicate classification at
a time. Also for one-versus-the-rest approach, ambiguities can happen. Panel
(b) shows a scenario where two of overall three decision boundaries are shown.
Already for those two decision boundaries, the white region at the top is ambigu-
ous. Both shown figures are adapted from [31].
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When k is the overall number of classifiers, the interpolation rule or rather the expected value

[40] is given by

y i
∗ =

k
∑

i=1

yi pi(x∗), (2.20)

where yi is the output label of the i-th classifier, pi(x∗) the probability of the corresponding

classifier given the input data x∗ and y i
∗ the interpolation result.

2.3 Input-Output Setups

The performance of supervised machine learning directly depends on the used input and out-

put data and their relationship. For example, learning inverse models can be problematic

because their relationship often includes redundancies. In case of active ankle control, the

input data can be an arbitrary selection of input signals from the prosthesis’s sensor informa-

tion. The output data depends on the problem we want to solve. For gait percent prediction,

for instance, the output is gait percent or some data which allows to infer gait percent. Be-

sides the raw input data, it can be differed between some more general input-output setups.

While introducing these approaches, the learned predictor, which is either a Gaussian process

or a support vector machine, is denoted as function f .

The first approach is called window-in-time setup

yi = f (x i−τ : x i), (2.21)

where yi is the prediction and x i the input at time step i. This approach comprises three

tunable parameters, namely the output data of our prediction, the input data and how many

previous measurements of the input data (τ) are used. Note that τ is also called window size.

A second approach, named recurrent setup, is given by

yi = f (x i−τ : x i , yi−1), (2.22)

where all variables have the same meaning as in eq. 2.21. The difference with respect to the

window in time approach is that the last gait percent prediction is also considered as input.

This gives additional knowledge to the predictor but also requires some accuracy concerning

yi−1. If yi−1 is not accurate enough, the predictor might be fooled.
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3 Motion Capturing Experiments
The supervisory control comprises three predictive tasks, namely gait, speed and gait per-

cent prediction. As input for each predictive task, the prosthesis provides its online sensory

measurements. The measurements are obtained with a frequency of 100 Hz and consist of

gyroscope and biaxial accelerometer values. Hereby, the gyroscope determines the shank

velocity and the accelerometer obtains the acceleration with respect to a coordinate system

fixed at the shank. Additional input values like the shank angle can be useful but must be de-

termined numerically or by other means. Each predictive tasks should be implemented with

the use of the supervised machine learning techniques described in Chapter 2. Consequently,

a task-specific training set, consisting of n inputs and corresponding outputs, is needed to

learn a model for each task. In addition to the training sets, test sets are needed to evaluate

the performance of the learned models.

This section introduces supervised machine learning for active ankle control and investi-

gates its applicability. Here, each predictive task is analyzed with respect to different setups

and input signals. Therefore, the data recorded by a motion capturing system is used. This

data is ideal for analytic purposes, since it is really accurate and noise free. The analysis

results in the identification of sensors that are good predictors for each task. Afterwards, the

structure for a supervisory controller is proposed. Note that Section 4 is about proofing this

concepts with real sensor data.

The remainder of this chapter is organized as follows. Section 3.1 describes the creation

of a motion capturing database and how to process the collected data to obtain the required

information for training and test sets. In Section 3.2, performance objectives for evaluating

learned predictors are introduced. Each of the the next three subsections is dedicated to

the analysis of one of the predictive tasks. The chapter concludes with a summary and the

identification of a control structure in Section 3.6.

3.1 Database Generation

To facilitate the implementation of the supervisory controller, a database is created. The

database is used to generate training and test sets for the tasks of gait, speed and gait percent

prediction. Moreover, it is possible to generate different setups for each task, so that the most

efficient one can be determined.

Before creating the database itself, the functionality of the supervisory controller or rather

the prosthesis needs to be clarified. This is important since the input and output data for

each task must be know for training and test set generation. First, the prosthesis should be

able to classify the intended gait. Here, we only discriminate between walking and running.

Table 3.1.: Walking and running data contained in the motion capturing databsae

Gait Speeds [m/s]
Walking 0.5, 1.1, 1.6, 2.1, 2.6
Running 0.5, 1.1, 1.6, 2.1, 2.6, 3.0, 4.0
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(a) Motion capturing setup. (b) Motion capturing camera.

Figure 3.1.: (a) marker setup for motion capturing. Markers are placed at knee, ankle and
little toe, respectively. (b) one of the high speed cameras used for motion captur-
ing.

Secondly, the speed of the user needs to be inferred. As listed in Table 3.1, different speeds

for walking and running are considered. Thirdly, it must be possible to predict gait percent

for all gait-speed combinations. The term gait percent refers to the phase of ankle movement

within a gait cycle. At heel strike of the prosthesis, gait percent is 0%. During gait cycle, gait

percent increases continuously until it reaches 100%. With the next heel strike of the same

leg gait percent drops to 0% and starts all over again.

In order to train and test the functionality described above, the database contains samples

for each scenario described in Table 3.1. All samples were recorded by one test subject on

a treadmill, whereat the test subject was a healthy male person of 1.86 m height and 76 kg

weight. The recorded database consists of motion capturing data and the data of two force

plates. In the case of motion capturing, a QUALISYS system recorded the positions of passive

markers attached at both ankle and knee joints. The setup of one leg is displayed in Figure

3.1a and one of the high speed cameras of the QUALISYS system is shown in Figure 3.1b.

Regarding the force plates, each of the two measures the impact of one foot (left and right)

on the treadmill.

The recordings for a specific scenario, e.g. walking at 0.5 m/s, were performed as depicted

in Figure 3.2.

standing besides 
treadmill (8ms)

standing on 
treadmill (12ms)

walking or 
running (70s)

standing on 
treadmill (20 s)

standing besides 
treadmill (10ms)

Figure 3.2.: Recroding procedure for each considered gait-speed combination. In a first step
the system is callibrated. Afterwards, the subject stands on the treadmill to record
a weight capture and a fixed reference setup. After executing the considered
gait-speed combination, the same procedure is repeated the other way around
(standing on treadmill followed by standing besideds treadmill).
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Figure 3.3.: Sensor values provided
by the prosthesis.

From each recording, distinct, fixed-size intervals are

used as basis for extracting training and test sam-

ples. This basis data, however, is motion capturing

and force plate data. Instead, data as it would be

perceived by the sensors is required. Only when us-

ing sensor-like data, we get a sufficient test bed for

the above presented machine learning methods. In

this case, the results can probably be transfered to

the real prosthesis, because all used data is directly

or indirectly inferable from the prosthesis’s sensors.

For the used prosthesis shank angle, shank angular

velocity and acceleration in x- and y-direction are

available. The corresponding sensor values are, ex-

pect from shank angular velocity, displayed in Figure

3.3. In addition it would be possible to equip the

prosthesis with a force sensor.

The transformations form measured data to sensor data are described below.

Shank angle. The motion capturing system records the knee and ankle markers. Using these

points and the intersection point of the line parallel to the ground and passing through

the ankle and the line perpendicular to the ground and passing through the knee, a

right triangle can be constructed. If the knee is positioned before the ankle , right

triangle geometry gives the shank angle as θshank = sin−1(a/c). In the remaining cases,

the shank angle is computed as θshank = 180◦ − sin−1(a/c).

Shank velocity. The shank angle can be computed for two consecutive time steps and the

frame rate of the motion capturing system is known. So, the shank velocity can be

computed with the use of the difference quotient

θ̇shank =
θshank,t+1− θshank,t

fr
,

where fr is the frame rate and θshank,t the shank angle at time step t.

Accelerometer data. Using the motion capturing data, it is possible to determine the linear

acceleration of the point where the accelerometer is mounted. This accelerations are

relative to a coordinate frame with the same orientation as the motion capturing co-

ordinate frame. The accelerometer frame, however, rotates with the shank. So, the

first step is to transform the linear acceleration into the accelerometer frame. Since

the accelerometer measure gravity in addition, gravity needs to be subtracted from the

acceleration in motion capturing frame orientation.

Above transformations reconstruct the online sensory data or rather the inputs for the pre-

dictive tasks. In supervised learning, the output must be known as well. For each predictive

task, the output is reconstructed as follows.

Gait. Gait is known for each recording.

Speed. The speed is imposed and recorded by the treadmill.
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Gait Percent. Gait percent is determined by discretizing from one heel strike to the next heel

strike of the same leg. Starting with 0% at heel strike and increasing in equidistant

steps until 100% is reached at the last measurement before the next heel strike of the

same leg. To identify when the heel strikes of both legs occur, the force plates are used.

In the following, predictors with different input signal combinations are used and com-

pared. To facilitate a more concise communication some abbreviations for the signals are

used. Shank angle and shank velocity are abbreviated with angle and vel. For the accelera-

tion signals in x and y direction Ax and Ay are used, respectively. Together shank angle and

shank velocity are referred to as shank data and both acceleration signals together are termed

accelerometer data.

3.2 Performance Objectives

Before evaluating the three different predictive tasks, performance objectives valid for each

of those are given. Here, three main objectives such as accuracy, speed and a small number of

input signals are important. In the following each objective and its relevance for active ankle

control is introduced shortly.

Accuracy
Accuracy is about achieving a high prediction quality or rather correctness. All predictions

must be as exact as possible, since they directly influence control and consequently the user

of the prosthesis. In the worst case, wrong predictions aggravate the interplay between user

and prosthesis or cause the user to stumble or even to fall. Accurate predictions, in contrast,

facilitate an active user support and improve locomotion. In more detail, the motion of

an intact limbs is mimicked more closely and deficiencies introduced by passive devices are

overcome. To achieve good support, we define for each predictive task how accurate it should

be. Gait percent prediction is only applicable if the prediction error is in between ±10 gait

percent. Errors of 10% will cause no big troubles, but might be noticed by the user. Especially

in the stance phase, e.g. at prominent events like hell strike or push off, such errors can

become evident. Regarding the swing phase, errors are not that noticeable, since it is only

important to reposition the foot for the next heel strike. To increase user confidence, gait

percent errors must be not perceived by the user. Therefore, the error during the stance

phase, which lasts from 0 to 60 gait percent, should be bounded at least to ±6 gait percent.

Regarding the considered speeds for speed prediction (compare Table 3.1), two consecutive

speeds are separated by ±0.4m/s. Speed prediction must only be wrong by the distance of

two consecutive speeds, since larger errors will result in too big differences between intended

and predicted speed. Ideally, the error should be even lower. If the error is below 0.2m/s, it

is additionally possible to match the prediction with exactly one of the speeds given in Table

3.1. In this case, speed would always be classified correctly. When classification is used for

speed prediction, the performance measure “accuracy” should be as high as possible. For

approving a predictor as sufficient good for active ankle control, we define a threshold of

90% accuracy. When exceeding this threshold, the rate of misclassification is rather small so

that the user is not influenced that often. Furthermore, we still require that a misclassified

speeds is just one class above or below the real class. Note that high accuracies in case

of speed, and also gait prediction, do not cause too specialized models with substandard

generalization ability. Such models are especially prevented by the following properties of
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gait: Walking and running are both of repetitive nature and are unique for each subject.

Due to the repetitive nature, the patterns produced for a given speed and gait are similar

over time. In [41] it is observed that stride-to-stride fluctuations are normally relatively

small and that gait parameters e.g., stride time, vary by just a few percent. Moreover, the

locomotion system is reported to shows fractal-like properties as also observed for the heart

rate. When fractal-like systems show perceivable deviations from normal behavior, this can be

an indicator for certain diseases [41]. The uniqueness requires to fine tune the prosthesis for

each user. Note that this ensures optimal performance and is required for passive prosthesis

as well. Nevertheless, generalization along subject is a topic for future work. In case of gait

prediction, the same threshold as for speed prediction is used.

Speed

Speed is about the computation time required to perform predictions and also about delay.

For analyzing prediction time, we examine the execution of one gait cycle. Depending on

speed and gait, the recorded gait cycles typically takes about 0.6 to 1.1 seconds. The supervi-

sory controller must perform all its computations within this time. If this does not hold, the

controller is unusable. Since the supervisory controller consists of gait, speed and gait percent

prediction, we must consider all these tasks. If the tasks are performed after each other, each

predictor is allowed to require approximately (1/3) ·0.5 seconds for predicting one gait cycle.

When some predictors can operate in parallel, the time for each predictor increases. Note

that all computations performed in this thesis were executed on a laptop computer running

MATLAB. The laptop computer is equipped with a Intel Core 2 Duo with 2,40 GHz and 4 GB

ram. Delay has nothing to do with computation time. Instead, it describes how long it takes

until changes in motion, e.g. the user changed to a different speed, become visible in the pre-

dictor’s outputs. The learned predictors either use the window-in-time or the recurrent setup.

Both setups can tune the window size (τ) to achieve optimal performance. With increasing

window size, more previous sensor measurements are stored and used as prediction input.

In case of τ = 1, for example, only the actual sensor measurement is considered, whereas

for τ = 5 the last 4 sensor measurements are used in addition. If abrupt changes in motion

occur, the predictors are confronted with some previous measurement recorded before the

change in motion and only one measurement recorded afterwards. Based on this input data,

the predictors might detect the change not immediately, since the old recordings still influ-

ence the predictions. With future sensor measurements, the old data becomes less and the

chances for detecting the change increase. The change in motion, is at the latest, obvious

to the predictors when all old data is flushed. For a predictor with window size τ it takes

τ− 1 steps until all old data is flushed. Consequently, small window sizes are favorable. The

predictor with τ = 1 is most favorable, since it guarantees no delay. All other window size

might introduce delay.

Data Spareness

Regarding the input data given to each predictor, we require the predictor to use as less

input signals as possible. In detail, the input signals depend on the used sensors. The less

sensors required, the cheaper and easier the used approach is accomplished. Here, the con-

sidered prosthesis is equipped with a biaxial-accelerometer and a gyroscope. In addition, it is

possible to buy and mount a force sensor to the prosthesis. This is only done, if force data im-

proves prediction performance appreciable. Note the difference between signal and sensor. A
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sensor, e.g. accelerometer, can give more than one signal. Regarding the accelerometer again,

acceleration in x and y direction are given. To gain insights about the sensor’s contributions to

prediction performance, all sensors are evaluated in isolation and in combination with other

sensors. If a sensor is evaluated, all signals provided by the sensor are considered as input,

e.g. in case of the accelerometer we use acceleration in x and in y direction. Combinations of

sensors where just selected sensor signals are used, are not evaluated in detail. This would

increases the number of different scenarios and is not really necessary, since we can always

access all information a sensor provides. Besides evaluating all sensor combinations, we also

evaluate all possible input signals in isolation. In this case, acceleration in x and in y direc-

tion are both regarded independently. By evaluating just single inputs, we hope to extract the

value of each signal in context of the considered predictive tasks.

With all objectives in mind, we define the importance of each objective and a decision

rule. The primary focus is on accuracy, since the prosthesis should support and not hinder

its users. Also speed is important for user confidence. If large window sizes are required to

achieve high accuracies, delays might be introduced and therefore usability might decrease.

In contrast, the amount of sensors attached to the prosthesis is only important from a design

point of view. All in all, we choose the smallest window size and amount of input data to

achieve at least the required accuracy.

3.3 Gait Percent Prediction

For gait percent prediction we use the Gaussian processes framework. When predicting gait

percent, it can be assumed that gait and speed are already known. Both can be determined

beforehand using the gait and speed predictors presented in the following sections. Conse-

quently it is sufficient to learn an unique gait percent predictor for each available gait-speed

combination. In the following gait percent prediction is analyzed exemplary for walking at

1.6 m/s. Note that it equally scales for all other gait-speed combinations.

Window-in-Time Setup
To analyze gait percent prediction, both input-output setups presented in Section 2.3 are

compared. Starting with the window-in-time setup, where the tunable parameters are the

output data, the input data and the considered amount of previous measurements (τ). Since

gait percent is to be predicted, an obvious approach for the output data is yi ∈ [1, 100].
The input data is an arbitrary combination of accelerometer, shank and force data. For τ,

also known as window size, 1, 5 and 10 are considered. In the following, we investigate the

impact of different input data and different window sizes by fixing one of the parameters and

varying the remaining one. First, the input data is varied and the window size is fixed to

one. None of the input signals alone (Ax, Ay, angle, velocity) is able to constitute a working

predictor. In detail, all predictors trained with one of these single input signals and window

size set to one, give similar performance as shown in Figure 3.4a. Regarding this figure, the

dashed line shows the real gait percent value during one step, the blue line is the prediction

and the gray shaded area is the confidence. The shown prediction performance is those of

a predictor using only shank velocity as input and performing on the test set. Note that all

following evaluations and comparison of course reflect the performance on the test sets.

To improve predictions, it is required to have information that distinguish different gait

percent values. This can be done by either combining different sensors or by increasing the
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Table 3.2.: Lengthscales for the window-in-time predictors with τ = 1. The lengthscales are
ordered by the input signal order given in each column heading. Shank angle and
shank velocity are abbreviated with angle and vel. For the acceleration signal in x
and y direction Ax and Ay are used, respectively. The force data of the left foot is
denoted with fzl. For angle-vel, for instance, 0.14 is the lengthscale corresponding
to angle and 0.31 corresponds to vel.

angle vel Ax Ay fzl
0.22 0.33 0.30 0.28 0.25

angle- Ax- angle-vel- angle-vel-
angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

0.14 0.38 0.49 0.53 0.06 0.13
0.31 0.21 0.23 0.50 0.61 0.80

0.24 0.49 0.36 0.39
0.45 0.24

1.10

window size. At first, the window size remains fixed and different sensor combinations are

evaluated. A promising input combination is shank angle and velocity, which is obtainable

from the gyroscope. The corresponding prediction results for one step are shown in Figure

3.4b. Furthermore, Figure 3.5 displays the prediction error. A zoomed in view on the error

(left panel) indicates good performance, since the error is in between ±4%. Such an error

meets the defined acceptance criterion for a final gait percent predictor, but it is not given for

the whole prediction area. Considering the whole error (right panel), there are high peaks at

the boundaries or rather near 0 and 100 gait percent. Most likely this is due to the large step

between 100 and 0 gait percent which occurs at heel strike. In the following, we differ for

gait percent prediction between error and boundary error. The term error refers, if not stated

otherwise, to the zoomed in error and the boundary error is concerned with the are near 0

and 100 gait percent. Details on how to deal with the boundary peaks are given later. For

the other combinations of input signals we obtain the performance shown in the first row of

Table 3.3.

(a) τ= 1, input: shank velocity. (b) τ= 1, input: shank angle and velocity.

Figure 3.4.: Both panles show the gait percent prediction results for walking at 1.6m/s when
using a window-in-time setup with τ = 1. The difference in prediction perfor-
mance is constituted by the input provided to the predictors. In panel (a) just
velocity is used as input, whereas in panel (b) shank angle and velocity are given.
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(a) Overall error. (b) Zoomed in view.

Figure 3.5.: (a) shows the gait percent error when using a predictor for walking at 1.6m/s
with τ = 1 and shank angle and velocity as input. The larger errors near 0 and
100 gait percent are called boundary errors. In panel (b) a zoomed in view on the
error is shown. For gait percent prediction we distinguish between error, which is
a used as synonym for the zoomed in view, and boundary error.

As described in Section 2.1, each lengthscale used by the covariance function states the

relevance of its corresponding input signal. If a lengthscale gets large, is plays no role for

Gaussian process inference. In Table 3.2 the lengthscales are denoted for each predictor. The

lengthscales are ordered by the input signal order given in each column heading. The results

shown in the first row of Table 3.3 confirm the prediction results displayed in Figure 3.4.

Single input signals do not constitute good predictors, at least for window size 1. Instead,

good prediction results are obtained by using shank angle and shank velocity as input. Using

accelerometer or force data in addition does not lead to noticeable improvements. The error

bounds decrease at most to 3% to −4% which is nearly the same as for just shank angle and

velocity (±4%). The boundary peaks, however, change perceivable. For instance, for com-

bining shank angle and velocity with a force sensor, the boundary peaks decrease to about

±20%. This is most likely due to the force sensor which gives more precise information about

heel strike. Regarding the lengthscales for gyroscope and accelerometer data in combination,

accelerometer data seems a little bit more distinguishing than shank velocity. However, using

accelerometer data in addition introduces a second sensor and accelerometer data alone is

not sufficient enough as can bee seen by the prediction performance with Ax and Ay as input.

So, for a window size of one, shank angle and velocity are the most favorable input signals.

They require only one sensor and perform good (expect from the boundary issues).

Another parameter to vary is τ. With increasing τ more previous measurements are con-

sidered and the predictor has more data for distinguishing between the inputs. The results

are given in Table 3.3.

When increasing the window size, the single input predictors improve the most. While

their predictions for τ = 1 are not useful at all, they perform good for τ = 5 or at least for

τ = 10. The best single input predictor is obtained when using shank angle as input. The

predictor for Ax is not as good as the one for shank angle, but only the error of those two

single input predictors is already for τ = 5 bounded to ±5%. Please keep in mind that the

error and the boundary peaks are treated independently. For combinations of shank data and

other input signals, the prediction results do not improve much. Consequently, window size
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Table 3.3.: Prediction errors for varying window sizes (τ). The first row for each window size
is the error(+/-) in gait percent, whereas the second row is the boundary error
(+/-) in gait percent. For the differences between both error types see Figure 3.5.
Note that the abbreviations used in each column headings are the same as in Table
3.2. angle-vel, for instance, is the abbreviation for shank angle and shank velocity
as input.

τ angle vel Ax Ay fzl
1 40/40 40/40 42/42 42/42 40/40

60/40 70/40 80/40 80/60 30/60
5 3/3 10/12 5/5 10/0 10/12

100/90 60/60 40/40 40/40 60/60
10 2/0.5 3/3 5/4 6/6 3/3

80/80 60/60 30/30 20/20 60/60

angle- Ax- Ax-Ay-fzl angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl
1 4/4 20/20 4/4 6/7 4/3 4/3

90/30 45/10 20/25 50/25 40/15 85/50
5 3/3 4/4 2/4 3/3 2/4 4/3

20/20 10/12 80/40 20/20 5/20 10/25
10 3/3 5/4 2/4 4/3 3/3 3/3

30/30 10/11 70/50 8/6 25/25 25/25

increases give no additional information here. The boundary peaks, however, change with

varying window size. Sometimes the changes are beneficial and sometimes not. All in all, the

boundary errors are still too large. In the best case the boundary peaks should decrease to the

size of the normal error. For accelerometer data only and accelerometer data in combination

with the force sensor, the prediction results improve to the degree of shank angle combined

with shank velocity. The combination of shank angle and velocity remains still favorable,

since it requires only one sensor and performs good.

As described in Section 3.2, a larger τ may increase the time to notice an abrupt change.

Moreover, it takes τ− 1 time steps until all signals are flushed. In case of gait percent pre-

diction, however, changes occur rather continuous than abrupt. Nevertheless, more inputs

lead to an increase in computation time. This is because predicting (see Equation (2.3b))

requires the computation of the covariance function between the test points and all training

inputs. The input size increases if τ increases or more input signals are used. For fixed τ

and different numbers of input signals, the differences in computation time is, however, ne-

glectable. For increasing τ, the computation time increases on average. For τ = 1 the gait

percent computation for one step takes 0.0861s, for τ = 5 and τ = 10 it takes 0.9841s and

0.1951s, respectively. The predictor obtained by using shank angle and velocity as input per-

forms already good for τ= 1. In addition, the small window size gives the benefits of shorter

computation time and fast reactions to abrupt changes.

Recurrent Setup
The second input-output setup is the recurrent one. By using the previous prediction as ad-

ditional input, the predictor is provided with additional knowledge. This knowledge is about

explicitly incorporating the linear increasing nature of gait percent. If, for instance, the last

prediction is 5%, the next prediction is most likely greater than 5% and less than 10%. This

implies that such a predictor will have difficulties with sudden jumps which, however, do not
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Table 3.4.: Prediction results for the recurrent setup with τ = 1. Besides the prediction errors
in gait percent, the predictor’s lengthscales are given. All lengthscales are ordered
by the input signal order given in each column heading. For information on the
used abbreviations see Table 3.2. The last lengthscale which is gray corresponds
to the input from the last gait percent prediction.

angle vel Ax Ay fzl
Error (+/−) 3/3 6/4 4/4 4/5 5/4

Boundary Error (+/−) 40/20 60/40 40/40 40/40 20/70
Lengthscales 0.86 0.24 0.42 0.26 8.79

0.47 0.43 0.73 1.59 0.31

angle- Ax- angle-vel- angle-vel-
angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

Error (+/−) 1/3 4/4 5/4 3/4 2/3 3/3
Boundary Error (+/−) 20/20 90/60 30/20 80/40 40/60 45/10

Lengthscales 0.61, 0.70, 0.46, 0.57, 0.27, 0.14,
0.19, 0.61, 0.11, 0.52, 0.36, 1.24,
1.35 0.84 21.64, 30.78, 0.38, 0.35,

0.67 0.78 0.36, 0.27,
0.90 7.84,

1.35

occur often. Moreover, it must be assumed that the error of the last prediction is bounded.

If this bound is exceeded, the predictor might be fooled. From the window-in-time setup it

seems reasonable to assume a bound or rather a prediction error of ±5%. When assuming

this bound and fixing the window size to one, we obtain the results presented in Table 3.4.

Regarding the results, several things can be noticed. First, all predictors that were unusable

for τ = 1 and the window-in-time setup improved to usability when changing just the setup

to the recurrent one. The affected predictors are those for the single sensor inputs and for

accelerometer data only. In this cases, the last prediction’s influence is rather high, leading

to the improvements compared to the window-in-time setup. For the combined signals were

the predictions were already good, the legthscales reveal that the last prediction’s influence

is not that high. Here, the additional knowledge of the last prediction does not boost the

performance. Second, the last prediction seems to be easier to uses as heel strike indicator

than the force sensor. For all predictors where the force sensor is used, the lengthscale cor-

responding to this sensor gets larger. Instead, the last prediction’s lengthscale is small and

in use. Third, the boundary problems also remain for the recurrent-approach. Expect for the

boundaries, nearly all predictors are limited to a prediction error of at most ±5%. So in this

area, the initially assumed bound for the error is met and the predictor is not fooled. If a

recurrent predictor is applied the first time, an initialization for the last prediction is needed.

One can either use the prediction of a window-in-time predictor or require some initial state

for powering and initializing the prosthesis.

Transformed Output

All previous predictions show some high peaks at the boundaries. This is most likely due

to the large step between 100 and 0 gait percent that occurs at heel strike. To avoid this large

step and to improve the predictions at the boundaries, the output is transformed. Since ankle
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(a) Prediction results when transforming the out-
put.

(b) Gait percent error corresponding to (a).

Figure 3.6.: Panel (a) shows the prediction performance for walking at 1.6m/s when using
a transformed predictor with τ = 1 and shank angel and velocity as input. By
transforming the output of the predictor, the boundary errors are eliminated. (b)
depicts the overall gait percent error of the corresponding predictor.

movement, and therefore gait percent, is periodic, an obvious choice is to use a sine or cosine

signal as prediction output. This leads to two possible transformations for the output signal

• t(y) = sin(y ′)

• t(y) = cos(y ′).

Regarding the possible transformations, valid choices for y ′ are

1. y ′ = 2π
100

y −π

2. y ′ = π

100
y − π

2
,

where y ∈ [0, 100]. Option 1 converts y in a range of [−π,π], whereas option 2 converts

to the range [−π/2,π/2]. When using the cosine transformation with option 2 for the input

data of shank angle and velocity, a window-in-time approach and a window size set to 1,

we obtain the prediction results displayed in 3.6a. The corresponding prediction error is

given in figure 3.6b. A comparison of all transformations applied for all sensor combinations

with window sizes fixed to 1 is given in Table 3.5. Here, it is not differed between error

and boundary error. Instead we give just the overall error. Using the above transformations

the output signal is continuous and has no jumps, expect for the sine transformation with

y ′ ∈ [−π/2,π/2]. For this case, the jump of the output signal is reduced from a range of

100 to a range of 2. This does, however, not help with the boundary issues, as can be seen

from the second column of Table 3.5. The large overall errors present in this column are

due to the boundary errors. Compared to the untransformed setup, the boundary error is

reduced but still present. For angle and velocity as input, the boundary error is about −30

to 90% for the untransformed case and about −20 to 30% for the sine transformation with

y ′ ∈ [−π/2,π/2]. In all other cases, namely were the transformed output signal does not

jump, the boundary peaks are eliminated. The sine and cosine transformations that uses

y ′ ∈ [−π,π] perform equally good. In case of sensor combinations, however, the prediction

error is not that accurate as for the untransformed case (expect the boundaries). When using
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the cosine transformation with y ′ ∈ [−π/2,π/2] instead, the prediction error gets as good as

for the untransformed case. So, the predictors using this kind of transformation are favorable.

A remaining problem is that the transformation is not invertible on the whole domain. For

instance, the arccos can only map from [−1, 1] to [0,π]. In contrast, the best performing

transformation, the cosine for y ′ ∈ [−π/2,π/2], lives on a different domain. Here, the best

performing transformation is used to describe how to invert the output of the transformed

predictor. Two equations are needed to transform to gait percent. One equation for the

case where the prediction result is still increasing and consequently is located before the

maximum turning point (cos(x) = 1). A second equation is needed for the decreasing case.

Both transformations are given below

y∗ =







99
�

arccos(y t
∗ )

π
+ 1

2

�

+ 1 if d = increasing

99− 99
�

arccos(y t
∗ )

π
+ 1

2

�

if d = decreasing,
(3.1)

where y t
∗ is the output of the transformed predictor, d denotes if y t

∗ is increasing or decreasing

and y∗ is its transformation to gait percent. A second predictor is used to determine the

location (increasing/decreasing) on the cosine curve. For the presented case, the second

predictor can either be an untransformed predictor or a predictor with a sine output. When

the untransformed predictor is used, the decision is made according to

d =







increasing if yd
∗ ≤ 50%

decreasing if yd
∗ > 50%,

(3.2)

where yd
∗ is the output of the untransformed predictor. Even though the untransformed

predictor is prone to boundary errors, it is sufficient for making the above decision. Only the

heel strike is detected about one sensor sample to early, so that yd
∗ drops one sample earlier

below 50%. By knowing this fact, it is easy to correct for it. All in all, the boundary issues

are eliminated by learning two predictors and computing the prediction result with Equation

Table 3.5.: Comparison of different output transformations. For each transformation(t(y)),
output range and input signal combination the overall error(+/-) in gait percent is
given. For the abbreviations used for the input signals see Table 3.2. As input setup
we used the window-in-time approach with τ= 1.

t(y) - range angle vel Ax Ay fzl
cos - π/2 8/15 20/30 30/30 20/30 4/4
sin - π/2 60/40 80/50 80/60 80/60 40/60

cos - π 30/50 40/60 70/50 80/80 60/60
sin - π 80/20 80/30 90/30 80/40 50/30

angle- Ax- angle-vel- angle-vel-
t(y) - range angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

cos - π/2 4/4 10/25 4/4 10/25 4/4 3/3
sin - π/2 30/20 30/50 90/30 20/20 35/20 40/10

cos - π 7/6 30/50 6/6 20/20 7/7 6/8
sin - π 7/6 50/40 6/8 10/20 8/8 8/8
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(3.1). The transformation process is shown in Figure 3.7. Note that this figure includes

the results for predicting gait percent for four consecutive steps. Both used predictors, the

transformed and the untransformed one, use shank angle and velocity as input and apply a

window-in-time setup with τ= 1.

Covariance Function
The input-output setup is not the only subject of change. It is also possible to changes the

covariance function used by the Gaussian process. An alternative to the squared exponential

covariance function, is the Matérn covariance function which is said to be more realistic

for physical processes [33, 42]. Regarding this covariance function class, ν is a positive,

tunable parameter. The larger ν , the more often the covariance function is derivatable. If

ν → ∞, we get the squared exponential covariance function [33]. Here, three different

classes or rather smoothnesses are considered, namely ν = 1/2, ν = 3/2 and ν = 5/2. For

all classes we obtain very similar results as with the squared exponential covariance function.

Using for instance angle and velocity as input for an untransformed predictor and fixing

τ to one, results for all considered covariance functions in a gait percent prediction error of

approximately±4%. Moreover, the boundary peaks are very similar. Regarding the prediction

results in detail, it is possible to note that the results get smoother with increasing ν . In some

cases smoothness leads to larger errors, since the underlying function cannot vary that fast.

The ability to change rapidly, however, can lead to larger error as well. All in all, there are

detailed differences but the overall prediction performance is identic.

Speed Independent Gait Percent Prediction
As shown above, we get accurate prediction results for gait percent prediction. Never-

theless it is required to learn and use a predictor for each gait-speed combination. This is,

especially when dealing with a large number of speeds and gaits, tedious. Instead, it would

be more convenient to have only one gait percent predictor for each gait. Thereby, also the

dependencies are reduced. Until now, gait percent prediction depends on gait and speed

prediction. If one of those predictors is wrong, gait percent prediction is also wrong. If

generalizing over speeds is possible, the predictor only depends on gait prediction and, con-

sequently, the number of sources of defect is reduced. To test the generalization ability, all

experiments were conducted again. This time a predictor for all speeds was used instead of

Transformation

Transformed Predictor

Decision Predictor

input prediction

decision

Results

Figure 3.7.: Two predictors are learned. One transformed predictor that gives the prediction
results and a second predictor as transformation aid. Depending on second pre-
dictor different transformation is applied to achieve gait percent. Results in precise
prediction performance, here displayed for 4 consecutive steps.
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(a) Gait percent prediction results for differ-
ent speeds.

(b) The speeds corresponding to the prediction re-
sults in Panel (a).

Figure 3.8.: Prediction performance for a gait percent predictor based on Gaussian process
regression, shank angle and velocity as input and a window-in-time setup with
τ = 1. Panel (a) shows the prediction results for five different steps, where each
steps corresponds to a different speed. The precise speeds are given in Panel (b).

a predictor for a special gait-speed combination. The results indicate generalization ability,

since the prediction performance is similar for all experiments. More in detail, the prediction

error increases only a little when generalizing from one to all considered speeds. For instance,

we presented a predictor for walking at 1.6 m/s, using angle and velocity as input, and set-

ting τ = 1, that gives a prediction error of ±4% and eliminates boundary peaks. Using the

identical setup, the predictors for all speeds gives an prediction error of ±5% without bound-

ary issues. The prediction performance of this predictor is shown in Figure 3.8a. This figure

displays five steps, where each step corresponds to one of the considered speeds. The first

step is performed at 0.5 m/s, whereas the the last step is performed at 2.6 m/s. In between

the speed increases as denoted in Figure 3.8b. Note that for the example in Figure 3.8, the

learned predictor might learn a relationship similar to those for Holgates’s tibia based control

[11]. More details about the analytical relationship proposed in [11] are given in Section

1.3. If the learned relationship is similar to tibia based control cannot be said for sure and is

especially for all predictors with other input setups not true. Since the predictor generalizes

for all speeds, it is possible to reduce the number of training data or rather training steps

needed for each speed. Using just a few steps for each speed is sufficient and reduces the

prediction time for one gait cycle to the time of a specific gait-speed predictor with the same

input signals and window size. If the number of used training speeds increases above the

number considered here, the prediction time will increase as well. However, not all speeds

are required for learning, since the predictor generalizes somehow.

3.4 Speed Prediction

Speed prediction should determine which walking or running speed is intended by the user.

For each of the two gaits a different set of speeds is considered. In case of walking, the set of

speeds is constituted by 0.5, 1.1, 1.6, 2.1 ans 2.6 m/s. The slowest speed of this set is 0.5 m/s

and might be chosen by elderly people. To cover a broad range of speeds, the speeds increase

until 2.6 m/s which is about 0.6m/s above the preferred transition speed from walking to
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running [43]. Also for running a broad range of speeds is covered. All running speeds are

given in Table 3.1.

Speed Classification
Since both gaits consider a countable amount of speeds, multi-class classification can be

applied. Therefore, binary classification is achieved with support vector machines and ex-

tended to multi-class classification according to Section 2.2.2. In case of walking there are

5 and in case of running 7 different speeds or rather classes. For each class, the respective

speed serves as label. As input we use different input signals and different τ in context of

a window-in-time approach. Changing the used input or τ leads to different classification

results. For instance, the comparison of different input signal combinations reveals which

inputs give relevant information for inferring the intended speed. Increasing τ may also give

additional information to the classifier and can improve classification performance. In the

following, the impact of both variable parameters is analyzed. At first, τ is fixed to one.

Classifiers with single signals as input, e.g. angle only, give poor performance. The per-

formance increases when combining different sensors, but the resulting classifiers are still

not sufficient good. In more detail, the accuracy of the classifiers is mostly below 80%. A

higher accuracy (86%) is only achieved when using a classifier based on the combination of

all sensors (angle-vel-Ax-Ay-fzl). The performance of this specific classifier is shown in Figure

3.9a. But as defined in Section 3.2, the accuracies should be even higher for the purpose of

active ankle control. This is especially important for the conducted experiments, since the

differences between the considered speeds are noticeable. If the used classifier is wrong, the

user will be forced to an unintended speed which might be uncomfortable or even cause the

user to stumble. Other important factors are how long the speed is misclassified and if the

wrongly predicted speed is an adjacent class of the real speed or farer away. The impact to the

user increases with the misclassification period and the speed difference. Additional problems

can occur if the classifier constantly switches between prediction results even though the in-

tended speed is constant. This problem is known as chattering and can be avoided by a voting

scheme as in [20]. A voting scheme of length l stores the last l predictions and determines

the speed according to a majority voting. In this case, a speed classification is only applied, if

(a) τ= 1 (b) τ= 5

Figure 3.9.: Speed prediction for walking. Both predictors are realized as support vector ma-
chines and use the combination of all sensor signals as input. The left panel is for
τ= 1 and the right panel for τ= 5. Notice that the overall performance increases
with the window size.
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Table 3.6.: Varying widow size for speed prediction based on support vector machines and a
window-in-time input-output setup. Each cell gives the accuracy in percent. The
abbreviations for the input signals used in the column headings are given in Table
3.2.

τ angle vel Ax Ay fzl

1 35 30 35 34 36
5 62 59 50 47 50

10 80 71 58 58 62

angle- Ax- angle-vel- angle-vel-

τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

1 66 46 79 63 77 87
5 80 65 90 83 89 94

10 87 75 93 93 91 97

a certain percentage of the last l prediction results is in accordance. The voting scheme helps

to avoid chattering and short periods of misclassification, but it also introduces some delay.

For instance, if a sudden speed change occurs, it takes some samples until the percentage

needed for accordingly classifying the new speed is reached. Note that the larger l, the larger

the delay. Since switching between speeds should be as fast as possible, l should be either

small or a voting scheme should be avoided. Ideally, also continuous transition should be

recognizable.

Regarding Figure 3.9a again, two things are noticeable. First, misclassification results are

only a class below or above the original one and not farer away. Second, there are areas

where more than 5 consecutive samples are classified wrong. This can only be compensated

with a large voting scheme which implies a large delay. Instead of using a large l or a voting

scheme at all, it might be possible to avoid such consecutive misclassification by increasing τ.

Even though the single input classifiers improve when increasing τ to 5, they still give an

accuracy below 80%. Also increases to τ= 10 does not improve applicability. The best single

input is shank angle with an accuracy of 80%, followed by shank velocity. Force plate or both

of the accelerometer signals on their own are less important for distinguishing speeds and

consequently give a smaller accuracy. All obtained results for increasing the window size are

given in Table 3.6.

Regarding τ = 5, shank or accelerometer data alone is still not sufficient. Only when

combining those signals with each other or with force plate data, acceptable performance

is achieved (above 86% accuracy). The predictor for shank angle, shank velocity and the

acceleration in x- and y-direction, for instance, achieves an accuracy of 89%. Force plate data

as additional input boosts the performance of the considered example to an accuracy of 94%.

Although force plate data is not useful as single input, it generally boosts the classification

performance when used as additional input. The reason for force data not being useful on its

own, is that during swing phase no force is given and consequently all speeds look the same.

The classifier with 94% accuracy (angle-vel-Ax-Ay-fzl) is the best performing one for τ = 5.

It’s prediction results are shown in Figure 3.9b. As for τ = 1, the prediction results contain

some consecutive samples that are classified wrong. Moreover, the predictions for walking at

2.6m/s are often wrong. This could be due to the test subject’s problems with this specific

walking speed (see Figure 3.14). For the subject it was hard to keep pace, since the speed is

above the subject’s normal walking speed. This can be seen when regarding the magnitude
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of the force measurements. The magnitude increases, but normally is should stay the same

for walking at constant speeds. So, the test subject might have applied some pattern which is

more similar to a slower walking speed or which might include some elements characteristic

for running. Also note that the speed of 2.6m/s is above the preferred transition speed from

walking to running.

When increasing τ to 10, the performance of the classifiers increases as well. All classifiers

that use input signal combinations achieve an accuracy close to 90% or above 90%. The

performance differences between different input combinations is as for smaller window sizes.

So, shank data or accelerometer data alone is compared to other combinations not worth

using. When combining both, better results are achieved. The usage of force data in addition

still leads to the best classifiers. Consequently, the classifier for shank data, accelerometer

data and force data (angle-vel-Ax-Ay-fzl) is the best one. This classifier gives an accuracy

of 96% which is appropriate for the context of active ankle control. A smaller window size,

however, would be more favorable. For τ = 10 it might take some time until fast speed

changes are recognized, since all old sensor measurements need to be flushed. Also a force

sensor is required, but the current prosthesis is not equipped with such a sensor. So, an

equally performing approach that does not require a force sensor would be a plus.

Note that the classification performance depends on the considered speed setup. If the

considered speeds are more close, the classification error might increase because the input

data might be less distinguishable. Furthermore, all classifiers are based on the multi-class

classification techniques presented in Section 2.2.2. For the results given above the one-

versus-one approach was applied. In case of the one-versus-all approach the results are nearly

identic.

Regression

As stated earlier, we aim at predicting the speed intended by the user. For each gait (walk-

ing/running) a fixed amount of speeds is possible or rather predictable. The predictor should

also perform for fast transitions between speeds. This means that the speed the user changed

to is recognized as fast as possible. A small window size is consequently beneficial. Ideally,

also continuous transitions between speeds should be identifiable. If the speed, for instance,

increases slowly from 0.5m/s to 1.1m/s, it would be desirable if the predictor or classifier

notices this as well. One approach is to use the probability add on for the support vector ma-

Table 3.7.: Varying widow size for speed prediction based on Gaussian process regression and
a window-in-time input-output setup. Each cell gives the prediction error(+/-) in
m/s. For the input signal abbreviations used in each column heading, see Table
3.2.

τ angle vel Ax Ay fzl
1 1.0/1.5 1.3/1.6 1.5/1.5 1.5/2 1.3/1.5
5 0.8/1.0 1.0/1.7 1.0/1.5 1.5/1.5 1.2/1.6

10 0.7/0.6 1.0/1.7 1.5/1.0 1.0/1.2 1.2/1.6

angle- Ax- angle-vel- angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl
1 0.9/1.0 1.5/2.0 0.8/0.6 1.5/1.5 0.7/0.7 0.6/0.7
5 0.6/0.6 1.3/1.5 0.7/0.5 0.6/0.6 0.5/0.5 0.5/0.6

10 0.5/0.6 1.0/1.0 0.6/0.5 0.5/0.6 0.4/0.5 0.6/0.5
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(a) τ= 1 (b) τ= 10

Figure 3.10.: (a) Speed prediction results for walking based on Gaussian process regression.
As input the combination of shank, accelerometer and force data is used. The
window size is set to one. (b) The same predictor as in (a) with τ increased to
10. When increasing τ, the prediction performance improves mostly for slower
speeds.

chines, to interpolation between speeds (compare Section 2.2.1). Another approach which

naturally incorporates continuous outputs is the Gaussian process framework. This approach

might also give speed prediction errors that are smaller than for the classification case, since

the predicted speed can be in between two classes. As for classification, a speed predictor

is learned for each gait. The given problem, however, is rather a classification problem than

a regression problem. For example, in case of walking only five different outputs are avail-

able and are used for training. Even though the setup is not optimal, it is compared with

respect to classification. Therefore, we exemplary use the speed predictor for walking with

a window-in-time setup and different τ. The obtained prediction results are shown in Table

3.7.

For τ= 1, the single input predictors are not usable at all. Their predictions can give errors

about 1.5m/s and look more random than based on input information. To evaluate predic-

tion errors, the error can be compared to the errors occurring for classification. If an input

is misclassified, it is mostly classified as speed above or below the real one. The distance

between such adjacent speeds is about 0.4m/s and consequently the classification error is

mostly 0.4m/s as well. Combinations of input signals give more information to the predictor

and improve prediction performance to some degree. The relationship between the predic-

tion performance of the different input signal combinations is the same as for classification.

So, both machine learning techniques identify the same input signals as relevant for speed

prediction. Hence, combining shank data with additional sensors gives compared to other

combinations good performance. So, the best predictor for τ = 1 is still achieved when com-

bining all sensors (vel-angle-Ax-Ay-fzl). This predictor is, apart from the last speed, within

an error of about ±0.6m/s. For the last speeds all classifiers show some larger errors like

±0.8m/s. As described for classification, this might be due to the problems of the test subject

with this speed. Furthermore, Figure 3.10a reveals that the prediction results are varying a

lot. In most situations, there are a lot of ups and downs so that the speed above or below is

more likely. All in all, the predictor is not accurate enough for our purpose. When increasing

τ the single signal predictors still remain unusable, the predictors for Ax-Ay-fzl and vel-angle-

Ax-Ay-fzl do not change much with respect to the error and the other predictors decrease in
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Table 3.8.: Prediction time [s] for on gait cylce

τ SVM GP
1 0.005 0.053
5 0.007 0.061

10 0.009 0.063

prediction error. Along with the prediction error, also the underlying function changes. For

vel-angle-Ax-Ay-fzl for example, the prediction results for τ = 1 (Figure 3.10a) and τ = 10

(Figure 3.10b) look very different although the error does not change much. With increasing

τ the prediction results for the slower speeds get more narrow to the real ones. For faster

speeds, however, the function still varies up and down.

Comparison

For the purpose of speed prediction with fixed classes, classification is, as expected, more

promising. The Gaussian process setup can incorporate continuity, but gives speed prediction

errors of the same or bigger size. Moreover, it is in the most cases only close to the real

speed, whereas classification is right. However, we must consider that the Gaussian process

is trained only with 5 different speeds as output values. Also note that slower transitions

between speeds are not analyzed here. Section 4.3, in contrast, will inspect a special kind of

transitions as well. Besides prediction performance, we compare also prediction time. As in

case of gait percent prediction, the time to predict the speed for one gait cycle is evaluated.

The usage of more input signals for a fixed τ influences prediction time just marginally, So,

Table 3.8.

compares prediction time only for different τ. Since their solution is sparse, support vector

machines are in general faster than Gaussian process regression. Predictions for new inputs

consequently require only a small number of training points. Gaussian process regression,

in contrast, requires to evaluate the kernel function for combinations of the input with all

training points.

Limited Predictors

The support vector machine and the Gaussian process approach need both a relatively large

window sizes to give acceptable results. However, we want to achieve smaller window sizes

to facilitate a more independent controller that can detect abrupt changes as fast as possible

and needs less time for initialization. Furthermore, the best classifiers require to equip the

prosthesis with an additional sensor for force data. To avoid the additional sensor, an equally

performing approach which uses only shank and accelerometer data should be found. Some

difficulties of the presented approaches result from the relatively large area it should perform

predictions for. Both approaches must differ between speeds for all possible values of gait

percent. Instead it might be easier to distinguish between speeds when focusing on a special

point during the gait cycle. Therefore, the gait cycle is divided into prediction areas. The

prediction areas depend on gait percent and cover the whole gait cycle. For each area a

unique speed predictor is learned and used. A very simple example is to divide the gait cycle

into two areas, where one area covers 1–50 gait percent and the other one lasts from 51 to

100 gait percent. Consequently, speed prediction depends on gait percent prediction. The gait

percent value is provided by the gait percent predictor and is used to chose the right area or

41



Table 3.9.: Comparison of the classification accuracies achieved by two limited predic-
tors. The gray shaded values are the accuracies for a predictor limited to
10− 20 gait percent , whereas the other values are for a predictor for 60–70 gait

percent. Note that the used input signal abbreviations are given in Table 3.2.

τ angle vel Ax Ay fzl

1 41 77 40 70 55 50 60 70 59 38

5 66 94 63 85 69 93 60 85 77 54

10 88 96 76 93 88 99 67 89 84 59

angle- Ax- angle-vel- angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

1 63 96 84 96 74 95 74 96 85 100 84 100

5 88 99 96 99 88 98 93 99 94 100 96 100

10 96 100 98 99 96 100 99 100 96 100 98 100

rather speed predictor. Because gait percent prediction incorporates an error of about ±5%,

a realistic size for each area is a span of about 10 gait percent. So even if the gait prediction is

wrong by 5%, the right area is chosen. A more sophisticated approach is to define a separate

area for each gait percent value between 1 and 100 (value ±5%) and to evaluate only the

predictors for those areas which are within the gait percent prediction error. The final speed

is determined by a majority voting. In the following it is investigated if speeds are easier to

discriminate when using predictors restricted to specific areas. Here, we exemplary evaluate

the predictors for the regions of 10–20 and 60–70 gait percent. As can be seen later, both

areas together are sufficient to categorize the prediction behavior for the whole gait cycle.

For both gait percent areas a support vector machine with a window-in-time setup is used.

As before, we evaluate the prediction results for τ equals 1,5 and 10. At first, the predictor

for 10–20 gait percent is compared to the predictor for the whole gait cycle. Overall, the

prediction performance of both reveals the same relations between the performance of dif-

ferent input signal combinations. Also the prediction performance increases for both with

increasing window size. However, for τ = 1 the accuracy of the predictor limited to 10–20

gait percent is about 4–10% higher as for the unlimited classifier. Only in case of angle-vel-

Ax-Ay-fzl and τ= 1 the accuracy does not improve. All in all, the predictors for τ= 1 are still

not accurate enough for real world applicability. When increasing τ, the accuracy remains

still about 4–10% above the one for the same setup in the unlimited case. So, for τ = 5

there are already classifiers with an accuracy above 90% which do not require force data as

input. Moreover, several classifiers reach an accuracy close to 100% when increasing τ to 10.

The comparison reveals that the restriction of speed prediction to an unique gait percent area

boosts classification performance. For the classifier for 60–70 gait percent, the performance

is boosted even more. Before details are revealed, note that the relation between the perfor-

mance of different input signal combinations is also for this classifier equal to the relations

concerning the unlimited case. The predictors performs so good that even some classifiers for

τ = 1 achieve an accuracy close to 100%. An example is the classifier for shank angle and

velocity as input which gives an accuracy of 96%. All prediction results can be seen in Table

3.9

When increasing τ, the classifiers with an accuracy close to 100% only increase a little,

at which some classifiers even reach 100%. For the larger window sizes, also single input
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(a) Predictor limited to 10− 20 gait percent (b) Predictor limited to 60− 70 gait percent

Figure 3.11.: Different limited speed predictors or rather classifiers with τ = 1 and all sensor
data as input. (a) shows the limited predictor for the area 10− 20 gait percent,
and (b) is for the area 60 − 70 gait percent. The second predictor achieves a
higher accuracy, since its input data is easier to distinguish.

predictors, e.g., the classifier with only Ay as input, can improve to applicability. An important

question to ask is: Why is the performance that good and what constitutes the differences

between the different areas? The question can be answered by having a look at the input

signals itself. Here, the classifiers for the input signals of shank velocity and shank angle are

examined. For τ = 1, the classifier for the area of 10–20 gait percent gives an accuracy of

63% and the classifier for 60–70 gait percent achieves 96% accuracy. Figure 3.11a compares

the prediction results graphically.

The input signals of shank angle and velocity are depicted in Figure 3.12.

Panel 3.12a gives the input signals for the whole signal, whereas panel 3.12b and 3.12c

show the specific areas considered here. In all panels, the shank angle is plotted against the

shank velocity. The overall figure, which is also known as angle-velocity cyclogram, shows

that the distance between origin and angle-velocity curve increases with speed. However,

there are gait percent areas where the curves for different speeds get close or intersect each

other. For instance, for 10–20 gait percent the input values for different speeds are so close

that it is hard to discriminate between speeds given only one measurement. That is why more

measurements are needed to achieve sufficient classification results. In case of 60− 70 gait

percent, the speeds are clearly separated so that they can be easily distinguished graphically

and consequently also with a support vector machine with window size 1. Regarding the

angle-velocity cyclogram again, it is evident that the whole cyclogram can be described with

the use of the two analyzed areas. On the one hand, there are areas where the input signals

get close and the classifier will perform as for the area of 10–20 gait percent. On the other

hand, many areas show also obvious differences between speeds as observed for the area of

60–70 gait percent. So, the overall classification performance for each area can be appreciated

by just evaluating the performance of both areas regarded here. All in all, the performance

increases by dividing gait percent in different areas and using an unique speed classifier for

each one. For areas where the inputs are close or overlapping, the window size needs still

to be larger. In the other case, however, window sizes of one can be used. Furthermore,

it is no longer required to rely on force data to get prediction results acceptable for active

ankle control. One reason why force data improves the prediction results for the unlimited

case is that all other inputs are close near heel strike. Since the force values for the impact
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(a) Whole gait cycle

(b) 10− 20 gait percent

(c) 60− 70 gait percent

Figure 3.12.: Shank angle plotted against shank velocity for different speeds. (a) shows shank
angle and velocity for the whole gait cylce. (b) is limited to the area of 10− 20
gait percent, whereas (c) is limited to 60− 70 gait percent. Using the depicted
data as input, different speeds are for the first area much harder to distinguish
than for the second area.

at heel strike increase for faster speeds, they can be used to improve discrimination. The

improvements achieved by using several predictors introduce also an additional dependency.

The speed prediction relies on gait percent prediction and might be confused if gait percent

prediction fails.

For classification, acceptable results were achieved by restricting the classifier to a specific

gait percent area. The same experiments are also performed for Gaussian process regres-

sion. As for classification, the predictors for both considered areas improve the prediction

performance compared to the unlimited case. In more detail, some predictors for 60–70 gait

percent achieved already for τ = 1 prediction errors within ±0.3m/s. In case of 10–70 gait

percent, the window size needs to be increased to achieve such results. When increasing the

window size for the predictors for 60–70 gait percent some input combinations can limit the

error even to ±0.2m/s. So for the Gaussian process framework, the prediction performance

does also depend on how close or overlapping the input data is.

3.5 Gait Prediction

Given sensor data obtained by the prosthesis, gait prediction discriminates between all possi-

ble gaits. In this thesis the gaits walking and running are considered. So, we have a binary

classification problem that can be solved with the use of a support vector machine. If more

than two gaits are considered, e.g., walking, running and standing, support vector machines

are still applicable. In this case, binary classification is extended to multi-class classification

as described in Section 2.2.2. To evaluate gait prediction with support vector machines, a

window-in-time approach is chosen and the obtained results for different window sizes and

signals combinations are compared. For the input signals we use the database generated from

the motion capturing recordings. The classification output is either walking or running. In the
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Table 3.10.: Gait prediction results when using a support vector machine with a window-in-
time setup. Each cell gives the accuracy of its corresponding predictor and win-
dow size in percent. The input signal abbreviations used in the column headings
are introduced in Table 3.2.

τ angle vel Ax Ay fzl

1 68 56 57 61 71
5 71 64 58 69 73

10 87 79 73 80 76

angle- Ax- angle-vel- angle-vel-

τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

1 72 67 86 77 94 96
5 89 87 94 93 96 98

10 94 94 97 96 97 99

following running is decoded as 1 and walking as 0. The prediction performance is evaluated

for the window size of 1,5 and 10. All obtained results are shown in Table 3.10.

As for gait percent and speed prediction, prediction performance increases with window

size. Furthermore, the results for single input predictors are also for gait prediction not worth

using. In case of τ = 10, the best single input predictor achieves an accuracy close to 90%.

An useful gait prediction, in contrast, should ideally achieve an accuracy more close to 100%.

The reason therefore is twofold. One the one hand, high accuracies are required for safety

reasons. On the other hand, gait percent and speed prediction rely on gait prediction and

might be fooled when the gait mode is misclassified. When combining input signals, shank

data is slightly superior to accelerometer data, e.g., for τ= 1 angle-vel achieves 72% and Ax-

Ay 67% accuracy. The combination of both (angle-vel-ax-ay) increases performance further

and is with 94% accuracy (τ = 1) already applicable in context of active ankle control. An

Figure 3.13.: Gait prediction based on a support vector machine with τ = 2 and shank and
accelerometer data as input. The figure above display the input and the figure
below the corresponding prediction result. Note that the most prediction errors
happen for walking at 2.6m/s. That might be due to the test subject’s problems
with this walking speed.
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Figure 3.14.: Force data triggered by the right foot during walking at 2.6m/s. The test subject
has problems with keeping pace and therefore continuously increases force. For
constant walking speeds, however, the required force should normally be similar.

higher accuracy is only achieved when adding force data to the considered classifier. The

resulting classifier gives 96% accuracy for τ= 1 and 99% for τ= 10. This classifier, however,

requires to mount an additional force sensor to the prosthesis. So, we can decide if the

accuracy of the classifier for shank and accelerometer data as input is satisfactory or if the

improvements due to the force sensor are significant enough to add an additional sensor to

the prosthesis. Moreover, the window size introduces a trade-off between speed and accuracy.

The predictors for smaller window sizes are faster, but a not that accurate. For instance, the

predictor for angle-vel-ax-ay gives 94% accuracy for τ= 1 and 96% accuracy for τ= 5 . Even

though the differences in accuracy are not that big, the window size can be fine tuned. In

case of the given example, it can be investigated which window size is needed to achieve an

accuracy in between those for τ = 1 (94%) and τ = 5 (96%). It turns out that already τ = 2

gives an accuracy of 95%. The corresponding classification results are shown in Figure 3.13.

Note that the area for walking at 2.6m/s shows the most errors. As in Section 3.4, this is

due to the test subject’s problems with this walking speed. The problems become visible when

regarding the corresponding force measurements given in Figure 3.14. The forces induced

by both feet increase continuously. Moreover, 2.6m/s is above the preferred transition speed

from walking to running. Both facts might indicate that the subject already produced a patter

similar to running.

3.6 Supervisory Controller

The supervisory controller consists of components for gait, speed and gait percent prediction.

Previously, each of this components was designed and evaluated in isolation. The obtained

results are shortly summarized, to give the most applicable setup for each component. After-

wards, we purpose how to construct the supervisory controller given all components. Note

that all results are based on motion capturing data. Since motion capturing data is compared

to sensor data really accurate and noise free, it is perfect for evaluating feasibility.

For gait percent prediction, Gaussian process regression is used. The predictor outputs the

phase of ankle movement within a gait cycle which is in between 0 and 100 gait percent.
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At heel strike gait percent is reseted to 0% and subsequently it increases until 100% shortly

before the next heel strike of the same leg. Either gait percent predictors for each gait-

speed combination or a single gait percent predictor for each gait can be considered. The

second approach is sufficient, since it was shown that gait percent prediction generalizes

along speeds. Consequently, gait percent prediction depends only on gait prediction. Further

evaluations revealed the window-in-time setup with angle-vel as input and τ = 1 as most

applicable setup. Both setup parameters, namely the used input signal combination and

the window size, are optimal. Regarding the input signal combination, only measurements

obtainable with a gyroscope are required. This sensor setup is sparse and already available,

because a gyroscope is mounted to the considered prosthesis. In case of window size, the

smallest possible size is achieved. The smaller the window size, the faster abrupt changes are

recognized and corrected for. Furthermore, the error of the considered predictor is always

within ±5 gait percent. At first, the error was higher for transitions between two gait cycles.

This is due to the large step from 100 to 1 gait percent and is corrected for by transforming

the predictor’s output. For more details see Section 3.3. Speed prediction is in contrast

to gait percent prediction more problematic. Since a fixed amount of walking and running

speeds are considered, we face a multi-class classification problem. The problem is solved by

using a classifier based on support vector machines for each gait. The results give only good

performance when using large window sizes and as many input signals as possible. In terms

of active ankle control just two predictors give applicable performance. The first predictor is

the one for angle-vel-ax-ay as input and τ = 10. This classifier improves a little further by

using force measurements as additional input, yielding the second predictor. Even though

the prosthesis is not equipped with a force sensor, the prediction results can be used for an

informed trade-off. The window size can be reduced by dividing the gait cycle in several areas

and learning a predictor for each of those. For instance, there could be predictors for 1− 10

gait percent, 10− 20 gait percent and so on. In this case, gait percent prediction is used to

identify the corresponding speed predictor. The window size required by each predictor does

also depend on the gait percent area. For many areas, the input signals are easy to distinguish

and we can use a small window size. For some other areas, however, the input data is more

close and we need large window sizes again. Gait prediction discriminates between gaits such

as walking and running. Therefore, a support vector machine with a window-in-time setup

is used. As for speed prediction, the best performance is achieved when using as many input

signals as possible. So, the best predictor is constituted by angle-vel-ax-ay-fzl as input. The

next best predictor is given by removing force data from the inputs. This predictor achieves

on average an accuracy reduced by 2%. So, the question of adding a force sensor or not

becomes apparent again. In contrast to speed prediction, gait prediction performs already

good for small window size like one or two.

Regarding the results for gait, speed and gait percent prediction, two supervisory control

structures are possible. Both structures differ just by means of speed prediction and are

displayed in Figure 3.15.

The supervisory controller is responsible to determine gait, speed and gait percent. There-

fore it proceeds as follows: In a first step, gait is estimated. When gait is known, the gait

percent prediction can take place. For speed prediction two possibilities are imaginable. The

first approach is based on a single speed predictor for each gait. Consequently, a larger win-

dow size is required, but the predictor does not depend on gait percent prediction. The second

approach uses several speed predictors, where each is specific for a gait percent area. For the
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(a) Supervisory controller with gait percent independent speed prediction.
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(b) Supervisory controller with gait percent dependent speed prediction.

Figure 3.15.: Two possible supervisory controllers. For both controller, gait prediction is the
fist step. When gait is known, gait percent prediction can take place. In Panel
(a) speed prediction is also possible as soon as gait is known. For Panel (b) speed
prediction depends additionally on gait percent prediction. Therefore smaller
window sizes can be achieved to some extend.

most gait percent areas, smaller window sizes are possible. However, not all gait percent

areas give decreased window sizes and we get the dependency to gait percent prediction in

addition.
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4 Sensor Data Based Evaluation
Chapter 3 revealed that supervised machine learning is useful for predicting the user’s intent

during walking and running. In this case, the user’s intent consists of the desired gait, speed

and gait percent. Gait percent, also known as gait phase, describes the current state of the

ankle movement. At heel strike or rather at the beginning of a gait cycle, gait percent is 0%.

During gait cycle, it increases continuously until it reaches 100% shortly before the next heel

strike of the same leg. Predicting gait, speed and gait percent are three separate tasks, but

all together they form a supervisory controller for powered ankle control. When knowing all

three outputs, the actual control signal or rather the current for the prosthesis’s motor can be

determined by a simple lookup. This control signal is enforced with a PD controller. In the

previous section it was shown that gait percent and gait prediction perform good. For gait

percent prediction, shank angle and velocity are good predictors. In case of gait, gyroscope

and accelerometer data are used. Moreover, gait percent and gait predictors perform already

for window sizes of τ = 1. Speed prediction, in contrast, requires some tweaks to be as

accurate as desirable. Either a large window size or several limited predictors are required.

Both predictors rely on gyroscope and accelerometer data as input. When using force data in

addition, performance increases a little.

In Chapter 3, the inputs for the predictors were computed from data recorded by a motion

capturing system. If compared to real sensor data, motion capturing data is really accurate

and noise free. This section aims at demonstrating the real world applicability of the super-

visory controller based on machine learning. Therefore, the supervisory controller must be

wearable and, thus, it must be able to operate with the sensor data provided by the prosthe-

sis. The prosthesis operates with an inertial measurement unit. More details about the sensor

and what data is available is given in Section 4.1. The two following sections show that gait

percent and speed prediction also work in case of sensor data. The results for sensor and mo-

tion capturing data are similar, so that motion capturing data can be seen as good simulator

for control mechanism based on machine learning. Note that gait prediction is not examined

for the sensory data. Instead, we focused an on the improvement of speed prediction. As

result we introduce a feature that dramatically improves speed prediction. In Section 4.4 we

conclude with a summary of sensor based prediction results and purpose an accurate and

wearable supervisory controller.

4.1 Database Generation

To evaluate the machine learning techniques used for the supervisory controller in Chap-

ter 3 also for the real prosthesis, a database for the prosthesis’s sensory data is cre-

ated. This database is used to generate distinct training and test sets for the tasks of

gait and speed prediction. A first part of the evaluation is about performing the same

experiments as in Section 3 with the real sensor data as input. While doing so, dif-

ferent predictors constituted by different setups and combinations of inputs signals are

learned and compared with the corresponding predictors for motion capturing data. So,
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it is tested if the noisier sensor signals can also constitute as accurate predictors as for

motion capturing data. The comparison, however, is only done for walking and not for

running. Consequently, gait prediction is not considered here. Instead, more close walk-

ing speeds are used for the experiments. For an overview of all speeds see Table 4.1.

Table 4.1.: Considered
speeds

Walking Speeds [m/s]

0.5, 0.8, 1.1, 1.4, 1.6

This decision was made due to the fact that gait percent and

gait prediction perform as accurate as required, but speed pre-

diction should be improved. By improving speed prediction,

the proposed controller will gain the most. So, the second task

of this section is the improvement of speed prediction. For

achieving and proofing this, we wanted to have more closely

located speed measurements. We assume that closer speeds

will complicate the proposed speed prediction mechanisms, since the input data will be less

distinguishable. If our assumption is true, some different methods for speed prediction must

be found. Moreover the different speed measurements can be used to test if gait percent

prediction also generalizes to more detailed speeds.

The recordings for the database were performed with the same test subject and the same

treadmill. As reminder, the subject was a healthy male person of 1.86 m height and 76 kg

weight. The treadmill has two force plates, each of the two measures the impact of one

foot (left and right) on the treadmill. Instead of the motion capturing system, an inertial

measurement unit attached to the shank of the subject was used to record the sensor signals.

This inertial measurement unit consists of a biaxial gyroscope and accelerometer. The used

gyroscope is the ST LPY550AL. As accelerometer the MMA7361L of Freesacle Semiconductros

is used. The sensor was attached at the shank, more in detail about 20 cm above the ankle.

At this place the sensor of the active ankle prosthesis is located as well. For the detailed

mounting, see Figure 4.1a,

The experiments performed in Chapter 3 require signals such as shank angle, shank velocity

and acceleration data in x and y direction. Shank velocity is provided by the gyroscope and

acceleration data is given by the accelerometer. The shank angle, in contrast, is not given

directly. However, it might be derived from shank velocity instead. An obvious approach

for computing shank angle is the numerical integration of shank velocity. Another possible

approach is based on a transfer function and is described in [11]. The derivation method

(a) Sensor attachment. (b) recording procedure.

Figure 4.1.: (a) sensor setup for database generation (b) recording procedure. All speeds are
walked for a given time. At first speeds are increased until the maximal speed is
reached. Afterwards speeds are decreased until the treadmill stops.
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must be the best approach for our context, which is the prediction of gait, speed and gait

percent. That is why the approach for deriving shank angle cannot be chosen in isolation.

The next section uses gait percent prediction to describe in detail which approach is the best

one to go for.

The force plates provide with their force measurements a signal which cannot be computed

by the inertial measurement unit. This data is kept anyway, because it is used to perform some

of experiments of Chapter 3 . In Chapter 3 it was moreover shown that force data can slightly

improve prediction performance. Consequently, it can be analyzed if it is advantageous to

mount a force sensor in addition. In Section 3.1, the motion capturing and the force plate data

were automatically aligned, since both were controlled and recorded by the same computer.

For the sensory data recordings, the inertial measurement data and the force data is not

aligned. That is because the sensor data and the force plate data are recorded by different

computers. The force plate data is again given by the computer that controls the treadmill

and the sensor data is recorded by the computer that also controls the real prosthesis. After

performing the recordings, the data is aligned by finding the first heel strike in the force and

the sensor measurements.

For the motion capturing data, a separate data recording was performed for each gait-speed

combination. Here, all speeds are recorded after each other. The full recording procedure is

given in Figure 4.1b Summarized, each speed given in Table 4.1. is walked for 20 seconds.

After finishing one speed, the treadmill directly increases the speed to the next considered

one. Note that the speeds in Table 4.1 and in Figure 4.1b differ by 0.1m/s. Even though

the treadmill was adjusted to the speeds given in Table 4.1, the produced speed is different.

Of course the treadmill cannot directly jump to the next speed, resulting in short transitions

shaped like a power function of degree 3. Also humans cannot change the speed directly

and consequently realistic transitions are obtained. So it is also possible to evaluate the

transition behavior of the learned predictors. For gait percent prediction it can be evaluated

if it also performs for speed transition. In case of speed prediction, it is interesting to see if

the transition itself are noticed. After reaching the maximal considered speed, all speeds are

walked in decreasing order as well. So, increasing and decreasing transitions are available

for testing.

Note that in the following the same input signal abbreviations as introduced in Section 3.1

may be used. Also the performance objectives of Section 3.2 are still valid.

4.2 Gait Percent Prediction

Before performing the experiments conducted in Section 3.3 with the sensory data as input,

it is required to determine the best way for deriving shank angle. This can either be done by

integrating the shank velocity provided by the gyroscope or by applying a transfer function

to it. Normally, integration is the most common approach to numerically determine the angle

or position given the corresponding velocity. But the numerical integration of the shank

velocity leads to an integration drift. The drift is too heavy for obtaining an useful signal.

Consequently, gait percent prediction where shank angle is one of the input signals is not

applicable. To avoid the drift, it is required to reset the integration bounds after some time.

A common approach, e.g., for walking speed estimation with inertial measurement units

[24], is to reset the integration after each stride cycle. A recognizable event for resetting

the integration is the heel strike. By using heel strike as reset point, the integration drift is
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avoided and the resulting shank angle is in shape and dimension similar to the shank angle

computed from the motion capturing system. The prediction performance for specific gait-

speed combinations with shank angle as one of the input signals is similar to those when

using the motion capturing data. Even though the obtained shank angle is similar to the one

computed from the motion capturing system, the data does not generalize to all speeds. For

instance, an untransformed predictor for all walking speeds with shank angle and velocity as

input and τ = 1 gives no good prediction performance (error of ±14%). This may be due to

the reset of integration bounds, which implies that the initial shank angle for a stride cycle

is for all speeds alike. So, the data is somehow misaligned and the generalization ability

for different speeds is lost. Instead, more sophisticated integration approaches or the simple

transfer function approach given by Holgate et al. [11], which is considered here, can be

used. For their tibia based control, Holgate et al. uses a transfer function to obtain the tibia

angle from the tibia angular velocity. The transfer function is given by

τ2s

(τs+ 1)2
, (4.1)

where τ is a non-negative, free parameter [11]. The given transfer function is stable and

τ influences how fast the transfer function is. Because of stability, initial conditions can

be arbitrary and the transfer function can be applied without resetting bounds. The faster

the transfer function, the faster the integration drift is compensated. However, τ cannot

be choosen arbitrary large. If τ is too larger or rather the transfer fuction too fast, the

characteristic tibia angle shape is lost [11]. Holgate et al. give another beneficial property of

the transfer function, namely the deindivudualization of tibia angle between unique subjects.

The transfer function deindivudualizes, since it gives not the real tibia angle but a value that

is similar in shape and centered around zero. It turns out that the given transfer function is

also sufficient for our use case. Of course, the result is of not the real shank angle, but its

similar in shape and centered around 0. Even though it gives not the exact value, it is useful,

because it provides generalization for all speeds. From a machine learning point of view, the

exact interpretation of the input signal is not important as well. It is enough if the input value

facilitates good predictions.

Given shank angle, all input values needed for the experiments conducted in Section 3.3

are available. Consequently, the same experiments were also performed with the sensory

data as inputs. Above we revealed already some results. For instance, that we can obtain

good prediction performance for gait percent prediction with sensor data as input and even

generalization ability. In the following, a more detailed comparison of the prediction results

with sensor and motion capturing data is given.

Window-in-Time Setup

First, the results for learning a unique predictor for each gait-speed combination are com-

pared. While doing so, we exemplary use a gait percent predictor for walking at 1.6 m/s.

Moreover, it can be differed between the two input-output setups presented in Section 2.3.

Starting with the window-in-time approach, where the tunable parameters are the window

size, the used input data and the output data. As in Section 3.3, the output data is, for the

untransformed case, set to y ∈ [0, 100]. In this case, predictors using only single signals

as inputs are, at least for τ = 1, not worth using. More in detail, the error and boundary
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peak dimensions are nearly identic to the results for the motion capturing data. To improve

prediction results, the predictor is provided with more information. One approach is to keep

the window size fixed to τ = 1 and to combine the signals of different sensors to yield new

input data. The prediction results for combinations of shank angle and velocity or accelerom-

eter data are equally good for sensor and motion capturing data. In both cases, the usage

of more than two of this values leads to no noticeable improvements. When using only ac-

celerometer data or accelerometer data in combination with force data, it is possible to note

some changes. Here, the results are not that accurate for the sensor data as for the motion

capturing data. The boundary peaks for motion capturing and sensor data, in contrast, stay

similar for all input combinations. All in all, the predictor for shank angle and velocity is also

for sensor data the most favorable one. Its predictions are accurate and it requires only one

sensor.

Another way to provide the predictor with more information, is to increase the window

size so that also previous sensor measurements are considered. For τ = 1, for example, the

predictor considers only the actual measurement and for τ= 5 the actual measurements plus

the last four measurements are used. As for the motion capturing data, the single input pre-

dictors and the predictors with accelerometer and force data benefit the most. They become

more usable for τ = 5 or at least for τ = 10. Moreover, the error dimensions and boundary

peaks are nearly identic for motion capturing and sensor data. Only when using accelerome-

ter data alone (Ax-Ay), an increasing window size results in different error dimensions. E.g.,

when increasing τ from 1 to 5 and considering the motion capturing data, the prediction er-

ror decreases from±20% to±4%. For the sensor data, in contrast, it decreases from±50% to

±12%. Combinations of gyroscope with accelerometer data show still no relevant improve-

ments when increasing the window size. So, greater τ provide no additional information

here. Note that the prediction results for the different input combinations and different τ

are given in Table A.1. In general, window size increases introduces delay. If for instance a

sudden jump occurs, it takes τ− 1 steps until all the old data is flushed. The computation

time increases for larger τ similar as for the motion capturing predictors. Experimenting with

the window size reveals that the predictor for shank angle and velocity with τ = 1 is still

the favorable one. It gives good prediction performance and depends only on one sensor.

In addition window size 1 is used, so that the computation time is as short as possible and

sudden jumps can be recognized immediately.

Recurrent Setup

The second approach is the recurrent input-output setup. For performing experiments the

window size is fixed to 1 and the last prediction, which is used as additional input, is expected

to be in an error range of ±5%. If the last prediction exceeds this bound, the predictor might

be fooled. All prediction results are shown in Table A.2.Comparing the prediction results to

those of the window-in-time setup with τ= 1, all inaccurate predictors improved to usability.

These are especially the predictors which use only a single input or accelerometer data only.

As for motion capturing data, the improvements result from the additional input which is

the last prediction result. Here, the influence of the last prediction is relatively high, so

the linear increasing nature of gait percent is explicitly incorporated into the predictors. For

combinations of sensor data, in contrast, the additional input does not boost the performance.

Consequently, those input combination are already distinguishing enough. In comparison to

motion capturing data, the overall error is similar, but some more predictors exceeds the error
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bound (±5%) by 1%. Even if the error bound is exceeded only by a small degree, this can

cause difficulties like a higher prediction error. During testing, however, no difficulties were

observed. For testing purposes, the experiments were also performed with an error bound of

±3%. In this case, the error bound is exceeded by a larger amount of predictors and some

higher prediction errors, because of too inaccurate last predictions, were observed. Note

that also the recurrent approach is also for the sensor data still prone to the same degree of

boundary issues.

Transformed Output
As for motion capturing data, the boundary issues can be eliminated when using a trans-

formation of the output signal. The output signal can either be transformed with a sine or

a cosine, where the domain for both can be [−π,π] or [−π/2,π/2]. For more details see

Section 3.3. All transformations give a continuous output signal that has no jumps, expect

the sine transformation with y ∈ [−π/2,π/2]. This transformation, however, reduces the

jump in the output signal from 100% to 2%. As for motion capturing data, this only reduces

the boundary issues to some degree but does not eliminate them. In contrast to the motion

capturing data, the cosine for y ∈ [−π,π] is also not able to eliminate the boundary issues.

The boundary issues are reduced further (approximately ±30%), but they still persist. So,

the boundary peaks are only eliminated when using the sine with [−π,π] or the cosine with

[−π/2,π/2]. Regarding the sine with [−π,π], the prediction results are, expect the bound-

aries, not so accurate as for untransformed case. Only for the cosine transformation with π/2

the prediction results are as accurate as for the untransformed case and consequently this

transformation is favorable. For the full results see Table A.3. Note that also for the trans-

formed case the predictor for shank angle and velocity with τ = 1 is preferred. The result of

the transformed predictor are transfered to gait percent according to Section 3.3.

Covariance Function
Besides the input-output setup, the covariance function is another subject of change. An

possible alternative to the squared exponential covariance function is the Matérn covariance

function. Here, the Matérn classes of ν = 1/2, ν = 3/2 or ν = 5/2 are considered. The exper-

iments are performed for untransformed predictors with window size 1. For increasing ν the

smoothness of the underlying functions increases. Regarding the prediction results itself, only

small details change when increasing ν . The overall prediction performance remains similar.

Moreover, the Matérn classes performs equally good as the squared exponential covariance

function. Compared to the motion capturing data, the sensor data experiments give the same

results.

Speed Independent Gait Percent Prediction
Summarized, the gait percent prediction results for unique speed-gait predictors are very

similar for motion capturing and sensor data. The results are accurate and can be used for

gait percent prediction with an active ankle prosthesis. Nevertheless, it is more convenient

to have a predictor for all speeds of a specific gait. One reasons therefore is the reduction

of needed predictors. Another reasons is that gait percent prediction will no longer depend

on speed prediction. If such a dependency is present, speed prediction errors can cause gait

percent prediction errors. As revealed when introducing the transfer function for deriving

shank angle, the prediction results generalize when using a predictor for all speeds. As for
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(a) Gait percent prediction for five different steps (b) Speed each step is performed at

Figure 4.2.: (a) gait percent prediction performance for five different steps. The used predic-
tor is based on Gaussian process regression, shank angle and velocity as input and
a window-in-time setup with τ = 1. Each steps corresponds to a different speed.
The precise speeds are given in Panel (b). Note that each speed produced by the
treadmill fluctuates a little

motion capturing data, the prediction error increases a little when generalizing but it is still

accurate enough for real world applicability. In case of the transformed predictor with shank

angle and velocity as input and τ = 1 the overall prediction error is ±4% for a specific gait-

speed combination. For all speeds the prediction error increases to ±5%. The prediction

results are shown in Figure 4.2. This figure displays 5 steps, where each step corresponds

with one of the considered speeds of walking. Starting with the slowest speed and increasing

to the fastest one. Note that the computation time for a predictor that uses all speeds can be

reduced by using fewer samples for each speed. All in all, the prediction time for ones gait

cycle can be equal to the time needed by a specific gait-speed predictor with the same input

signals and window size.

4.3 Speed Prediction

This section starts with performing the speed prediction experiments of Section 3.4 with

sensor instead of motion capturing data. The results of both input sources are compared to

evaluate if the prediction methods generalize to sensor data and, therefore, are transferable

to the active ankle prosthesis. Regarding the experiment’s setup of both data sources, a major

difference becomes obvious. For the sensor data, the different speeds are closer together

and are recorded one after each other. So, speed transitions can be inspected as well. After

comparing the results, another approach for speed prediction is introduced. This approach

is feature based and is superior to the already given ones. In context of supervised machine

learning, a feature is computationally derived from the original input data provided to the

predictor. Therefore, a function φ(x) is applied to the given data x . If the function value

gives, in context of the considered problem, more information than the original value, the

prediction performance improves.
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(a) Motion capturing data (b) Sensor data

Figure 4.3.: Panel (a) depicts the shank angle-velocity cyclogram based on the motion cap-
turing data. In panel (b) the cyclogramm is computed from the shank angular
velocity provided by the inertial measurement unit. Therefore, a transfer func-
tion is applied to give shank angle. In comparison to Panel (a), the shank ankle
computed from the sensor data shows different scales and is centered around
zero.

4.3.1 Comparison to Motion Capturing

Before the speed prediction experiments are performed for the sensor data as input, it must

be noted that we cannot directly compare the results to those obtained for motion capturing

data. This has several reasons. As hinted above, one reason is given by the fact that the

database for the sensory data is not identical with the motion capturing database. In case of

sensor data, the recorded speeds are more fine grained. The speeds are separate by a dis-

tance of just 0.2m/s and not by 0.4m/s as for motion capturing data. Consequently, it might

be more difficult to discriminate between speeds, which in turn might decrease prediction

performance. Another reason is constituted by the input signals themselves. One the one

hand the signals are noisier, on the other hand the shank angle is derived with the use of

a transfer function. The transfer function causes a similar shape as for the real shank an-

gle, but gives different absolute values. The differences are noticeable when comparing both

angle-velocity cyclograms given in Figure 4.3.

Even though this differences did not influence gait percent prediction, their influence on

speed prediction needs to be considered and analyzed as well.

Speed Classification

The first experimental setup is the unlimited support vector machine for a window-in-time

approach. Unlimited means that the same support vector machine is used for the whole gait

cycle and therefore speed prediction is independent of gait percent prediction. The speed pre-

dictor, however, depends on gait prediction, since an unique support vector machine is used

for each gait. When comparing the prediction results to those for motion capturing data,

several similarities become apparent. First, for all input signals and their combinations the

accuracy increases with increasing τ. Second, the relation between the performance of differ-

ent signal combinations is the same for sensor and motion capturing data. The single input

classifiers are still not worth using, sensor combinations containing gyroscope data (shank

angle and velocity) show higher performance than others combinations and force data still
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Figure 4.4.: Speed prediction results for a support vector machine with τ = 1 and shank,
accelerometer and force data as input.

boosts performance. Third, it is also required to use τ = 10, since predictors with a smaller

window size are not applicable for active ankle control. For τ equals 10, the predictor which

uses all input signals as input still performs the best. Its prediction results are displayed in

Figure 4.4. This Figure reveals that the predictor produces often high numbers of consecu-

tively wrong classified speeds. Even with the use of a voting scheme this cannot be corrected

for. Furthermore, the overall numbers of misclassification is that high, that the predictor is

also not applicable for active ankle control. This becomes also obvious when comparing the

classification accuracies. The considered predictor gives only an accuracy of 88% which is

not sufficient. The same predictor for the motion capturing data, in contrast, achieves with

an accuracy of 96 good results. Comparing also the accuracies of other configurations, which

are given in Table A.4, reveals that the predictors for the sensor data perform generally worse

than those for motion capturing data. More in detail, the accuracies for the sensor data, are

about 5− 12% below those of the motion capturing data. As hinted earlier, that might be

because the speeds are more close and probably harder to distinguish or due to the transfer

function applied for obtaining the shank angle. Even though the angle-velocity cyclogram

for motion and sensor data (compare Figure 4.3) are different in absolute shank angle, the

influence of the transfer function seems negligible. This becomes evident, by comparing the

prediction results of classifiers that do not require shank angle as input. For instance, the

predictor for shank velocity as input and τ = 10, achieves for the motion capturing data an

accuracy of 71% and for the sensor data an accuracy of 60%. So, the unlimited classifier

shows some generalization to sensor data but is for these fine grained speeds, even for large

τ, not applicable for active ankle control.

Regression
As seen for motion capturing data, classification is for the task of speed prediction prefer-

able to Gaussian process regression. This is obvious, since speed prediction is in the con-

sidered setup rather a classification than a regression problem. However, Gaussian process

regression is evaluated for the sensor data as well. The evaluation is not only performed for

the sake of completeness, but also for comparing support vectors machines and Gaussian pro-

cess regression in case of speed transitions. The motion capturing database did not comprise

transitions between speeds, the sensor database, however, does. Before the transition behav-
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(a) Transition performance when using Gaus-
sian process regression

(b) Transition performance when using classifica-
tion

Figure 4.5.: Prediction performance for speed transtions. Both predictors use a window in
time approach with τ = 10 and shank, accelerometer and force data as input. In
panel (a) Gaussian process regression is used, and in (b) support vector machines
are applied.

ior is analyzed, the performance of sensor and motion capturing data is compared. From an

error point of view, the predictors for both input signals are very similar. The best perfor-

mance is achieved for the larger window sizes and is given by predictors that show errors

bounded to ±0.4m/s or ±0.3m/s. All prediction errors for the Gaussian process setup are

given in Table A.5. Note that additional increases of τ cannot boost the performance any

further. The relation between the performance of different signal combinations is the same

for sensor and motion capturing data. The reported errors of ±0.4m/s or ±0.3m/s are also

realistic for the motion capturing data. For this kind of data, however, the distance between

the considered speeds is larger. An error of ±0.4m/s is in case of motion capturing data only

the misclassification by one speed. For the sensor data, the prediction is wrong by two speeds.

Furthermore, the prediction results or rather the underlying function varies always up and

down, so that errors happen relatively often. All in all, the Gaussian process predictors are

for sensor data even worse than for motion capturing data.

The data for speed transitions is not included into the training data. Including data for

all possible transitions is nearly infeasible, since speed transitions can happen at every gait

percent. Even to record some of those transitions would require a lot of precision and en-

durance. To evaluate how the Gaussian process predictors perform for transitions, the best

predictor, namely the one for angle-vel-Ax-Ay-fzl as input and τ = 10, is used. Its prediction

performance is shown in Figure 4.5a. As for constant speeds, its performance is also poor

for transitions. The performance for support vector machine predictors is evaluated with the

same predictor configuration. To predict intermediate speeds, the interpolation technique

presented in Section 2.2.2 is used. Also for classification the results are not that good, as can

be seen in Figure 4.5b.

Limited Predictors

Both evaluated setups are not accurate enough for real world applicability. Section 3.4

showed that the prediction performance can be improved by dividing the gait cycle into gait

percent areas and using an unique speed predictor for each area. Consequently, we try to

improve speed discrimination for sensor data also with these technique. In this case it might
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be more difficult, since the different speeds are closer. As size for the gait percent areas 10

gait percent is a realistic span, since the gait percent prediction error is still within ±5%.

The prediction performance of all different gait percent areas is accessed with the use of

the two representative areas given in Section 3.4. Even though the shank angle changed a

little due to the transfer function, both areas are still representative. The first area lasts from

10 to 20 gait percent and represents those sections where the input signals are close. The

area 60–70 gait percent represents the ones where the input data is easier to distinguish.

The results for both areas are shown in Table A.6. As for motion capturing data, limiting

the predictors to specific gait percent areas, improves the overall prediction performance

compared to the unlimited case. The relationship between the performance of different input

signal combinations stays also the same. However, there are also differences with respect to

the motion capturing data. For the predictors concerned with 10–20 gait percent and τ = 1,

the predictions are worse than for the unlimited case. Consequently, the considered speeds

are to close to be distinguished with a window size of 1. Moreover, we need to keep in mind

that the accuracy for the unlimited case is constituted by the prediction results for the whole

gait cycle. Besides such complicated areas like 10–20 gait percent, also more distinguishable

areas are covered and may boost the accuracy. For larger window sizes, more information are

given to the classifier, so that the accuracy is approximately 5−15% higher as for the unlimited

case. The information given by larger window sizes are nevertheless not sufficient enough for

achieving accuracies above 90%. Only the classifier for angle-vel-ax-ay-fzl and τ = 10 gives

exactly 90% accuracy. In case of 60–70 gait percent, the predictors achieve already for τ= 1

accuracies superior to their unlimited pendants. Also for larger window sizes the accuracies

stay superior, in detail, the accuracies are about 10–20% above the unlimited case. The

best predictor is constituted by angle-vel-Ax-Ay-fzl as input and gives for τ = 5 and τ = 10

accuracies of 89% and 93%. Compared to the area of 10–20 gait percent, predictors for 60–70

gait percent perform better because the input data is easier to distinguish. The accuracies are

also for 60–70 gait percent smaller than for the identical motion capturing predictors, since

the speeds are a bit closer. Speed transitions are not considered for predictors restricted to

special gait percent areas, since we do not have the transitions for all areas to test for. As

stated earlier, the construction of such a database is not feasible.

4.3.2 Feature-Based Classification

For motion capturing, the usage of restricted predictors introduced a dependency to gait

percent prediction but improved speed prediction to applicability. In case of active ankle con-

trol, real world applicability is given when accuracies above 90 close to 100% are achieved.

Such good accuracies were only partially achieved for the sensor data, because the speeds

are closer together. So, a better performing methods needs to found. One way to improve

performance is to introduce a feature which gives additional information to the predictor.

Therefore, a function φ(x) is introduced that computes the feature given the data originally

provided to the predictor (x). Note that it is not straight forward to define features that boost

prediction performance. We introduce a feature inspired by inertial measurement unit based

methods for walking speed and stride length estimation [24]. Such methods apply integra-

tion, in addition with tweaks like estimating the accelerometer orientation and transferring

it into a global coordinate system. Here, a transfer function is applied to give a feature that

gives, like stride length, valuable information for determining the intended speed. As in-
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(a) Accelerometer data (y-direction) for the
scenario depicted in Figure 4.1b.

(b) Zoomed in view on the accelerometer data.

Figure 4.6.: (a) accelerometer data in y-direction while increasing speed from 0.6m/s to
1.6m/s. In between a fixed number of speeds is considered, whereat each speed
is walked for 20 seconds. After reaching 1.6m/s, the speed is decreased again. (b)
shows a zoomed-in view of the accelerometer data. In more detail, 4 consecutive
steps are shown.

put to the transfer function the accelerometer measurements in y-direction are used. The

accelerometer measurements for the conducted walking experiments (compare Figure 4.1b)

are displayed in Figure 4.6a. Regarding the walking experiments, the speeds 0.6, 0.8, 1.0,

1.2, 1.6m/s were walked in consecutive order. Each speed was given by the treadmill for 20

seconds. After reaching 1.6m/s, the same procedure was repeated in decreasing order. The

displayed accelerometer measurements in y-direction reveal some trend according to these

experiments. This trend is visible in signal height which increases with walking speeds. If

the accelerometer signal is viewed in detail, this trend is no longer obvious (see Figure 4.6b).

Instead the cyclic nature of gait becomes evident. To extract the trend and to suppress the

high frequencies, a transfer function was designed. This transfer is given by

α

(τs+ 1)2
, (4.2)

where α and τ are non-negative, free parameters. The transfer function is stable and τ influ-

ences its fastness. α is an amplification factor. Both parameters imply how speed changes are

visible and how big the differences between speeds are. It must be found a compromise be-

tween both. If the transfer function is too fast, the differences between speeds are not visible

anymore and discrimination cannot be achieved. Applying an optimized transfer function to

the accelerometer data in y-direction, gives the results shown in Figure 4.7a. The computed

feature is similar to speed and most likely will enable speed classification. Furthermore, it

was found that applying the transfer function also to the accelerometer signal in x-direction,

gives additional information for speed prediction. So, a speed predictor for the input com-

bination of G(s)Ay and G(s)Ax is learned and used. The predictor is unlimited and uses a

window size of 1. The learned predictor is tested by applying the transfer function to the

incoming accelerometer data and using the resuling values as input to the predictor. The

prediction results are shown in Figure 4.7b. Note that the results are nearly perfect and that

this predictor outperforms all previously presented approaches. Furthermore, it was tested if

the transfer function is fast enough in reflecting sudden speed changes. A test scenario was
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(a) Comparison of walking speed and transfer
function output

(b) Classification results when using the transfer
function results as input

Figure 4.7.: Panel (a) compares the walked speed with the results obtained by applying
the presented transfer function to the corresponding accelerometer signal in
y-direction. Speed and transfer function result are similar in shape and, conse-
quently, the transfer function enables classification results as shown in panel (b).
As classifier a support vector machine with τ = 1 is used. The input is given by
combining the results of transfer function applied to accelerometer signal in y and
in x direction.

constructed where the speed increases until 1.6m/s, afterwards it drops suddenly (without

transition) to 0.6m/s. The prediction results are given in Figure 4.8a. As can be seen, the

transfer function can deal with such sudden changes. It even detects some speeds in between

before detecting the speed we jumped to. This is more convenient for the prosthesis itself,

because it is not possible to change between speeds that fast as given by the training data.

Moreover, this period with speeds is with an length of about one step relatively short.

Concluding the transitions between speeds are examined again. Figure 4.7b showed good

results, but transitions were ignored. As long as a transition takes place the old speed is

detected. Once the next speed is reached it is correctly classified. Due to the good results, it

(a) Classification results (setup as for Figure 4.7b)
for an abrupt change in speed.

(b) Interpolation between speeds.

Figure 4.8.: Panel (a) shows the speed prediction performance for a support vector machine
with τ = 1 and G(s)Ay and G(s)Ax as input. As can be seen, the transfer func-
tion and, therefore, also the predictor is able to adapt to sudden jumps in speed.
In Panel (b) the same predictor is used. Instead of giving the pure classification
results as in Figure 4.7b, the interpolation between speeds is shown.
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might also be possible to interpolate between speeds as described in 2.2.2. It turns out, that

interpolation is possible. The results are depicted in Figure 4.8.

4.4 Supervisory Controller

In Section 3.6 two supervisory controllers were proposed based on evaluations performed

with motion capturing data. In more detail, the motion capturing data was used to compute

sensor-like data for gait, speed and gait percent prediction. For each task different setups were

executed and compared. The best predictors were used to construct two distinct supervisory

controllers. Each controller demonstrates that supervised machine learning techniques are

feasible for active ankle control. The operating prosthesis, however, gives sensor and not

motion capturing data. Compared to sensor data, motion capturing data is more accurate

and noise free. This chapter demonstrated that the introduced machine learning concepts

also apply on the prosthesis. In the following, the results for sensor data are summarized

shortly. Afterwards, we purpose a controller applicable for active ankle control based on

sensor data.

Gait percent prediction scaled perfectly to sensor data. The prediction results are as those

given in Section 3.6. Consequently, the transformed predictor with shank angle and velocity

as input and windows size 1 is the most promising one. Note that the gyroscope gives only

shank velocity but not shank angle. To derive shank angle a transfer function introduced in

[11] is used. Even though speed prediction scales to sensor data, all predictors achieve lower

accuracies. This is due to the different experimental setups. In case of sensor data, only level-

ground walking is examined and the considered speeds are closer together. The distance

between two different speeds decreased from 0.4m/s for motion capturing data to 0.2m/s.

So, we can observe that closer speeds are harder to distinguish. The corresponding decrease

in accuracy rendered the evaluated speed predictor less usable for active ankle control. That

is why, we designed two features that improves speed prediction. Both features are computed

by applying a transfer function to either the accelerometer signal in x or in y direction. The

classifier based on this features performs really accurate for a window size of one.

Gait Prediction

Gait Percent 
Prediction

Speed Prediction

gait

gait 
percent

speed

input 
data

Supervisory Controller

Figure 4.9.: Structure of the proposed supervisory controller. At fist gait is predicted. After-
wards gait percent and speed prediction can take place. Note that the controller’s
structure is the same as for the one based on motion capturing data given in Fig-
ure 3.15a. However, the version based on sensor data is a way more efficient,
since all predictors use small window sizes and are accurate.
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Summarizing Chapter 4, supervised machine learning methods are applicable for design-

ing a supervisory controller for an active ankle prosthesis. The controller uses the prosthesis’s

sensor measurements as inputs and gives accurate predictions for gait, speed and gait per-

cent. Since speed prediction was improved with the introduced features, the structure of the

supervisory controller is as in Figure 4.9.

First the gait mode is predicted. When gait is known, speed and gait percent can be pre-

dicted independently. So, the controller has two benefits when compared to the two con-

trollers presented in Section 3.6. First, the predictors only depend on gait prediction and

nothing more. Second, both predictors perform already with τ = 1 and require just one

type of sensor measurement. In case of speed prediction its accelerometer data and for gait

percent prediction gyro data.
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5 Outlook
The previous sections evaluated different machine learning setups in context of active ankle

control. As result a supervisory controller for a powered ankle prosthesis was proposed. At

first, this section summarizes how the introduced concepts contributed to the design of the

proposed controller. Afterwards, future work is presented.

5.1 Conclusion

This work introduced recent supervised machine learning techniques for control of active

prosthetic devices. The device considered here is an active ankle prosthesis equipped with an

inertial measurement unit mounted at the shank. Note that the introduced techniques can

most likely be applied for other devices and sensor configurations as well. The sensor values

produced by the inertial measurement unit are used to infer the user’s intent. Based on the

intent, we adapt the prosthesis’s desired trajectory to achieve best possible user support. In

this case, the intent is given by gait, speed and gait percent. All values are predicted by an

introduced supervisory controller which relies on supervised machine learning methods such

as Gaussian process regression and support vectors machines. If gait, speed and gait percent

predictions are available, the desired nut position can be determined by a lookup. To enforce

the desired trajectory a slave controller, here a PD controller, is used.

The supervisory controller was designed and implemented based on data recorded by a

motion capturing system. Since such data is accurate and noise free, it is perfect for evaluating

the feasibility of supervised machine learning methods in context of the considered prediction

tasks. The motion capturing data was recorded by a healthy male subject of 1.86 m height and

76 kg weight. For the recordings a treadmill was used and trials for different constant walking

and running speeds were performed. After recording the data, it was post-processed to yield

data as would be obtained from the inertial measurement unit. In addition, force data from

the treadmill can be used as it were recordings from a force sensor. For each prediction tasks

different setups like window-in-time or recurrent approaches were evaluated. Moreover, all

tasks were fine-tuned, e.g. the usage of a transformed output for gait percent prediction, to

achieve optimal performance. The best predictors for the tasks of gait, speed and gait percent

prediction were chosen to compose a supervisory controller. In case of speed prediction, two

predictors are possible. The first predictor gives simplicity and independence, whereas the

second predictor is more complex but in some cases faster and more accurate. Consequently,

not one but two supervisory controllers were proposed, differing just by means of speed

prediction. Both supervisory controllers demonstrate that it is feasible to design an accurate

controller based on supervised machine learning methods.

Because the controllers are based on the conducted motion capturing experiments, they

can only indicate performance for the real system. To demonstrate that the introduced

concepts also apply on the prosthesis, we performed evaluations with real sensor data as

well. Therefore, a sensor database was generated by the same subject on the same tread-

mill. The database contains only level-ground walking trials for different speeds. Note that
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the considered speeds are closer together than for the motion capturing data. Gait percent

prediction gives for sensor data performance as good as for the motion capturing data. Speed

prediction, however, is not identic for motion capturing and sensor data. Comparing differ-

ent speed predictors, the performance differences stays the same, but overall the predictors

give reduced performance. This is exactly what we expected to observe when reducing the

distances between the considered speeds. The closer the different speeds, the harder to dis-

tinguish between them. By showing that predictors for motion capturing and sensor data give

similar results, we demonstrated that motion capturing data lends itself perfectly for feasibil-

ity studies in context of machine learning methods. Instead of buying different sensors and

performing several recordings, we can evaluate the impact of specific data by computing it

from motion capturing recordings.

As speed prediction was for the motion capturing experiments only slightly above the level

of applicability, it decreased below this level when performing the same experiments for the

closer speeds given by the sensor data. That is why we introduced two features that boosts

speed prediction performance dramatically. One feature is computed by applying a transfer

function to the accelerometer signal in y direction. The other feature is given by using the

same transfer function with accelerometer data in x direction as input. With those features

we can classify speeds with an accuracy close to 100%.

As overall result we proposed the supervisory controller for active ankle control given in

Figure 4.9. The controller is due to small window sizes fast and moreover accurate. For

gait percent prediction the error is bounded to ±5%. In case of speed and gait prediction

accuracies close to 100% and 95% are achieved, respectively. Moreover, the small window

sizes allow the controller to perform even when initialized at a random point in gait or when

abrupt changes in motion occur.

5.2 Future Work

In future work the proposed supervisory controller can be extended and evaluated in several

ways. For evaluation, a clinical study with amputees can be conducted. At first, it could

be evaluate how the controllers performs or rather feels compared to existing control ap-

proaches. Another evaluation objective is how the control approach generalize to different

subjects or rather users. If the controller doe not scale at all, it can be extended with an

mechanism for user adaption, e.g. by learning several predictors and choosing the one the

user is closest to. Moreover, we want to cover all situations an active prosthesis in naturally

used in. Therefore the controller needs to be extended to more different gaits such as stairs

ascent and descent or incline and decline walking.

As demonstrated above, motion capturing data is perfect to study feasibility in context of

active prosthetic device control based on machine learning approaches. For instance it can

be used to evaluate which mechanisms perform good for a given prediction tasks and what

input signals give valuable information. So, another future task is the implementation of

a motion capturing based evaluation framework. The framework should allow to compute

different sensors values given motion capturing data and provided different machine learning

methods. All in all, the framework can facilitate and easy evaluation of even more different

approaches and help to gain some valuable insights about signals relevant for human motion.
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A Prediction Results for Sensor Data
In Section 3 we designed a supervisory controller for active ankle control based on motion

capturing data. In doing so, different setups for gait percent, speed and gait prediction were

evaluated. The prediction performance of each of those setups is summarized in an own

table. Section 4 shows that the predictors used for active ankle control also scale for real

sensor data. Moreover, some differences between the prediction results for motion capturing

and sensor data are described. To facilitate a detailed comparison, the same tables as in

Section 3 are given here for sensor, instead of motion capturing, data.

A.1 Gait Percent

Table A.1.: Performance of gait percent prediction while walking at 1.6m/s. All predictors
are based on Gaussian process regression with a window-in-time setup. The tables
shows the prediction errors for varying window sizes. The first row for each win-
dow size is the error(+/-) in gait percent, whereas the second row is the boundary
error (+/-) in gait percent. The column headings state which input signal combi-
nation is used for the corrsponding predictor. Shank angle and shank velocity are
abbreviated with angle and vel. For the acceleration signal in x and y direction Ax
and Ay are used, respectively. The force data of the left foot is denoted with fzl.

τ angle vel Ax Ay fzl
1 40/40 40/40 45/45 40/45 40/40

60/60 80/50 60/80 60/60 60/40
5 4/4 8/8 15/10 20/20 20/22

50/50 85/85 60/60 40/40 30/30
10 3/4 6/6 7/7 10/12 15/15

40/40 70/80 30/30 40/40 60/50

angle- Ax- Ax-Ay-fzl angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl
1 4/4 50/50 4/4 15/15 4/3 4/3

40/40 60/80 40/50 70/65 85/90 85/90
5 4/3 12/12 4/4 5/5 4/3 4/3

40/40 60/80 60/40 80/90 40/80 80/25
10 3/3 5/4 2/3 4/4 3/3 3/3

60/60 10/11 70/80 40/60 60/60 75/30
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Table A.2.: Prediction results for the recurrent setup with τ = 1. For walking at 1.6m/s, the
prediction errors in gait percent and the predictor’s lengthscales are given. All
lengthscales are ordered by the input signal order given in each column heading.
For the input signal’s abbreviations see Table A.1. The last lengthscale which is
gray correpsonds to the input from the last gait percent prediction.

angle vel Ax Ay fzl
Error (+/−) 3/3 6/4 6/6 6/6 6/6

Boundary Error (+/−) 40/80 60/50 90/80 50/80 60/60
Lengthscales 0.25 0.37 0.21 19.3 0.63

0.30 1.10 0.18 0.49 1.30

angle- Ax- angle-vel- angle-vel-
angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

Error (+/−) 1/3 5/5 3/2 5/4 2/2 2/2
Boundary Error (+/−) 50/40 90/70 50/50 60/60 80/90 85/85

Lengthscales 0.38, 0.14, 0.41, 0.20, 3.31, 3.98,
0.43, 4.20, 0.44, 1.64, 0.81, 0.96,
2.00 0.34 1.32, 1.16, 0.81, 0.96,

6.98 0.67 135 57.5
1.42 3.67,

0.84

Table A.3.: Comparison of different output transformations in context of gait percent predic-
tion while walking at 1.6m/s. For each transformation(t(y)), output range and
input combination the overall error(+/-) in gait percent is given. As input setup
we used the window-in-time approach with τ = 1. The input combinations are
abbreviated as in Table A.1.

t(y) - range angle vel Ax Ay fzl
cos - π/2 20/30 50/55 60/60 60/60 40/60
sin - π/2 90/100 100/80 100/100 100/100 150/50

cos - π 30/80 95/95 150/150 60/60 90/30
sin - π 50/70 80/50 100/120 120/140 60/60

angle- Ax- angle-vel- angle-vel-
t(y) - range angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

cos - π/2 5/4 50/60 5/3 20/35 4/4 5/3
sin - π/2 80/70 90/95 90/90 80/90 85/90 90/90

cos - π 55/40 95/95 20/25 30/20 20/15 15/150
sin - π 7/6 70/75 6/5 20/30 5/6 5/5
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A.2 Speed

Table A.4.: Varying widow size for unlimited speed prediction based on support vector ma-
chines and a window-in-time input-output setup. Each cell gives the accuracy in
percent. The corresponding heading denotes the used input signals. For more
information on the input signals see Table A.1.

τ angle vel Ax Ay fzl

1 30 36 30 33 31
5 60 47 37 39 43

10 61 60 47 51 57

angle- Ax- angle-vel- angle-vel-

τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

1 63 34 68 44 66 71
5 68 55 84 74 73 84

10 71 66 88 84 80 88

Table A.5.: Varying widow size for speed prediction based on Gaussian process regression and
a window-in-time input-output setup. Each cell gives the prediction error(+/-) in
m/s. Note that the input signals are abbreviated as in Table A.1

τ angle vel Ax Ay fzl
1 0.6/0.4 0.8/0.6 0.8/0.6 0.8/0.6 0.7/0.5
5 0.6/0.4 0.6/0.5 0.8/0.6 0.6/0.4 0.6/0.6

10 0.5/0.5 0.5/0.5 0.7/0.5 0.4/0.5 0.6/0.6

angle- Ax- angle-vel- angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl
1 0.8/0.6 0.8/0.6 0.6/0.6 0.6/0.5 0.6/0.6 0.6/0.7
5 0.6/0.4 0.8/0.6 0.4/0.4 0.4/0.4 0.5/0.5 0.4/0.3

10 0.4/0.5 0.7/0.6 0.3/0.3 0.3/0.4 0.5/0.4 0.3/0.3

Table A.6.: Comparison of the speed classification accuracies achieved by two limited pre-
dictors. The gray shaded values are the accuracies for a predictor limited to
10− 20 gait percent , whereas the other values are for a predictor for 60 − 70

gait percent. For the input signals the abbreviations introduced in Table A.1 are
used.

τ angle vel Ax Ay fzl
1 29 73 38 70 38 30 29 43 50 52

5 63 86 61 83 58 77 49 61 71 83

10 88 87 89 92 65 89 75 82 71 89

angle- Ax- angle-vel- angle-vel-
τ angle-vel Ax-Ay vel-fzl Ay-fzl Ax-Ay Ax-Ay-fzl

1 44 80 40 56 58 87 60 58 49 85 64 86

5 81 87 85 86 88 87 82 88 83 86 86 89
10 87 85 80 90 8 90 82 91 87 89 90 93
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