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Abstract
The compliant quadruped robot Oncilla is used as platform to explore the benefits of the interaction
between a feedforward gait and a simultaneous active stabilizing feedback controller. The chosen ap-
proach is motivated by findings in biology as well as by the advantages of modern stochastic methods.
In this thesis, we present a balancing controller, a simple feedforward gait and first results of a system
combining both components. The basic components can be modified in further research.
The developed balancing controller is based on a common criteria for static stability, the current center of
pressure (CoP) of the Oncilla. It is calculated from force data obtained from mounted OptoForce sensors
and the endeffector positions calculated by a simplified forward kinematic model. Locally weighted
regression is used to calculate motor commands that bring the Oncilla’s CoP closer to a desired one.
The static walking gait is based on analyses of the walking behavior of four-legged animals. The trajec-
tory for each leg is further carefully hand-tuned and parameterized as a combination of sine curves. In
addition, rhythmic movement primitives modulating the handcrafted gait have been applied.
Finally, we explored how the final gait is influenced by combining the forward gait and the balancing
controller. The tuning parameter was the amount of applied feedback, which determines how much the
Oncilla relies on the gait or on the feedback. In the current setup, the balancing controller could not
visibly improve the feedforward gait.
This thesis provides first results towards a versatile platform allowing further experiments on the benefits
of feedback for gait learning.
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Zusammenfassung
Der nachgiebige Roboter Oncilla wird als Plattform verwendet, um die Vorteile der Interaktion zwischen
einem vorkoppelnden Gang und einem gleichzeitig aktiven, stabilisierenden Rückkoppelungsregler zu
untersuchen. Der gewählte Ansatz ist sowohl motiviert durch Ergebnisse aus der Biologie als auch
durch die Vorteile moderner stochastischer Methoden. In dieser Thesis präsentieren wir einen Gleich-
gewichtsregler, einen einfachen vorkoppelnden Gang und erste Ergebnisse eines Systems, welches beide
Komponenten miteinender kombiniert. Die Grundkomponenten können in weiterführender Forschung
modifiziert werden.
Der entwickelte Gleichgewichtsregler basiert auf einem verbreiteten Kriterium für statische Stabilität,
dem aktuellen Druckmittelpunkt des Oncillas. Dieser wird aus Kraftdaten, welche aus den montierten
OptoForce-Sensoren stammen, und den Positionen der Endeffektoren mittels eines vereinfachten kinema-
tischen Modells bestimmt. Lokal Gewichtete Regression wird benutzt um die Motorbefehle zu berechnen,
welche den Druckmittelpunkt des Oncillas näher an einen gewünschten Punkt heranbringen.
Das statische Laufen basiert auf Analysen vom Laufverhalten vierbeiniger Tiere. Ferner ist die Trajektorie
eines jeden Beines sorgfältig von Hand abgestimmt und als Kombination von Sinuskurven parametrisiert.
Zusätzlich wurden rhythmische Bewegungsprimitiven eingesetzt, welche den per Hand erstellten Gang
modulieren.
Abschließend haben wir erforscht, wie der finale Gang durch das Kombinieren von vorwärtskoppelndem
Gang und Gleichgewichtsregler beeinflusst wird. Der zu bestimmende Parameter war die Menge an
hinzugefügter Rüchkkopplung, welche bestimmt, wie sehr der Oncilla sich auf den Gang oder auf den
Rückkopplungsregler verlässt. Mit der aktuellen Einstellung konnte der Gleichgewichtsregler den Gang
nicht sichtbar verbessern.
Diese Thesis liefert erste Ergebnisse in Richtung einer vielseitigen Plattform und erlaubt weitere Experi-
mente bezüglich des Vorteils einer Rückkopplung beim Lernen eines Ganges.
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1 Introduction

1.1 Motivation, Goals and Ideas

Animals with legs can access almost any part of the surface of the earth. In doing so, they show a wide
range of flexible movements: jumping, climbing, running, and in some cases swimming and even gliding.
This ability allows them to pass difficult and rough terrains such as deserts or mountain areas. Also, they
can move incredibly fast and easily adapt to obstacles and disturbances.
A robot with these abilities would be a much more versatile autonomous system than today’s common
wheeled vehicles. Those are typically limited to easily accessible areas or even depend on paved streets.
Thus, the benefit of being able to handle challenges more flexibly provides a lot of possible applications
for such a system: It allows for smooth locomotion, as holes or obstacles can be avoided or compensated
for with ease, without greatly affecting the environment. Therefore, such a robot could work as a
transport system for delicate goods as well as a more flexible and less destructive vehicle in agriculture
or forestry. It could also support humans during the exploration of unknown, hard to access areas or
in terrain rescue help, and would especially allow remote inspection of areas that are dangerous for
humans, like disaster recovery in polluted areas, construction sites or military areas. Another field of
support would be everyday human life, as service robots in household and health care have to deal with
a human-built world that includes stairs and cluttered rooms, which both serve as great challenges to
robots and would hence demand accordingly appropriate movement capabilities. Hence, a walking robot
could function as support for humans in various situations and as a replacement in dangerous tasks.
Another application domain is the study of locomotion itself. Robots can provide insights into how evo-
lution shaped bodies and motion patterns, and they allow the testing of hypotheses about why animals
move the way they do, for example by comparing gaits optimized towards low consumption of energy
with gaits optimized towards low attrition.
The field of animal locomotion has attracted interest for a long time already, at the forefront of which is
the study of walking gaits such as the one shown in Figure 1.1. So far, there exist incidences for verte-
brates in which simple rhythmic movements such as walking are generated by central pattern generators
(CPGs) from a single input signal. The CPGs are located in the spinal cord, and with never-changing
ground conditions, they work without requiring addditional information from the brain, as has been
shown on decerebrated cats by Whelan [1].
The locomotion patterns produced by the CPGs are classified into different gaits according to their prop-
erties. For example, one of these gait properties is the ground reaction time, which is the fraction of time
in a walking cycle during which a foot is in contact with the ground. A related property is the number of
feet having ground contact at the same time. Based on those two properties, one can separate between
dynamic and static gaits. Static gaits are constantly statically balanced; thus, for a quadruped, at least
three legs have to be on the ground the whole time. Such gaits are usually called crawling or creeping
gaits, and their stability has been analyzed by McGhee in 1968 [2]. The constant balanced state allows
animals to perform the gaits arbitrarily slowly, which can be seen when, for instance, a cat creeps up on
its prey. In contrast, dynamic gaits of quadrupeds have phases where only two, one, or even no foot at
all has ground contact. Balance is kept by performing the next step, which means the animal is actually
constantly in flux and rebalancing itself. Thus, the intrinsic balance of the gait itself can be maintained
in different ways, either by keeping a constantly statical equilibrium, or by having compensating move-
ments already included in the gait, which both seem to be done without additional information from the
brain.
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Figure 1.1.: Early photographs that show a sequence of a galloping horse1. The pictures were taken by
Eadweard Muybridge to ascertain whether a horse has all four hooves off the ground while
galloping, which makes them one of the first documents of gait study.

However, since the environment has many irregularities, the simple rhythmic gait patterns can be mod-
ified by neural information from the motor cortex. For example, when an obstacle appears, the visual
cortex sends commands to the motor cortex, which initiates modulating patterns for CPGs in the spine.
These adaptions are often taken to restore balance after facing irregularities in the surroundings. In
mammals, the task of (re-)balancing is solved by combining the information provided by several dif-
ferent senses, such as vision, touch, proprioceptive sensors and vestibular sensors. Despite vision often
being an important sense for orientation in everyday life and in areas with large obstacles, animals do
not necessarily need their vision for locomotion, as they can balance and walk even if visual information
is not available. For instance, humans are able of balancing and walking with closed eyes, as long as
they do not interfere with large obstacles.
The neural movement generation of animals is strongly intertwined with the bio-mechanical structure of
their bodies. For example, the bodies of most vertebrates are compliant, soft and flexible because they
consist of muscles and skin. This anatomy allows animals to load and then reuse energy, especially during
dynamic walking when larger forces are acting on their bodies, but also to easily cope with stochasticity
and small disturbances, like irregularities in the ground.
To this day, bringing a robot to life with the same qualities that animals possess has not been fully
achieved. One of the difficult problems researchers face is the underactuation of a freely walking system.
This means that one cannot directly control position and orientation of the robot, only indirectly by
adjusting its joints. This manipulation influences the endeffector positions, usually the feet, and changes
the whole system’s frame relative to the world frame. In the worst case scenario, it can make the robot
end up in a dead lock position by making it fall. A second hard factor for real life application is the many
degrees of freedom usually found within a quadrupedal platform, as well as the huge amount of data to
process, which includes noise from the system and stochasticity of the environment, coming from many
disturbances and variations in the outdoor world, as, for example, through uneven terrain. Thus, a robot
that is supposed to be versatile requires elaborated hardware and control.
As animals apparently deal with those problems effortlessly and have already optimized their locomotion
over years of evolution, their way of facing those problems is a source of inspiration for robotics. Bio-
logical mechanics, sensors and computational power of the brain are until today unmatched by artificial
constructions. Thus, we construct components that take inspiration for functionality from biology, but
work differently, mostly simpler, than their actual counter parts do in nature.

1 taken from https://commons.wikimedia.org/wiki/Eadweard_Muybridge#/media/File:Muybridge_horse_gallop.

jpg
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(a) RHex2 (b) Little Dog3 (c) HyQ4

(d) StarlETH5 (e) Spot6 (f) Cheetah-cub7

Figure 1.2.: Examples that depict the variety of hardware platforms in locomotion. The leg structures
range from simple, one segmented legs to biologically inspired, three segmented panto-
graphic leg constructions.

There is a wide variety of approaches for constructing robots; some are huge simplifications as they, for
example, lack knee joints, while others have more degrees of freedom per leg than animals do in nature,
allowing the exploration of new movements. Often, the hardware of common robots lack the flexibility
and compliance of animals’ body structure; they contain parts made of plastic or metal resulting in a
rigid body.

An alternative branch of robots has been started in the 80’s by Raibert [3], using springs to obtain
passive compliance, allowing for dynamic movements such as hopping and the saving of energy as in
animals. The idea of compliance is not only important for walking itself, but in the long term, also for
interacting with humans and the environment. The research has been continued through the company
Boston Dynamics, leading to some of today’s most impressive walking robots, Big Dog [4] and Spot [5].
Those robots also make use of another technology for compliance: Hydraulics. To obtain a perceived
compliance in rigid constructed systems, one can simulate compliant behavior by, for instance, actively
contracting legs while running. This solution called active compliance is, of course, not as energy efficient

2 taken from http://www.pro-linux.de/images/NB3/imgdb/x-rhex-in-der-wueste.jpg
3 taken from http://www.bostondynamics.com/img/LittleDog_Terrain.png
4 taken from http://new.semini.ch/research/hyq-robot/
5 taken from http://robohub.org/four-legged-robot-that-efficiently-handles-challenging-terrain/
6 taken from http://icdn1.digitaltrends.com/image/bdspot1-1500x1000.jpg
7 taken from http://biorob.epfl.ch/files/content/sites/biorob/files/users/207295/public/Pictures/

CheetahCubMarkers.jpg
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as real compliances and also rather distant from biology. Still, it offers some benefits, as it allows for
variable stiffness.
The drawback of compliant hardware is that it makes precise control harder in comparison to well
actuated rigid robots. Thus, there is a tradeoff between flexibility and precision for the hardware, having
large influence on the control level for robots. This may be the reason why often times only limited
types of gaits exist for each robot, either dynamic or static ones. Some research has been done by
Takamuku et al. [6] and Blickhan et al. [7] which study the abilities that the shape of the body gives to
a robot or an animal. Related to these studies is the idea to develop hardware that is close to the animal
movement range, for example by resembling a cat’s or a dog’s leg behavior as has been done for the
Cheetah [8] and the Oncilla [9].
For obtaining the information that animals draw from their senses, robots are equipped with sensors
in joints for proprioception, force sensors for tactile sensing, cameras for vision and an IMU replacing
the vestibular system, as well as many more sensors, among others, to measure the level of the battery
charging. In the implementations, the information from tactile sensors is often used to calculate common
stability criterions for keeping the statical balance of a moving system. Options are the center of gravity
(CoG), the zero moment point (ZMP) discussed by Vukobratovic [10] or the center of pressure (CoP).
Another approach is to use neural networks, which find useful information in data without explicitely
modeling it.
For the control model, the approaches for walking range from biology-related approaches resembling the
neurological relations to more abstract statistical ones which allow efficient solutions and exploit new
possibilities. Many researchers took inspiration from the central pattern generators observed in animals.
Different CPG models are developed for rhythmic gait generation, some examples of which are described
in [11]. They can be used directly as simple feedforward commands without requiring any information
about the hardware and thus being model-free. Often, however, CPGs are modulated by reflexes or
improved by adding feedback to allow them to react to disturbances. For example, reflexes can be used
to lengthen the swing phase in case of a hole or to shorten it in case of an early ground contact to prevent
the robot from falling. CPGs have been applied to several robots, for example to a simple quadruped
without knees, allowing to learn different gaits depending on the desired velocity, like in the work done
by Owaki [12]. Impressive results regarding real world application are the hexapod Rhex [13] and the
quadrupedal Tekken II [14], which are both able to walk outdoors.
Another approach to generate walking patterns is, for example, a force threshold based state machine,
as had been utilized by Palankar and Palmer [15] for a hexapod.
As there is a large variety in the hardware of walking robots (some examples are shown in Figure 1.2),
it is often difficult to compare different control approaches in locomotion, as the hardware tends to
already be tuned to the specific task the robot is supposed to work for. For instance, the quite specific
foot structure of the Tekken II could hardly be adopted for other settings.
Still, researchers who are working on endowing robots with the similar movement abilities as animals
usually furthermore want practicability and simplicity for their approaches and therefore aim at the
following features: Smooth movements of the robot, robustness with respect to interruptions, changing
of the speed, adaption of gait details such as step height or length as well as switching between gaits or
even movements such as jumping, walking or swimming. These features should be encodable in a model
with just a few parameters, such that they are easy to tune.
We want to use a platform that has been determined for and already be proven to work for dynamic
walking and use it for static walking. Such slow movements may be desired in the future for accom-
panying humans and for crossing rough or unpredictable terrain. Also, they are supposed to be energy
efficient for animals which raises the hope of gaining the same effect for robot locomotion.
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1.2 Related Work

In this section we reference related work on walking robots and tactile sensors. Remarkable success
has been achieved in the field of hexapods. Palankar and Palmer [15] proposed a simple but effective
approach of using force sensors. A state machine generates the gait by switching states according to
hand-tuned force thresholds. So the measured ground forces modulate the swing and stance phase, as
the phase length depends on the strength of the ground contact. The hexapod is able to cross artificial
rough terrain. Another interesting hexapod is the robot RHex [16]. It has simple constructed legs
without knees that move in a circular fashion which is different from biologic six-legged counterparts
such as insects and instead rather resembles the way wheels work. They enable the robot to walk
forward, backward, to turn, and also to cross a large variation of terrain such as stones and sand. The
robot is constructed robustly enough such that mudd and water do not pose a problem.
For quadrupeds, RoboSimian [17] is a novel approach, as it has four extremities but is not limited to
quadrupedal walking. It is thought to perform a mixture between bipedal and quadrupedal locomotion
like an ape, an idea that recently has been explored for the Honda ASIMO as well [18]. The construction
of RoboSimian’s legs and arms is not bio-inspired as it is intended to serve in space. Therefore it has high
(statical) stability that prevents it from falling, and it has no passive compliance which allows precise
movements. It has participated in the DARPA challenge [19], where it used legs and wheels allowing for
a wide range of movements.
Owaki et al. [20] use a robot without knee joints. CPGs generate the shoulder movements. They are
modulated only by intraleg force feedback, which means that each leg receives force feedback solely
from its own force sensor. It explores how different gaits from animals are learned depending on speed
or on an added pendulum. This approach distincts from most others, as it does not contain a predefined
leg trajectory coupling defining the gait; the coordination results from the applied feedback alone.
A large project with several researchers using the same platform was done within the DARPA project
"Learning Locomotion (L2)". This project resulted in more comparative work achieved by [21], [22],
[23], [24] and [25], all using a Little Dog [26] robot from Boston Dynamics for their research. The main
focus was to surpass very rough terrain, requiring pre-planning of sensible trajectories and foothold
placement search. Therefore, the participants used detailed information about the landscape, which
had been provided beforehand, as well as motion capture equipment. The resulting gaits were closer
to human climbing than to performing a rhythmic gait pattern, as each single step was planned care-
fully. Thus, despite optimizing toward speed, the results were rather static with slow movements. The
legs were usually bent a lot to have a low center of mass, making it easy to keep balance. The robot
includes ground contact sensors which were used by Righetti et al. [27] to avoid slipping by optimizing
to the least possible tangential ground forces. Also, a form of impedance control has been attempted by
Buchli et al. [28] to simulate compliance, but the hardware impeded more dynamic behavior.
BigDog [4] and the newly introduced Spot [5], both also from Boston Dynamics, were used to pro-
duce some of the most impressive current results. They are both rather large quadrupeds, about the
size of mules, and are supposed to accompany humans. Videos show how the robots are able to walk
autonomously outdoors, cross slopes of hills and rough terrain and even handle slippery ice. Their ap-
pearance seems to be biology inspired, and they perform a trotting gait. To achieve that, the hardware
includes springs in the lowest leg segment. Also, a high amount of sensors and well developed hardware
such as hydraulic actuators are used. However, the robots’ exact way of function is unclear, as no detailed
report is available. So far, no other gait has been shown, so very slow movements do not seem to be
possible yet.
HyQ, [29] and recently [30], is a slightly smaller robot with a weight between 70kg and 90kg. It works
with hydraulic actuators and electric motors. HyQ uses active impedance, which is purely simulated on
the control level and models the compliance of springs whose stiffness can be adapted as required during
execution. This feature allows HyQ a wide movement range from precise, stiff movements to trotting
and even fly trotting. It also can absorb the shock after being dropped and is able to jump with all feet
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off the ground by itself. For control, foot trajectories are generated in task space based on CPGs. They
can be modulated by foot contact information. Inverse kinematics and inverse dynamics are required for
transforming the trajectories to torque control commands. Trunk control and push recovery stabilize the
robot. Hence, HyQ delivers remarkable results but it requires good models of the hardware and cannot
exploit energy efficient movements. The MIT Cheetah [31] uses impedance control as well and it is able
to gallop, detect obstacles and cross them by jumping like a horse as can be seen in [32].
A smaller quadruped which is as well designed for dynamic movements is the StarlETH [33]. It has force
sensors on each foot and it includes springs to allow passive compliance while it uses active impedance
as well. A wide range of abilities have been shown on this platform: Like HyQ, it can cope with slipping
and dropping and is able to trot as well as to walk, even when it is disturbed meanwhile. Contact forces
of the feet are optimized by minimizing tangential forces.
Another robot which has been designed for more dynamic movements is the Cheetah-cub [34]. Its leg
design is oriented on that of mammals: It has three segments and is thus more complex than most
of the other introduced robots which have two ore one segmented legs. The legs also include springs
for passive compliance, allowing to perform fast trotting gaits that work with simple feedforward CPG
control. The passive compliance leads to entrainment when the robot has ground contact, changing the
actual performed leg trajectory.
For the Oncilla [9], which is used in the present work and described in detail in Subsection 2.1, a similar
leg structure has been used. Degrave [35] lets the Oncilla turn and trot by using different strategies
such as sine curves and trajectories generated in task space. In [36], a CPG based on Hopf-oscillators
is used to generate a trotting gait. The generated gait trajectories are modulated by the output of a
neural network to stabilize them. The modulation depends on information about roll and pitch gained
from an IMU or a camera; the parameters were optimized using Particle Swarm Optimization (PSO).
Ajallooeian [37] improves the balance by using Virtual Model Control (VMC). This model-based posture
control generates forces to rebalance the robot through virtual springs attached from parts of the actual
dislocated robot to a desired pose. This approach can already be seen as some kind of active compliance.
The control system is good enough such that according to [38], the Oncilla is able to walk outdoors.
For most of the current dynamic gaits it appears that they have a rather high frequency. This property
results in very short swing phases of the legs which often do not cover much distance each, in order to
keep the balance of the robot. We do not see such a walking behavior when we look at animals.

1.3 Outlook

In this thesis, we contribute to solving the task of locomotion with a bio-inspired idea:
In order to obtain a robust walking gait, we provide tactile feedback that in future will faciliate safe
policy exploration, whose search space we narrow down by avoiding unstable positions and decisions.
For that, we develop a balancing controller that depends on the center of pressure, a transformation of
force measurements from tactile sensors. The controller is described in Subsection 3.1 and evaluated on
our platform in Subsection 4.1.
Additionally, we use a carefully tuned handcrafted feedforward gait, which in future will be modulated
by a statistical approach for gait generation that provides mean and variance over a set of executed
movements. The background about gaits is provided in Subsection 3.2, the evaluation of the actual
gait is described in Subsubsection 4.2.1, as well as a first learned modulation giving an insight into the
parameter complexity of future approaches is shown in Subsubsection 4.2.2.
As a first approach, we simply add feedback generated from the balancing controller. Some first results
can be found in Subsection 4.3. In the future, we want to refine the approach by using adaptive feedback
that varies according to the reliability of the feedforward command. The goal of this approach is to work
without using any information about the structure of the environment or (pre-)planning a long run
trajectory to negotiate obstacles.
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2 The Oncilla Platform

2.1 Oncilla Hardware

The Oncilla is a quadrupedal robot from the AMARSi project and a successor of the Cheetah [8], pictures
can be seen in Figure 2.1. It has the size and weight of a cat and a rigid trunk. The legs have five joints
each: a lateral hip joint, a sagittal hip joint, a knee, an ankle and a joint where the foot is attached. The
first and the second joint, q0 and q1, are both actuated. The next two joints, q2 and q3, are coupled with
each other and are actuated by proximally mounted actuators working via a cable mechanism, flexing
the knee and thus shortening the leg length. A spring works as the antagonist, stretching the leg when
the cable is loosened. The last joint, q4, has no actuator.
Hence, the Oncilla has 12 active degrees of freedom in total. For an overview see Table 2.1. Throughout
the whole work presented here, we use the legs only in the parasagittal plane, reducing the amount of
DOFs to eight. The legs themselves are referred to as the left front leg being L1 or LF, the right front leg
L2 or RF, the left hind leg L3 or LH and the right hind leg L4 or RH.
The creators of the Oncilla were inspired by biology, leading to a robot having similar movement behavior
as a mammal. Therefore it has three segmented pantographic legs, with the first and the last segment
keeping the same angle to each other for most of the movements, as there is a coupling between knee and
ankle joint. Less biologically inspired is the leg configuration of the Oncilla. The natural leg configuration
of animals lets the knees point forward, while the elbows point backwards. The legs of the Oncilla are
arranged such that knees and elbows all point forwards.
Another biological feature is compliance, which allows loading of energy and coping with small irregular-
ities and disturbances. Passive compliance is included in the Oncilla in form of springs in the leg segments
and in the lowest joint q4. The goal is to allow the benefit of energy efficient solutions as well as requiring
less precision in control. For more technical details on the Oncilla, see work of Sproewitz et al. [9] and
especially the one of Rutishauser et al. [8] for the leg construction.
In return, these biological features result in highly non-linear dynamics. For instance, because of the com-
pliance, in-air leg trajectories differ from on-ground trajectories, since ground contact gives non-linear
perturbations according to Sproewitz et al. [39]. Due to friction, the current springs need noticeable
time to stretch. Furthermore, they are too stiff to contract passively while walking, but especially the
front legs have too little resilience to stretch the leg when it bears about 2/5 of the robots weight. The

joint actuated motor position information magnetic encoder symbol

lateral shoulder / hip joint yes MP0 - q0

sagittal shoulder / hip joint yes MP1 ME1 q1

elbow / knee joint
yes MP2

ME2 q2

wrist / ankle joint ME3 q3

metacarpophalangeal /

metatarsophalangeal joint no - - q4

Table 2.1.: Overview of naming, actuation and available sensors of the Oncilla joints.
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leg construction also does not allow a linear retraction, the leg moves backwards when retracted and
to the front when stretched, making it harder to plan movement trajectories. Hence, the Oncilla is a
noisy system with difficulties providing accurate joint and end effector positions. For all experiments,
the Oncilla is powered externally and thus needs a cable connection.

x
y

z

(a) left side

(b) front (c) back

Figure 2.1.: The pictures show different views of the Oncilla. The side view includes the robot’s reference
frame. We can see the ethernet cable, the OptoForce cable and the energy connection.
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Figure 2.2.: Exemplary faulty communication between the remote computer and the Oncilla due to slow
computations in Matlab, creating shaky movements of the robot.

2.2 Software for Robot Control

All computations for controlling the Oncilla are done on a remote computer using Matlab. Communica-
tion with the robot works with a C++ server on the Oncilla and a Java client on the external computer via
an ethernet cable. Sending a command to the Oncilla and receiving the answer is implemented as one
single command for the Matlab interface and can take up to 3ms, the average value being about 2ms.
A command contains the desired motor positions for the two shoulder joints and the knee joint, thus it
is a 12× 1 vector. The return value delivers the actual motor positions as well as all available magnetic
encoder values for the joint positions, resulting in a 24× 1 vector.
The communication works on 200Hz, presenting a high challenge for Matlab, as working in real time is
required to avoid irregularities in communication (see Figure 2.2 as example), which affects the smooth-
ness of robot movements. To match the timing constraint, the model learning algorithm is written as C++
mex-file and the receiving of force sensor data is modeled as Java-object which allows multithreading.
This setup enables parallelization, of which Matlab alone is not capable.

2.3 Additional Force Sensors

To measure the ground reaction force and thus the weight distribution among the feet, we worked with
additional force sensors that were not originally included in the Oncilla. To validate their recordings, we
further constructed a force plate.

2.3.1 OptoForce Sensors

We mounted OptoForce sensors [40] under each foot of the Oncilla. The diameter is about 2cm and the
surface is a silicone half-dome, pictures can be seen in Figure 2.3. The form of the sensors approximates
the Oncilla’s feet as points. In each dome, four sensors measure the dome’s deformation. Raw data is
received on the remote computer via USB connection with average rate of 260Hz.
To record data, we first compute an offset from raw data when the sensors have no ground contact. The
offset is then used to calibrate all further incoming data by subtracting it from the subsequent stream.
8 both taken from http://optoforce.com/3dsensor/
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(a) Construction (b) Coordinate system

Figure 2.3.: OptoForce sensor8 views that show the functionality and the coordinate system of the Opto-
Force sensors. The sensors measure the deformation of the surface by using the reflections
of emitted light.

As the sensors measure deformation rather than force, the values are very sensitive to the angle between
the sensor and the ground: If the angle is not perpendicular, the Fz value is lower, despite having the
same weight on the foot. Since we can neither control the lowest joint q4 nor measure its angle, we
cannot learn a mapping to obtain the actual force operating on the leg. So we combine the measured
force values Fx , Fy and Fz into a single force F by using the Euclidean distance:

F =
q

F2
x + F2

y + F2
z .

The sensors also have a high definition which makes them sensitive to noise. Thus, we applied smoothing
to capture only the essential information. More details are described in Subsection A.5 in the appendix.

2.3.2 Force Plate

The loose joint q4 and the sensitiviy of the OptoForce sensors let us doubt the reliability of the recorded
data. To obtain more reliable data, we constructed a force plate using a precision force torque sensor,
a picture is shown in Figure 2.4. It allowed us to validate the OptoForce sensor measurements and see
how reliable their recordings are for our purpose. So the plate data serves as our ground truth data to
which we compared the OptoForce sensor recordings. The force plate delivers data with 40Hz which we
also smoothen as described in the appendix Subsection A.5.

2.4 Measuring the Center of Pressure

The sum of all forces that act between an object and its supporting surface works on a point called the
center of pressure. Hence, for a standing quadruped it is a point between the ground contacts of the
feet, determined by the amount of force applied on each contact point. So for a resting Oncilla, the CoP
can be calculated as follows:

c=
4
∑

j=1

F je j
∑4

i=1 Fi

,

where e j = [x j, y j]T are the endeffector coordinates of foot j and F j the respective measured force.
Calculating the CoP from the OptoForce data is straightforward, the sensors directly measure the force
F j (with j = 1 . . . 4) applied at the contact points between each foot and the ground. The position of
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Figure 2.4.: The Oncilla stands on the force plate with OptoForce sensors mounted to the tips. The force
plate uses a precision force torque sensor.

the feet, i.e., the endeffectors e j, are calculated by using simplified forward kinematics. We neglect
compliance and double connection in the knee, the actual calculations can be found in the appendix
Subsection A.1. The forward kinematics need magnetic encoder values for the joint positions q, as the
motor positions p do not capture enough information about the joints actuated by the cable mechanism
(q2 and q3). We use this approach to compute the CoP throughout the whole presented work, which
means as soon as the Oncilla moves, the CoP is only a rough estimation since we neglect forces created
by moments and torques.

For the CoP calculation of the force plate, we always calculate the CoP relative to the center of the
plate, thus the endeffector positions are assumed to be constant over the whole time. This assumption
highlights a drawback of the force plate which can deliver reliable data only when the Oncilla is keeping
its feet on the same position relative to the plate center, so we cannot use it for actual walking.

Figure 2.5 shows how the CoP trajectories generated from the force plate data and the OptoForce sensors
look for different recordings. The shape of force plate and OptoForce trajectories are rather different
and the OptoForce trajectories vary a lot from one recording to the next. In Figure 2.6 we can see
that direction changes of the different trajectories happen analogously, such that both sensor modalities
contain enough information to allow the computation of useful feedback.
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Figure 2.5.: The plots show the variations between CoP trajectories of the OptoForce sensors and the
force plate. The OptoForce recordings differ from each other as each new ground placement
changes the angles between force sensors and ground. The recordings also show that the
weight of the Oncilla is not equally distributed, since despite using symmetric movement
trajectories, the CoP trajectories are not symmetrical. The Oncilla’s head points to the right.
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2.5 Training Data Generation

To record training data, the Oncilla performs simple sideway swaying movements. They are symmetric
movements as both knees on the same side receive the same command. First one side bends down, lifts
up again, then the other side performs the same. We repeat this movement until enough data points
are collected, which takes about 15s. One can find a performance of training data generation in the
video [41].
For both sensors, OptoForce and force plate, the CoP trajectories vary over different placements of the
robot (as can be seen in Figure 2.5). Every time we place the Oncilla on the ground, we have to record
training data again: For the OptoForce sensors, the angle between sensor and ground changes every
time and the legs lock in different positions, both because of the included compliance. Regarding the
force plate, the position of the feet relative to the center of the plate changes with every replacement
and therefore the recorded trajectory varies as well. Still, the force plate records more reliable inter trial
data.
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Figure 2.6.: The depicted CoP trajectories were recorded over time for both dimensions of the CoP. The
comparison of the OptoForce sensor trajectories with the force plate trajectories shows that
direction changes of the different trajectories happen analogously.
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3 Control Strategies for Locomotion
For the feedforward command, we will use the idea of central pattern generators in the way that we
create a rhythmic movement generator and modulate it using movement primitives. The feedback will
rely on information about the center of pressure, a commonly used criterion for stability.

3.1 Balancing Controller

We want a simple balancing controller as feedback whose output works additive to the feedforward
commands, which means it does not modulate the feedforward component. The feedback shall be based
on the information gained from force sensors which we cumulate in the center of pressure. These
thoughts lead to the general setup of

uFB = fFB(c).

As dim(uFB) > dim(c), fFB is unfortunately not a unique function, as (infinite) many joint positions
result in the same CoP. Thus, we have the same problem as usually encountered in inverse kinematics,
leading us to use the same approach to resolve it: We will learn a forward model fc matching joints
to CoP values. The Jacobian of this forward model will allow us to calculate approximate solutions for
the inverse model. In more detail: Given the recorded training data, we want to learn a model that
consumes the input vector ∆c= [∆cx ,∆cy]T with ∆cx = c∗x − cx and ∆cy = c∗y − cy and predicts changes
of the motor position command (∆u).
To implement this idea, we learn a forward model fc that uses the actual motor positions p and velocities
ṗ to predict CoP coordinates c̃, i.e. c̃ = fc([p, ṗ]T ). Subsequently, we use the Jacobian J of this forward
model fc to approximate the inverse function fFB, similar to inverse kinematics solutions. Given the dif-
ference ∆c between a desired CoP c∗ and the actual current CoP c, the inverse approximation calculates
∆u, a change for the feedforward command. A depiction is shown in Figure 3.1.

p, ṗ
forward model

fc

derivation
J

inverse model
fFB

∆c - c

c∗

∆u

c̃

Figure 3.1.: To calculate the feedback update, we use a linear forward model fc that maps the motor
position p and velocity ṗ to the CoP c̃. The derivation of this forward model is used for an
inverse model fFB. It takes the difference between the actual CoP c and a desired CoP c∗ and
predicts an update for the feedback command∆u.
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Figure 3.2.: RMSE as percentage of data range is computed depending on the chosen k. As the RMSE is
lowest at k = 0.005 for both CoP dimensions, this value seems to work best for our model.
For all depicted results, n= 2000.

3.1.1 Learning a Forward Model

In model learning, we approximate a function fc that maps input data X to output data Y. In our case,
input parameters for the forward direction are the motor positions p and output labels are the CoP
coordinates cx and cy . Recordings of random Oncilla movements indicated a non trivial relation within
the data, thus we decided to use Locally Weighted Regression (LWR).
LWR has the advantage of not fitting a global solution but a linear local one to data points close to the
current input r. According to Atkeson (1997)[42], a general setup for LWR is to calculate the scalar
weight wi for each data point xi by applying a kernel function K(·) to the weighted distance d between
input query r and data point xi

wi = K(d(xi, r)).

Weighting the training data leads to zi = wixi as entries of Z and vi = wiyi as entries of V. To predict the
output label y(r), linear regression is used on the weighted training data

y(r) = rT (ZT Z)−1ZT v.

In our LWR implementation we use a squared exponential kernel for K(·) and simple subtraction for the
distance function d. So for calculating the weights we yield

wi = exp((xi − r)h(xi − r)T ).

Two open parameters have to be set, i.e. the bandwidth k and the number of training samples n. For
evaluating the forward model and tuning the parameters, we tried a set of different reasonable parame-
ters and calculated the Root Mean Squared Error (RMSE) to see how well the predictions matched the
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actual label. Also, we experimented with the approximated velocity ṗ as additional input, which showed
to be useful for creating a better LWR model (see Appendix A.3), probably as it indicates direction of
movement and the CoP trajectory varies depending on that, especially for the OptoForce recordings as
can be seen in Figure 2.5.
In Figure A.3, one can see the tendency for an increasing parameter n reducing the RMSE, thus a value
as high as possible is preferred. Unfortunately, Figure A.4 shows the calculation time of LWR for a single
two dimensional CoP prediction and thus a backdraw of LWR: There is a tradeoff between the amount of
training data and precision in predictions. As we control the Oncilla with 200Hz, all computations and
the communication have to be done within 5ms, limiting us to n= 2000 training data points.
With n fixed, we simply evaluated parameters in the range from 0.2 to 0.0005 for the bandwidth k. The
results, depicted in Figure 3.2, let us set k = 0.005.

3.1.2 Jacobian

Many approaches for inverse kinematics require the derivation of the forward model. As LWR provides
a local linear forward model

y= Ax+ b,

the derivation of the Jacobian is simply A. To evaluate the LWR parameters regarding the quality of the
Jacobian, we use the previous CoP ct−1, the current Jacobian Jt and the difference between current and
previous state to calculate the current CoP c̃t and compare it with the actual current CoP c to asses the
quality of the prediction:

c̃t = ct−1 + Jt([pt , ṗt]
T − [pt−1, ṗt−1]

T ).

Some additional smoothing gives satisfying results for the Jacobian predictions, as can be seen in Fig-
ure 3.3.

3.1.3 Inverse of Forward Model

Two common approximations for inverse kinematics are Jacobian transpose and pseudoinverse. The
Jacobian transpose approach with feedback update

∆u= βJT∆c

is a rough approximation. Still, for a sufficient small stepsize β it reduces the difference between the
desired CoP c∗ and the current CoP c, ∆c= c∗ − c, thus it brings us closer to our desired position c∗.
Using the pseudoinverse to calculate the feedback update

∆u= JT (JJT )−1∆c

is a more precise and hence the preferred approach, but it tends to have stability problems. To avoid
singularities, we use a damped pseudoinverse:

∆u= JT (JJT +λI)−1∆c.

We can benefit from the higher precision as we calculate only one step of the inverse kinematics approach
before we execute feedback directly on Oncilla. Additionally, the pseudoinverse allows for null space
constraints which allow to specify e.g. joint limits in the future.
The two inverse possibilities are compared to each other in the simulated balancing controller evaluation
in Subsubsection 4.1.1.
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Figure 3.3.: Results for Jacobian prediction with k = 0.005, compared with the actual CoP and the pre-
dictions of the forward model. Smoothing is required to yield satisfying results when using
the Jacobian.
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3.2 Walking Gait Generator

Current research indicates that in animals, CPGs create a rhythmic movement from a simple linear input.
For our control system, we want to use such a CPG for generating the feedforward command.
Thus, we need to create a rhythmic gait pattern. A desirable feature of such a gait is its dependency on
as few parameters as possible.
Approaches for gait generation range from using simple sinusodial functions to more elaborated ap-
proaches like a mixture of oscillating functions, which exist in various forms, such as a mixture of
Hopf-oscillators discussed by Degallier [11].
We use different theoretical approaches on generating a forward gait: a hand-tuned version with si-
nusodials and a learned movement primitive based on the hand-tuned gait. In the final discussion
(Subsubsection 5.3.3), the movement primitive approach is extended to a stochastic model, where only
theoretical ideas are presented. Real robot experiments are part of future work.

3.2.1 Gait Properties

The different gaits used by animals to locomote, for example trot, walk and gallop of horses, can be
classified into different categories: Gaits are called symmetrical when right and left leg of a pair move
alternatingly, while they move at the same time in antisymmetrical gaits. The categories of static and
dynamic gaits have alreade been introduced.
To describe the actual pattern of a gait, one usually distincts between legs being in stance phase or in
swing phase. One also denotes the events switching the phase, for instance, lifting and placing the legs.
A full walking cycle includes the two phases of all legs, thus a quadruped gait covers eight events, lifting
and placement of all four feet.
Hildebrand [43] uses the duty factor and a phase offset for each leg to mathematically describe gait
patterns, reducing the amount of specification parameters. Some examples are illustrated in Figure 3.4.
The duty factor is calculated as the percentage of stance phase of the whole walking cycle by

duty factor= stance/(stance+ swing).

If a quadruped’s gait has a duty factor larger than 50%, it is called walk, and run in the other case. For
a static stable gait of a quadruped, we need at least 75% stance phase, as at all times during the whole
cycle at least three legs have to be on the ground to give static stabilization. Such a gait is called crawling
or creeping gait.
The phase offset denotes when either the foot placement or lifting happens relative to that event of a
chosen reference leg (usually the left hind leg, LH). Only one of the two possible events is required, as
the other one can be calculated given the phase offset and the duty factor.
The difficulty of a creeping gait is that all legs have a different phase, while for example in trot, always
two legs (the diagonal opposite ones) share the same phase, reducing the amount of distinct timepoints
with occuring events.
McGhee [2] examined the stability of the theoretically possible gaits resulting from permuting the leg
event order of creeping gaits, as not all leg event orders result in stable gaits. A common leg movement
order that is actually observed in animals (for example in horses) is LH, LF, RH and then RF, which is the
one we used for the implemented gaits.

3.2.2 Hand-tuned Mixture of Sinusodials

One of the simplest approaches to create a gait is a mixture of different sine curves. Each of those
sinusodial curves has at least two parameters, center point and amplitude. To allow a larger variation of
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Figure 3.4.: The figure shows several gaits described according to Hildebrand’s mathematical gait def-
inition9. The black parts mark the respective foot being in contact with the ground. The
depicted gaits are not statically stable.

shapes, we also introduced a start and an end point for each sine function, allowing the scaling of the
rise and the decline phase independently.
The shape of the resulting trajectory τh is based on results from Sproewitz et al. [39], as they were
obtained using a similar leg construction as the one of the Oncilla. Sproewitz et al. show that gaits
having a double knee-peak allow faster locomotion, with one peak during swing to shorten the leg such
that it lifts off the ground, and another one during stance, supporting the weight balancing. To use it as
a creeping gait, we re-scaled the phases such that each leg has 75% stance phase, as we are aiming at a
static walking gait. The parameters for this approach were hand-tuned and the results are discussed in
Subsubsection 4.2.1, including further adjustments and refinements.

3.2.3 Mixture of Von Mises Basis Functions

The chosen sine approach resulted in a large amount of nonlinear parameters. This nonlinearity turns
parameter tuning into a hard task. Thus, a linear representation of the handcrafted trajectory is pre-
ferred.
Movement primitives (MPs) have this appealing feature, as well as being a compact parametric repre-
sentation of a (movement) trajectory τ satisfying our other requirement for our gait generator. MPs have
been introduced by Ijspeert [44]. A walking gait trajectory τ is represented by values yz for each phase
step z along a walking cycle, thus τ= y1:Z . Each trajectory point yz is specified by a linear basis function
model Ψ, i.e. yz = ΨT

z w with w weighting the basis functions and thus being the compact representation
of the trajectory.
9 taken from https://upload.wikimedia.org/wikipedia/commons/c/cf/Gait_graphs.jpg
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Depending on the chosen basis functions, MPs can model stroke based or rhythmic movements. Since
for a gait we desire the latter, we define Ψ as a matrix of von Mises basis functions ψV M

i with

ψV M
i (z) = exp
�

cos(2π(z − ci))
h

�

.

The Oncilla is a position controlled robot and as we directly model a position trajectory, we do not need
differential equations allowing us to integrate positions from velocities or acceleration. Thus, we have a
simple von Mises mixture model representing the rhythmic pattern with only a few parameters, namely
the weights w.
Those model parameters are calculated using the handcrafted trajectory τh from Subsubsection 3.2.2 as
labels Y = y1:Z for a damped regression such that

w= (ΨTΨ +αI)−1ΨT Y.

The linearity of the parameters is another benefit of MPs. The output is less sensitive to parameter
changes compared to nonlinear models and more stable, a useful feature when experimenting directly
on hardware.
In this representation, two hyperparameters have to be tuned manually: the number of basis functions
n and the bandwidth h. The evaluation of parameter tuning is discussed in Subsubsection 4.2.2.

3.3 Feedforward Controller with Tactile Feedback Error Correction

To create a more robust and thus a more versatile controller, we combine the balancing controller and the
gait generator. The gait pattern serves as straight feedforward command, while the balancing controller
will add feedback to stabilize the movements. The percentage of added feedback is weighted by ω. So
each command u is calculated as

u= (1−ω)uF F +ωuFB,

with the feedforward command uF F , the feedback command uFB and a scalar weighting ω. The theoret-
ical setup is depticted in Figure 3.5.
To set the weight, a first step is the hand-tuning of ω to a stable solution. An alternative approach is
learning the weights together with the gait parameters. The most advanced feedback weighting is an
adaptive ω that changes according to the variance of a stochastic feedforward command. This stochastic
feedforward command is encoded in a distribution over trajectories. A small variance suggests that we
can have a strong belief in the command and thus need little or no feedback. The weighting ω may
also depend on the reliability of the feedback itself, as for example a bad prediction of the CoP by LWR
indicates that the Jacobian is also less reliable, thus the predicted feedback may not be helpful. Those
ideas are also discussed in Subsubsection 5.3.1.
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∆u
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ω

p motor position u command signal

q joint position uF F feedforward command

F force values uFBfeedback command

J Jacobian ∆uchange of feedback

α weighting of ∆u ∆c change of CoP

ω weighting of feedback

Figure 3.5.: The diagram shows our concept of a feedforward controller with tactile feedback error cor-
rection. The parameters of the gait Θ determine the commands uF F generated from the
feedforward component (the gait pattern). Based on the current joint positions q and the
measured force values F of the system, the required motor position change ∆u is computed
using the inverse model. This feedback is needed to bring the CoP of the system to a desired
position. It is further weighted by a stepsize α and added to the current motor positions p
of the system. The resulting feedback command uFB of the balancing controller is combined
with the feedforward command uF F using a weighted sum controlled by factorω.
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4 Experiments and Results
Both of the components introduced in the previous section, the feedforward walking gait and the bal-
ancing controller, were tested individually before we finally combined them to achieve a full system
setup.

4.1 Feedback Generation and Model Learning

Before applying feedback directly to the robot, we compared the two possible approaches, pseudoinverse
and Jacobian transpose, by evaluating them on recorded data. Afterwards we only used the pseudoin-
verse on the Oncilla.
As the recorded data includes only symmetric movements of the knees, we simplified the feedback
calculation as well. We calculate only two feedback values, one for the left and one for the right side,
and apply them to the respective knees.

4.1.1 Evaluation of Inverse Model in Simulation

For a simple simulated evaluation of the feedback controller, we used the calculated command as regular-
ization. Thus, we start with a point from the training trajectory where the Oncilla stands in a one-sided
bent position. As we have no force data in simulation, we use the prediction of LWR as real CoP. Also we
have no feedforward command, so the feedback weight ω is set to 1, thus, the next command is simply
uFB, i.e.,

u= uFB = p+∆u,

thus it is completely determined by feedback. As we only use recorded training data, p is the command
u from the previous time step in this case.
For such a setup, the values for CoP prediction and feedback simply diverge up to infinity for the Jacobian
transpose as well as for the pseudoinverse. The pseudoinverse also has stability issues, as p reaches
values far away from training data points of LWR. This circumstance makes the weights very small,
which results in matrix entries close to zeros when calculating the pseudoinverse.
So we regularize the feedback by interpolating linearly to c∗ and taking only a small step with size σ
along this direction when computing the feedback update

∆u= J‡σ(c∗ − c).

Due to the linearity, weighting the interpolation has the same effect as weighting the amount of feedback
change applied to the current joints with α when calculating the command

u= p+ J‡σ∆c= p+αJ‡∆c.

With a small stepsize σ = 1/10, both methods converge, and no stability problems with the pseudoin-
verse are observed.
For a similar behavior of the pseudoinverse and the Jacobian transpose approaches, the weight β for the
Jacobian transpose has to be set to the small value of 0.00001. Examples for diverging, converging and
slowly converging results can be seen in Figure 4.1.
Both methods show oscillations appearing at the beginning of feedback application. The oscillations
decline with a smaller stepsizeσ, but a smaller stepsize also lowers the rate of convergence. For example,
with a stepsize of 1/500 the feedback does not converge within 2000 test steps, which is equal to 10
seconds. As both methods show similar behavior and the pseudoinverse has no stability problems, we
used the pseudoinverse for the remaining experiments.
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Figure 4.1.: The divergence and convergence of feedback depends on the stepsize σ. Figure a) gives an
example for divergence of the two inverse kinematics approaches due to a too large stepsize
σ. As it can be seen in the other two examples, both approaches converge with a smaller
stepsize. The smaller the stepsize, the more time steps the convergence takes.

4.1.2 Practical Evaluation of the Balancing Controller

For a practical evaluation of the feedback controller the real robot is used. Initially, the Oncilla is in a
one-sided bent position and when the feedback controller starts. As in the simulation, no feedforward
commands are applied. Thus the next command is always the previous one plus the calculated feedback
change. The feedback is not filtered and but is bounded to protect the joints (it still allows jumps up to
30% of the joint movement range). As we stated already, we use only the pseudoinverse J† for practical
evaluation.
With such a setup, the Oncilla shows two different typical behaviors: In case the stepsize σ is too large,
the movements start to oscillate. In case the stepsize is too small, the Oncilla gets stuck and barely moves
itself.

Using the Force Plate for Feedback Generation

Using the self constructed force plate worked quite directly out of the box: Hand-tuning of the stepsize
σ showed stable solutions with values from 1/500 to 1/700, which means that for this parameter range,
the Oncilla brings its trunk back to a horizontal position. As the values are rather small compared to the
ones used in simulation, the small oscillation at the beginning is not noticeable anymore.
Additionally it is possible to push the Oncilla slightly, getting a response by the Oncilla creating contra
tension. Also one can force reactions by applying force directly to the force plate (See video [45] for a
short demonstration). As the applied feedback is symmetric, the Oncilla can only correct forces working
along the y-dimension of the Oncilla frame.
Thus, a proof of concept is done for the feedback controller, as the Oncilla can (re-)balance itself.

Using the OptoForce Sensors for Feedback Generation

Switching from the force plate to the OptoForce sensors worked less intuitively. One problem was that the
force plate started to vibrate when the Oncilla moved, causing too much noise in the OptoForce sensors.
Thus, we performed experiments using only one of the two sensors, either force plate or OptoForce
sensors.
Another problem was rooted in filtering: As the CoP values calculated from OptoForce sensors are quite
noisy, we tended to filter them stronger than the force plate. Such strong filtering created a delay in
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the CoP position that was large enough to let the Oncilla oscillate, as it overshot the desired position
constantly.
After solving these two problems through extensive parameter tuning, the Oncilla was able to lift itself
up to a balanced position and also reacted to pushes. As the OptoForce sensors work sufficiently and also
deliver data that allows us to validate our feedback controller concept, we will solely use the OptoForce
sensors for all following experiments. They allow for actual locomotion and are closer to the idea of an
autonomous walking robot.
The next step in evaluating the balancing controller was to add a constant feedforward signal uF F . We
lowered ω to values between 0.5 and 0.1 to have at least 50% feedforward and tried to find a stable
parameter setting in this range for computing the commands

u= (1−ω)uF F +ωuFB = (1−ω)uF F +ω(p+αJ†∆c).

In this setup, it was not possible to tune the amount of added feedback controlled by α to gain a stable
solution. The knee motors switched from no reaction to oscillation immediately without a working
solution inbetween (in the range of α = 1/15 to 1/100). During the oscillation, we also noticed some
friction in the leg springs, holding the Oncilla back from quick leg stretching as well as making small
changes induced by feedback less precise, leading to delayed and thus irregular changes of the knee joint
position.

4.2 Gait Generation

Tuning gaits has to be done very carefully, as the Oncilla cannot stumble and fall. In case of the leg
movements not being perfectly adjusted to each other, they exert twist movements to the Oncilla. Such
motions are dangerous for the plastic parts and the joints.

4.2.1 Handcrafting a Stable Gait

The basic ideas for a handcrafted gait were that the shoulder joint in the leg has to move backwards
in the stance phase and forwards during the swing phase. The implemented trajectories can be seen in
Figure 4.2a.
The knee has to flex during the swing phase to lift the foot off the ground and then again to flex during
the stance phase for balancing the robot. So we used the example trajectory presented in [39], Figure 3,
as reference. We changed the shape of the gait to the one of a creeping gait by stretching the stance and
shortening percentage of the swing phase (25% swing and 75% stance phase to be able to constantly
rely on static stability). The resulting knee trajectory is shown in Figure 4.2b.
This simple approach does not provide satisfying results, despite trying different ways of modulating
the contraction during stance phase. The hind legs were able to move to the front, but without ever
actually leaving the ground. The front legs were stuck to the ground and blocked forward movement,
which sometimes even resulted in shifting the Oncilla backwards. An example recording can be seen in
video [46].
Taking a closer look at how the trajectories of the legs are combined, one can see that when the hind legs
lift, the diagonal front leg is bent and the other two legs have the same amount of contraction, leading
to a weight shift to the contracted front leg, which makes it possible to actually move the hind leg. For
the front legs, the hind leg on the same side is contracted and both legs on the other side have the same
length, resulting in too much weight on the front leg such that it is not able to move forwards.
The next, more elaborated control variant varies sine functions more precisely and uses them only par-
tially. The different sine curve parts can be specified by setting their start points, peak points, end points,
as well as their amplitudes, which allows to specify the gait events such as foot lifting. As we have a large
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(a) shoulder trajectory
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Figure 4.2.: In the first simple sine approach, each shoulder trajectory is a sine curve that is clinched such
that bringing the foot to the front (negative joint angle values) in the swing phase takes 25%
of the walking cycle. The knee trajectories contain two different sine function parts, one that
contracts the leg to 90% of what is possible for the swing phase and one that contracts the
leg to 65% during the stance phase. All knees have the same trajectory.
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number of parameters, the used number of sine curves was difficult to tune. Setting the values had to
be done carefully, as inadequate trajectories easily result in very unstable and for the Oncilla dangerous
situations such as falling, which endangers the hardware.
With this approach, the Oncilla was at first still not able to lift its feet visibly off the ground. To solve
the problem, we investigated the actual static behavior of the weight shifting by letting a stable standing
Oncilla move slowly to distinct positions. The specifical movements revealed that a leg has to contract
90% to allow the lifting of the diagonal opposite front leg. Additionally, it is important to stretch the
leg that shall be lifted before knee contraction, to actually shift the weight to the contracted diagonal
opposite stance leg. Also the shoulder angle of the swing leg is important: If it is already too forward
when lifting the leg, the foot shuffels on the ground, if it is too far behind when the knee stretches, the
foot has early ground contact and pushes the Oncilla backwards.
So we changed the trajectories to have the required 90% contraction during stance phase, having this
contraction already before the swing leg starts to lift and stretching the leg before the swing leg touches
the ground again. We also adapted the shoulder trajectories, such that the forward movement in the
swing phase is shorter than the actual swing phase, as flexing and stretching of the leg should happen
when the leg is not moving to the front. The resulting trajectories are depicted in Figure 4.3. In contrast
to the simple first approach, not all legs have the same trajectory: The trajectories of the hind legs differ
from the ones of the front legs which comes from the order in which the legs enter the swing phase.
The resulting walking gait brings the Oncilla forward and three of the four legs have an actual in-air
swing trajectory. Unfortunately, the huge contraction of the knees during stance phase results in a rather
shaky gait with extreme movements. A demonstration can be seen in video [47] and some pictures are
shown in Figure 4.4.
In the video, one still observes a few problems which are further discussed at the end of this thesis.
Despite symmetric trajectories, only three legs have a continuous swing phase, the left hind leg falls back
on itself when it is lifted. Also, the Oncilla often does not walk in a straight line, but tends to have a
slight curve when walking several steps. Another observed problem is a backwards sliding of the feet
due to which the Oncilla moves forward less than it actually should. Nevertheless we constructed a basic
gait that actually brings the Oncilla forward and enables further experiments regarding gaits.

4.2.2 Modulating a Stable Gait

To have a linear and also a more compact representation of the handcrafted model, we used von Mises
basis functions and learned the weights of the basis functions as described in Subsubsection 3.2.3. The
number of basis functions was hand-tuned. For the solutions depicted in Figure 4.5, the shoulder tra-
jectory is encoded by 12 basis functions and for the knee trajectories we used 16 basis functions. As it
mimics the hand-tuned trajectory, the mixture model results in almost the same walking behavior as can
be seen in the video [48].

4.3 Combining Feedback Controller and Feedforward Gait

With a working gait and balancing controller, we now want to evaluate if the balancing controller can
improve the stability of the gait or simplify the parameter tuning. As the walking gait itself is already a
stable gait, the evaluation of the effect of the feedback controller is done qualitatively by observing the
gait and quantitatively by evaluating the recorded CoP trajectories and joint trajectories.
The first very naive approach is to simply combine the constructed balancing controller and the feedfor-
ward walking gait. Figure 4.6 shows how the recordings of CoP trajectory differ from the CoPs that were
recorded during actual walking.
The feedback applied in the beginning was very shaky and thus dangerous for the joints, an example
of which can be see in the video [49]. Hence, we filtered the predicted commands by using up to 100
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previous time steps. Otherwise, an evaluation of the stepsize α would not have been possible for the
range where the feedback actually had an influence on the gait.
The problem with additive feedback is that we have to lower the actual feedforward commands, because
feedforward and feedback both give us valid positions, a sum of those values does not result in a valid
position anymore. So we weighted the feedback and the feedforward commands with ω and 1 −ω,
respectively. This means that effectively, we do not execute 100% of the feedforward gait. For example,
with an ω set to 1/10, only 90% of the gait are executed. The execution of this example is shown in
the video [50]. The feet barely leave the ground during the swing phase. The video should be seen as
a comparison to the video [51] where we add feedback on top of the 90% executed gait. For learning
the LWR model, the question is which of those two possbilities should be used as training data. We tried
both possibilities in a short evaluation and could not find significant differences regarding the resulting
gait.
Applying the feedback with the current setup does not yet give any noticeable improvement to the gait
when observing the performed gait itself. But the recorded joint data shows that the created feedback
actually changed the joint positions of the gait. Figure 4.7 shows how the trajectories of the original
hand-tuned gait (purple) look in comparison to the feedforward component (turquoise), which is the
same trajectory performed with only 90%, and two recordings from a full walking system including
feedforward and feedback (red). The latter is depicted twice to give a notion of how much the feedback
can differ from one recording to the next. So we can see that in general, applied feedback leads to
the knees being more flexed during the whole time. The data also shows that the data recorded with
100% feedforward gait is closer to the one seen during feedback application, and should thus give better
training data for the LWR model. To improve the performance of the executed gait visibly, the feedback
should be modified, which is discussed in the Subsubsection 5.3.1.
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(a) shoulder trajectory
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(b) knee trajectory

Figure 4.3.: For the improved sine function approach, several overlapping, scaled sine curves form tra-
jectories for shoulders and knees. In comparison to the first approach, the shoulder uses a
smaller fraction of the cycle to move to the front (negative joint angle values). The hind leg
trajectories also have small bumps during the stance phase, an attempt to counteract the
backwards movement of the foot which results from contracting the knee. The knees are
nearly fully contracted during their own swing phase as well as during the swing phase of the
diagonal opposite leg. Before its own swing phase, a leg stretches fully to shift the weight to
the diagonal opposite leg. The trajectories of the hind legs differ from the trajectories of the
front legs due to the leg order within the walking cycle.
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Figure 4.4.: Snapshots showing the hand-tuned gait
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(b) front knee trajectory
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(c) hind knee trajectory

Figure 4.5.: The modulation done with von Mises basis functions is compared with the handcrafted tra-
jectory. 12 von Mises basis functions encode the shoulder trajectory, both of the knee trajec-
tories use 16 basis functions each. The number of basis functions is hand-tuned, the weights
are learned by using regression. The mixture model using von Mises basis functions is able
to modulate the hand-tuned gait appropriately and is thus preferred, as it is linear in the
parameters in contrast .
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Figure 4.6.: The CoP data recorded while walking for training data generation is compared with the
recordings from walking with applied feedback. The training data is generated by using
the feedforward gait. In this plot, the parameter values are for the stepsize α = 1/5 and for
the feedback weightingω= 1/10 during the recording with applied feedback. The feedback
does not seem to visibly influence the gait. The head of the Oncilla points to the right.
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(b) left hind knee trajectory

Figure 4.7.: Recordings from the gait with applied feedback (red) are compared to the hand-tuned gait
when executed alone, once as full gait (purple) and once with only 90% of the feedforward
command (turquoise). Two different trajectories of the combined system are plotted to give
a notion of how much recordings differ from each other due to stochasticity of the system.
The feedback decreases the stretching of the knees. Hence, the Oncilla is in a more crouched
position compared to the original hand-tuned gait.
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5 Discussion

5.1 Conclusion

We evaluated stand-alone approaches for balancing and walking and tested the effects of a combination
of the two. The balancing controller worked quite well for such a minimalistic approach. It uses a
small training data set and predicts a reduced set of knee joints and yet it rebalances the robot after
disturbances from the environment. Using the center of pressure as criterion for feedback is quite limited
and thus will not be sufficient anymore when using dynamic gaits, where there may not exist a CoP at
all during flight phases. Conceptually, the CoP is a criterion for statical balance and thus may be working
against balance even in cases where dynamic gaits have a defined CoP.
The feedforward gait was hand-constructed and required a lot of tuning and experimenting until result-
ing in a movement actually bringing the Oncilla forward. One of the results was that the hind and front
legs need different kind of trajectories. Also, not all flaws of the gait could be removed despite extensive
adapting of the trajectory, as for example, the Oncilla’s weight still does not rest on the right front leg
when the left hind leg is supposed to be lifted, resulting in the Oncilla tilting backwards temporarily. We
also showed that it is possible to learn parameters such that the gait is modulated by rhythmic movement
primitives.
When combining those two components, some specific details that made the balancing controller work
were not sensible anymore, as for example the contact angle of the force sensors switched constantly
during walking. Also the way we combined feedforward and feedback worsened the constructed gait, as
it was not fully executed anymore.
In the initial results we demonstrated that a combined approach results in suitable walking gaits, which
have to be further improved in the future.

5.2 Technical Challenges of the Oncilla as Platform

We noticed some problems originated in the hardware system, making it difficult to control the robot.
A general problem is the passive compliance of the system, it makes precise control harder, especially
when we have to use a kinematic model. The inverse kinematics can only be approximated. For a static
stabilized gait, exact control is preferred.
The most interfering passive compliance is the one located in joint q4 in the foot. As the joint has
no sensor, it is not possible to figure out the angle of the foot, on which the measurements of the
OptoForce sensors depend, resulting in sensor data that varies. A possible solution could be to fix this
joint, which would result in a similar structure as seen on the HyQ or the StarlETH, but remove some of
the biologically inspired compliance.
Due to their constant stiffness, springs may, overall, not be the best solution of including compliance to
a robot, at least not if it is supposed to fulfill various tasks with different requirements on precision and
compensating abilities, as for choosing springs, one has a trade-off between those two options. Active
impedance as an alternative is discussed and shown to be useful in [30].
Another problem is the actuation of joints q2 and q3 by a cable driven leg retraction. Ideally, loosing the
cable lets the springs extend the leg. However, the current springs are not strong enough to fulfill their
task in all situations where the cable is loosened. Already about 2/5 of the Oncilla’s weight impedes a
full stretching of the leg, leading to a loose cable and another joint configuration than expected. Thus,
in case the following commands require a flexion of the knee to balance, the command will not directly
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result in the desired response, as first the loose cable will be rolled up, leading to no change of the actual
knee flexion.
A demanding property is the weight distribution within the robot. The weight is not distributed equally,
and not even symmetrically. This fact is quite obvious when taking a look at the walking gait, where the
swing phases of the right legs can perform quite well, while the hind left leg has an interrupted swing
phase due to the weight of the Oncilla not being shifted enough to the front right leg. Also, the weight
distribution is not very beneficial regarding the lifting of the legs themselves, as the diagonal opposite leg
has to bend at least 90% to allow the foot to leave the ground. This is even more difficult during walking,
as with a momentum working in another direction, even more contraction of the diagonal opposite leg
is necessary. These required extreme movements which increase the danger of twisting the joints of the
Oncilla.
Due to the bio-inspired leg construction, flexing the knee does not retract the leg linearly. When work-
ing in joint space, this makes it difficult to plan and hand-tune a gait trajectory that does not include
unwanted propelling or acceleration, as flexing the knee always moves the foot backwards.
An additional drawback of using the robot as an autonomous walking system is the lack of an IMU in the
current setup. Thus, we cannot determine the robot’s position relative to the world coordinates.

5.3 Future Work on Feedforward and Feedback Control

As the current setup is only a first and very basic approach to a walking Oncilla, there are much oppor-
tunities for all components to be improved. Some ideas and suggestions are presented in this section.

5.3.1 More Elaborated Feedback

The first step to improved feedback should be to try different movement trajectories for the generation
of training data; including the walking trajectory of the Oncilla, as it will produce the training data being
closer to what LWR receives during application. Another attempt could be simply lifting the legs, since it
provides the information of how the CoP changes according to lifted legs. More elaborated training data
could be gained when using online learning.
Another idea is to refine the model predictions. Right now, we use a quite limited set of predictions: We
only correct the knee motor position und we use the same prediction for both knees on one side. So one
of the next steps should be to expand the LWR training data and prediction dimension such that each
knee is treated independently. Further steps could include both shoulder joints as well. Especially the
q0 joints could be interesting for walking on uneven terrain, because small steps sideways can help to
rebalance the robot.
As we use the pseudoinverse for calculating the feedback, we could make use of the constraints that
can be included in this method. A constraint handling the joint limits of the Oncilla could force other
solutions as response, which could lead to smarter balancing adjustments of the Oncilla. For example,
currently the setup often tries to contract a fully contracted leg even more. Instead, lengthening the
other legs should be an alternative solution.
Using Gaussian processes (GPs) instead of LWR could also lead to improved feedback. A well tuned GP
should yield predictions faster than LWR, since a GP prediction requires less mathematical calculations.
Additionally it provides uncertainty that could also be used for adapting the weightingω of the feedback.
However, for the previously mentioned online learning, GPs could be a less suitable solution regarding
their longer training time compared to LWR.
A more elaborated approach could be to use the balancing controller as a real controller that tracks a
given CoP-trajectory. For this approach, we would have to create a CoP-trajectory that shifts the weight
towards the diagonal opposite leg of the next swing leg. Such an approach would be similar to [52]. In
this case, the training data could include each leg bending separately, giving data of how these move-
ments influence the position of the CoP. A well functioning CoP tracker can also allow the steering of the
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Oncilla towards desired directions which can be done by defining a respective CoP trajectory. Thus, for
such application cases the feedback component would have a higher weighting ω than it does currently.
With such enhanced feedback compenents, we could also experiment with adding the feedback only to
legs in stance phase or only to legs in swing phase versus constantly adding feedback to all legs. A more
elaborated approach to set the weighting for the feedback would be to learn ω together with the gait
parameters which is discussed in the next section.

5.3.2 Learning Gait Parameters

Presently, the gait needs some improvements. The sliding of the feet shows that the leg trajectories are
not coordinated well enough with each other, so the shoulders could make a compensating movement
when the knees are contracted or stretched. Also, a good trajectory would have brought the Oncilla into
another position where the weight is better distributed, which means shifted more onto the leg such that
the resulting higher friction would reduce sliding.
As hand-tuning the gait is quite hard and has not led to satisfying results thus far, we could now make use
of having a compact representation in form of movement primitives which use von Mises basis functions.
The reduced linear parameter set could be learned by using Reinforcement Learning.
After letting the robot walk for some time, we could calculate the reward for the current gait parameter
set depending on how long the robot can walk, how much distance it covered and maybe, by using
an Optitrack system or an IMU, also the roll and pitch movements which indicate the stability and
smoothness of the gait. Using contact times, which can directly be derived from foot sensor recordings,
would also allow to relate recorded gait data to the duty factor. For example, one could compare stance
phase duration for each cycle and see if it is consistent, as consistency gives a hint of how regular the
current gait is. Further we can regard all contact times and see how closely we actually achieve the type
of gait we intended. Both of these options could help to evaluate the gait and thus generate feedback. It
would be interesting to see if the results can handle the unequal weight distribution of the Oncilla, thus
resulting in a gait with four continuous swing phases.

5.3.3 Probabilistic CPGs (PCPG)

Our general vision is to improve the control system by making use of statistical benefits. This goal can be
achieved by extending the movement primitives to probabilistic movement primitives (ProMPs), where
we do not have a single trajectory τ anymore but a distribution over trajectories. Modulating the gait as
ProMPs results in a probabilistic CPG that delivers uncertainties regarding the current prediction.

Probabilistic Movement Primitives

A probabilistic version of MPs has already been introduced as probabilistic movement primitives by
Paraschos [53]. ProMPs model a distribution over trajectories p(τ), with a trajectory τ being specified
by its values yt for each time step t: τ = y1:T . Like for the movement primitives, each trajectory
point yt is specified by a linear basis function model Ψ, i.e. yt = ΨT

t w+ εy with w being the compact
representation of the trajectory.
Given such a weight vector w, the probability for a trajectory τ is a Gaussian trajectory model

p(τ|w) =
∏

t

N (yt |ΨT
t w,Σy).

As for movement primitives, the handcrafted gait can provide the required training data.
Besides stating variance, ProMPs provide some additional features that could allow a more complex
walking system: In case a multi-dimensional trajectory is used, ProMPs include a co-variance matrix.
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Its entries can be changed, which adapts the co-activation of trajectories. This feature could allow gait
transition, as the phase offset between the different legs could be adjusted.
A more advanced variation could include planning of trajectories in task space and then use via points
to modulate the trajectory such that exact foot placement or step height can be planned.

5.3.4 Probabilistic Feedforward Controller with Adaptive Tactile Feedback Error Correction

The use of ProMPs to modulate the gait brings the advantage of having a variance or better the un-
certainty of the feedforward prediction at each time step. This information can be used to adapt the
weighting ω of the feedback according to the current uncertainty of the feedforward command: When
there is high uncertainty, more feedback may be required than when uncertainty is very low.
Additionally, the quality of LWR predictions can be evaluated as well, for example by comparing the
prediction to the actual CoP. The evaluation can be used to set the weight of the feedback command,
as a bad prediction may indicate a bad LWR model, resulting in a bad Jacobian and thus a less reliable
pseudoinverse. So in case the LWR prediction was far off from the actual CoP, we should use less amount
of feedback.

5.4 More General Ideas for Future Work

Besides the next steps that could be done with the Oncilla, there are many features of other quadrupeds
that seem to be useful for future autonomous systems and hence should be exploited, even though they
are not directly emerging from the current setup.
We could extend or change the current system such that it allows to modulate the transition from swing
phase to stance phase and vice versa. This extension would help in cases of bumps and holes along
the way just like they occur in the outside world. It also could bring our approach closer to biology
than strictly feedforward rhythmic gait patterns. There seems to be a switch between stance and swing
phase induced by feedback from tactile sensing as suggested by [1]. One possibility to implement this
feature would be to use a state machine, as it was done by [15]. Another way, which would be closer
to our current setup, would be the modulation of the rhythmic pattern. For example, Gay [36] achieved
modulation for CPGs by using neural network feedback generated from information about rolling of the
robot which was inferred from a camera or an IMU. Those modulations do not only adapt the phase
length, but also the step height. Such modulations are also done for the Tekken II robot [14].
The CoP is a very mechanical description of balance and it is not very close to how animals make use
of tactile information. A quite simple approach would be to directly use the force measurements of the
feet without including the endeffector position, but instead use joint positions as additional input. This
approach is independent of the Oncilla frame position relative to the world’s frame, thus it does not
require an Optitrack system.
On the hardware side, a flexible trunk would compensate twisting and rotational movements which
emerge from leg movements that are not perfectly coordinated with each other. It could also allow
for bending of the spine which is helpful for running gaits with a flight phase as shown by the Boston
Dynamics Cheetah [54]. Another way to avoid the problem is shown on the fast sprinting robot Raptor
from KAIST [55] which has nearly no displacement between front and hind shoulders, and thus nearly
no trunk at all. Here the question is how a spine would influence the control of the robot. Other features
which current bio-inspired platforms still lack are the ability to adjust joint stiffness by increasing or
lowering body tension. Such an improvement could be useful for instance for the ankle joint when
placing or lifting the foot, because a fixed ankle allows the application of forces that push off the ground.
One of the few robots with such a feature is the hydraulic quadruped HyQ [29], which uses active
compliance and thus is able to vary the compliance during execution.
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Θ
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ω
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α

p motor position u command signal

q joint position uF F feedforward command

F force values uFBfeedback command

J Jacobian ∆u change of feedback

α weighting of ∆u ∆c change of CoP

ω weighting of feedback

Figure 5.1.: This diagram of a probabilistic feedforward controller with adaptive tactile feedback error
correction extends the setup that was already presented in Figure 3.5 by the new block
weight calculation on the left. A function ω = f (σF F ) that calculates the weight ω de-
pending on the variance of the feedforward σF F gait could be part of future work. A fur-
ther possible extension which additionally takes the uncertainty or the error of the feedback
model into account is indicated by a dotted line. In this case, ω will depend on σFB as well,
as denoted in the function: ω= f (σF F ,σFB).
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A Appendix

A.1 Forward Kinematics of the Oncilla

We derived simplified forward kinematics of the Oncilla by assuming a rigid body. This means that we
neglect the compliance in leg segments and in the unactuated q4. Such a simplification is reasonable as
we operate only with slow speed, not compressing the springs passively, and in static stable situations.
Also we do not take the parallel mechanism in the knees into account. The endeffector is calculated
relatively to shoulder or hip coordinates as follows.
For leg 1 and 2, we obtained

x = 6.2 sin(θ1) + 5.5 sin(θ1 + θ2) + 5.8 sin(θ1 + θ2 + θ3),

z = 6.2 cos(θ1) + 5.5 cos(θ1 + θ2) + 5.8cos(θ1 + θ2 + θ3).

For leg 3 and 4, we obtained

x = 8.0 sin(θ1) + 6.5 sin(θ1 + θ2) + 5.0 sin(θ1 + θ2 + θ3),

z = 8.0 cos(θ1) + 6.5 cos(θ1 + θ2) + 5.0cos(θ1 + θ2 + θ3).

The endeffector coordinate for y is always constant, as joint q0 is not used and, thus, the legs do not
move along y direction.
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A.2 Influence of Ground Placement on Recorded OptoForce Data

Depending on the angle α of joint q4 (a depiction can be seen in Figure A.1), the OptoForce sensors give
different measurements despite actually having the same force F ∗z acting on them. As neither the angle
α nor the actual force F ∗z is known, it is not possible to calculate the actual force or to map the measured
force Fz to the actual one.

α
α Fz

F ∗z

Figure A.1.: The measurements of the OptoForce sensors Fz depend on the angle α between the foot
and the ground. Since this angle is unknown and the respective joint is not actuated, the
actual weight on the foot F ∗z cannot be computed.

A.3 LWR Benefit of Adding Velocity

Adding velocity to the LWR input increases its performance, as the results show in Figure A.3 .
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Figure A.2.: RMSE as percentage of data range depends on the amount of LWR training samples. Velocity
as additional input parameter of the LWR model decreases the RMSE by about 50%.
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A.4 LWR Tradeoff between Precision and Speed

While more training data allows LWR to make better predictions, as the results in Figure A.3 show, a
large amount of training data slows the prediction time down, which can be seen in Figure A.4. Thus,
we are limited to about 2000 training data points due to time constraints.
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Figure A.3.: RMSE as percentage of data range depends on the amount of LWR training samples. A larger
amount of training data allows preciser predictions.
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Figure A.4.: LWR prediction time as it depends on the number of training samples. A larger amount of
training data requires more prediction time.
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A.5 Filtering

As we can use only few training data points for LWR and we have a noisy system, smoothing is a useful
tool to recover the trend of the data. When applying the learned forward model, the data from the
different data streams is noisy as well and filtering improves the outcome. The feedback predictions
are still often rather noisy, such that they need filtering again to improve the safety of the robot. Our
experiments showed that finding a suitable filter and tuning it correctly is quite crucial.
One of the simplest approaches for smoothing serial data is the moving average filter with some weight-
ing c, which calculates the value vn as follows:

vn = (1− c)

∑m
i=1 vraw,n−i

m
+ cvraw,n.

While heavily filtered CoP data leads to good results for LWR prediction, the application for a real time
system must be more deliberated: Smoothing the CoP too much leads to a time delay for the position
of the CoP, resulting in a delayed reaction which keeps the Oncilla from balancing properly. Due to the
CoP delay it overshoots the desired position, tries to steer back and overshoots again. So for the CoP
smoothing, we finally used an already available version of the butterworth filter.
Regarding the input data for the LWR model, the velocity signals of the Oncilla seem to be step functions,
having only three different values: velocity when bending a knee, velocity when retracting it, and zero
when the other side is in action. The other filters tend to smooth the edges too much, so we tried a
simple variation of the moving average, the so called moving median, to preserve the sharp edges when
computing the filtered value

vn =median(vraw,n−i, .., vraw,n).

Evaluations on the Oncilla showed that smoothing the velocity data towards a clear step function actually
had a negative influence on LWR. The Oncilla gets stuck in several positions and then reacts slowly to
gentle pushing, as rarer input data points are not known to the model.
The LWR feedback was smoothed using a moving average filter again. To test only the balancing con-
troller itself, 15 previously seen data points were enough. For the combined approach, we had to use up
to 100 previous data points, which is also due to the usage of a larger α, as it gives more influence to
irregularities in the predicted command change.
So smoothing in general helps to improve the LWR performance on the sparse data we have, but it has
to be applied carefully as it may limit the range of training data and thus the space where LWR can work
properly.
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