
Spiking neural networks
solve robot planning
problems
Spiking neural networks zum Lösen von Planungsproblemen für Roboter
Master-Thesis von Daniel Tanneberg
September 2015

Spiking neural networks solve robot planning problems
Spiking neural networks zum Lösen von Planungsproblemen für Roboter

Vorgelegte Master-Thesis von Daniel Tanneberg

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Elmar Rueckert

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den
angegebenenQuellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 21. September 2015

(Daniel Tanneberg)

Abstract
We propose here a novel approach to solve robot planning problems based on spiking neural network

models. The method is motivated by recent neuroscience findings on how rodents create mental plans
for maze navigation and is grounded in the framework of planning as probabilistic inference. In this
thesis, we demonstrate that the proposed spiking neural network is a suitable alternative to classical
approaches and comes with interesting features.

Neural networks can be used in massive parallel computing, e.g., when implemented in neuromorphic
hardware. These brain-like chips consist of thousands of memory and processing units operating in
parallel. However, we are lacking suitable learning rules and algorithms. The developments in this
thesis provide first testable algorithms for real-world robot planning applications.

Arbitrary complex functions can be learned such as dynamic or kinematic models. For that, a spike
dependent version of contrastive divergence was derived to learn non-linear functions with kinesthetic
teaching.

We show that these models can scale to a six-dimensional KUKA robot system, where in addition to
an existing two-dimensional task space planning model two additional models were developed. One of
these models can be queried in both directions, enabling that forward and inverse models can be learned
at the same time.

Obstacles of arbitrary shape can be encoded in form of repelling forces through synaptic inhibition.
Sampling of movement plans is done 4− 60 times faster than real-time, which allows for foraging robot
control, preparing multiple alternative solutions and deciding online which plan to execute.

With the additionally implemented online rejection sampling, we could achieve target reaching errors
of 4% in the modelled operational area. Furthermore, the generated movement trajectories did not
require any post processing. Using bidirectional feedback between task and joint space during planning,
smooth and goal-directed movements were computed at the same time.

i

Zusammenfassung
In dieser Arbeit stellen wir einen neuen Ansatz zum Lösen von Planungsproblemen für Roboter

vor, der auf spiking neural networks basiert. Die Methode ist inspiriert von neurowissenschaftlichen
Erkenntnissen darüber wie Nagetiere mentale Pläne zum Navigieren in Labyrinthen erstellen, und ist
eingebettet im Framework planning as probabilistic inference. Wir zeigen, dass das vorgeschlagene spiking
neural network eine geeignete Alternative zu klassischen Planungsmethoden darstellt und interessante
Eigenschaften mit sich bringt.

Neuronale Netzwerke können für massiv parallele Berechnungen benutzt werden, z.B., wenn sie auf
neuromorpher Hardware implementiert werden. Diese Gehirn-artigen Chips bestehen aus tausenden
von Speicher- und Recheneinheiten welche parallel arbeiten. Jedoch mangelt es noch an passenden
Lernregeln und Algorithmen. Die in dieser Arbeit entwickelten Methoden stellen erste prüfbare
Algorithmen für reale Roboter Planungsprobleme zur Verfügung.

Das vorgestellte Modell kann beliebig komplexe Funktionen lernen, wie zum Beispiel dynamic oder
kinematic Modelle. Um nicht-lineare Funktionen mit kinesthetic teaching zu Lernen, haben wir eine auf
spikes basierende Version von contrastive divergence entwickelt.

Wir zeigen, dass diese Modelle auf ein sechsdimensionales KUKA Roboter System skalieren und
entwickeln zusätzlich zu einem existierenden zweidimensionalem task space Planungsmodell zwei
weitere Modelle. Eines dieser Modelle kann in zwei Richtungen benutzt werden, was es ermöglicht,
Vorwärts- und Rückwärtsmodelle zur gleichen Zeit zu lernen.

Hindernisse von beliebiger Form können durch synaptische Inhibition als abstoßenden Kräfte
modelliert werden. Das Samplen von Bewegungsplänen ist 4 − 60 mal schneller als Realzeit, was
vorausschauende Roboterkontrolle ermöglicht indem mehrere Alternativen vorgeschlagen werden
können und online entschieden wird, welche ausgeführt werden soll.

Durch zusätzlich implementiertes rejection sampling konnten wir einen Abweichungsfehler am Ziel
von ungefähr 4% im modellierten Bewegungsgebiet erreichen. Außerdem brauchen die generierten
Bewegungspläne keine nachträgliche Bearbeitung. Durch bidirektionales Feedback zwischen task und
joint space während des Planens, können glatte und zielgerichtete Bewegungen gleichzeitig generiert
werden.

ii

Contents

1. Introduction 2
1.1. Motivation & Goals . 2
1.2. Related Work . 7
1.3. Outlook . 8

2. Background 9
2.1. Planning & cognitive maps in the brain . 9

2.1.1. The brain & neurons - A brief overview . 9
2.1.2. Place cells & the brain’s internal navigation system . 11

2.2. Transient firing in rats while planning . 12
2.3. Machine learning algorithms for planning & model learning 13

2.3.1. Planning as probabilistic inference . 13
2.3.2. Model learning using contrastive divergence . 15

3. Path planning with spiking neural networks 17
3.1. Spiking neural networks . 17
3.2. Neural dynamics as sampling . 18
3.3. Two-dimensional task space planning model . 19
3.4. Decoding continuous states with spike patterns . 21
3.5. Factorized population codes for high-dimensional models . 21
3.6. Hierarchical models for high-dimensional planning problems 22
3.7. Task adaption through task neurons . 22
3.8. Model learning with spiking networks . 23

4. Robot experiments 25
4.1. Gathering training data through kinesthetic teaching . 25
4.2. Preparing the training data . 27
4.3. Learning the transition models . 28
4.4. Generating smooth movement trajectories . 31
4.5. Target reaching task . 32

4.5.1. Inspecting the sampled trajectories . 33
4.6. Obstacle avoidance task . 38

4.6.1. Obstacle avoidance with the task space model . 39
4.6.2. Obstacle avoidance with the hierarchical model . 41

5. Conclusion & Future Work 43

Bibliography 44

A. List of publications 47
A.1. Comments and Contributions to Publications . 47

iii

Figures and Tables

List of Figures

1.1. CHOMP planning examples . 2
1.2. Adapting the biological concept for robot motion planning . 4
1.3. Sketches of the 2D planning model & factorized model . 5
1.4. Sketch of the hierarchical model . 5

2.1. Sketch of a synapse, neurons and their interaction . 10
2.2. Sketch of the anatomical position of the hippocampus . 10
2.3. Place cells activity sketch . 11
2.4. Transient firing in rats while planning . 12
2.5. Planning as inference example . 13
2.6. Planning as inference advanced example . 14

3.1. Generating a sample . 18
3.2. Sketch of the two-dimensional task space planning model. 19
3.3. Sketch of the factorized model consisting of N independent one-dimensional models. . . . 21
3.4. Sketch of the hierarchical model . 22

4.1. Kinesthetic teaching and task space training data . 25
4.2. Joint space training data . 26
4.3. Transformed training data snippet . 27
4.4. State transition model (task space) learning progress . 28
4.5. Factorized joint space model . 29
4.6. Inverse kinematic models . 30
4.7. 2D target reaching . 34
4.8. 6D target reaching . 35
4.9. Hierarchical target reaching (joints) . 36
4.10.Hierarchical target reaching . 37
4.11.2D obstacle avoidance on the robot . 39
4.12.2D obstacle avoidance . 40
4.13.Hierarchical obstacle avoidance (joints) . 41
4.14.Hierarchical obstacle avoidance . 42

List of Tables

4.1. Target reaching experiments statistics . 32
4.2. Obstacle avoidance experiments statistics . 38

1

1 Introduction

1.1 Motivation & Goals

Integrating robots more and more into our everyday life and work is a big vision in robotics. This will
have a great impact in many areas and will surely change habits in our everyday life and work. For
example, autonomous robots may assemble cars or assist in medicine, help in the household, or work in
environments which are dangerous for humans. Independent from where the robots will work and what
they should do, planning is a fundamental skill that is required in almost all robot tasks.

Up to date, the capabilities of spiking neural networks (SNNs) for planning have been poorly
explored, although spiking neural networks have some very useful properties and are computationally
powerful models for brain functions. They can model arbitrary complex distributions like multi-modal
distributions, which is, for example, required for encoding multiple solutions for planning problems.
However, a big drawback is their computational time and complexity, especially in larger networks. Due
to their massive parallel computing ability and due to the huge effort that is undertaken in research
of neuromorphic hardware, real-time computation of (large and complex) SNNs may become feasible
soon. Thus, it is worth to investigate the capabilities of SNNs for robotic problems. Implementations on
neuromorphic hardware promise to be able to process large input streams from, for example, visual and
tactile sensors using parallel computing[35]. When comparing the energy consumption, event based
neural network implementations are more efficient than classical von Neumann architectures[2]. With
this work we want to show that it is feasible to adapt biological mechanisms with recurrent spiking neural
networks on robot planning problems and that these models can be learned from human demonstrations.

Robot planning

Figure 1.1.: Multiple planning tasks in different environments and with diverse robots. The pictures in
the upper row show simulation results. The pictures in the lower row show results of real
robots. In the presented examples, the robots have to solve different planning tasks, e.g.,
object grasping and manipulation, avoiding obstacles and motor planning with balancing
constraints. Taken from [45].

In order to plan a movement in an environment, it is necessary to have a time dependent description
of the environment, referred as the state. All possibles situations that can arise are captured by the
state space. A state could represent different features of the environment and the task to solve, e.g., the

2

position and orientation of the robot. State spaces can be discrete or continuous, finite or infinite. In
most real applications the state space is too large and cannot be represented explicitly. However, in the
most simple case, only an initial and a goal state are given. They define the current state of the robot,
where it is or should be at the start, and the desired future target state, where the robot should be at the
end of the planned movement.

To reach this target state from the initial state, the robot needs to apply certain actions from a set
of possible actions. Actions manipulate the state and transform one state into another state. This
manipulation, i.e., how the state changes when an action is applied, needs to be specified in the
formulation of the planning problem. In some problems, actions are not specified explicitly and the
output of the planning algorithm is a sequence of states instead of actions. The actions can then be
inferred from the sequence of states as they arise naturally from the problem setting.

In many planning problems a reward is defined, that specifies how good a generated solution is. This
reward can take many different features into account, e.g., how precise a movement is, how smooth it is
or if it violates any constraints. It can be a simple binary reward, e.g., denoting only if a goal is reached,
or a continuous reward, grading the movement. In general the goal is to maximize the expected reward.

The output of a planning algorithm is, in general, a sequence of actions, the plan. In a more
complicated setup, the future states cannot be predicted and the output specifies actions as a function of
state, i.e., a policy. There are two major criteria of plans: feasibility and optimality. Feasibility means,
finding any plan that achieves the desired goal and satisfying all constraints. Optimality means, finding
a feasible plan that additionally is optimal for some specified criterion, e.g., minimizes the required
energy to execute it or finding shortest solution.

Challenges in robot planning
In most real world problems and applications, robot motion planning takes place in a continuous

state space. A motion plan consists of motions (i.e., actions) which are appropriate for the robot and
which lead the robot to the desired goal state, without hitting any obstacle and satisfying all constraints.
Depending on the application, the order of importance may change, i.e., in some applications avoiding
obstacles is the primary goal while in other tasks satisfying a constraint is more important.

So far we have only talked about the state space that spans the space in the environment. For robot
motion planning there is another important space, i.e., the space in which the robot lives. This space is
called joint space. The dimensionality of this space is dependent on the degrees of freedom of the robot,
e.g., the number of joints and motors of the robot. In this configuration space, motion planning can be
seen as a search in a high-dimensional space in which obstacles are represented implicitly. The mapping
from joint space into task space is called forward kinematics and the mapping from task space into joint
space is called inverse kinematics. While the forward kinematics are well defined and form an one-to-
one mapping, i.e., each joint configuration maps to one endeffector position, the inverse kinematics
are more complex and difficult. Given a particular position of the endeffector, there are multiple (even
up to infinite) joint configurations that lead to that endeffector position. This can be easily visualized
for better understanding, e.g., place your hand at a certain position and keep it fixed there. Without
changing the position of your hand (the endeffector in this case), you can still move the joints of your
arm. As motion planning is often done in task space, computing or learning the inverse kinematics is
required to transform the movements into joint trajectories that can be executed by the robot.

As nowadays real-world robots have to act in highly dynamic, unstructured, open and novel
environments, they have do deal with different challenges to solve the given tasks. They need to
deal with, e.g., noisy observations and singularities, while being able to adapt fast to changes in the
environment and maintaining real-time computation to be useful for real problems.

3

Biological inspiration
As planning is a fundamental skill robots need to be able to perform, there exist different sophisticated

algorithms for solving robot planning problems. The motivation of this work is not just to provide
another planning algorithm, but rather to propose a novel biological inspired approach that is inspired
by the natural way of solving planning problems. Additionally, learning of the proposed model using
Imitation Learning through kinesthetic teaching is discussed in this work.

What is meant by the natural way of solving planning problems and why do we use spiking neural
network models? The proposed approach is motivated by recent results on how rats solve planning
problems. More precisely, motivated by the neural activity recorded from hippocampal cells in rats while
planning. These neural activities depict the path of the rat during maze navigation experiments. These
activities can be observed not only during the execution of the plan, but also during the phase of mental
planning. While the rat is thinking about its future path to a known target, the recorded neural activity
of these specialized cells can be decoded into the future path of the rat. The goal of this work is to adapt
this mechanism in an abstract and simplified way and use it to solve planning problems with robots.
Finally, we show that the model can be learned from human demonstrations.

The model was first proposed in [38], where the theoretical foundation is introduced and simulation
experiments reveal that it can reproduce the neural activity recorded in rat experiments. Parts of this
thesis entered that publication, in particular, the adaption of the model for real robot problems, i.e.,
adding an obstacle avoidance task and learning the model from human demonstrations.

Figure 1.2.: Illustration of the goal of this work: transferring the biological concept of motion planning as
it was discovered in rat recordings to motion planning for robots. The left picture shows the
neural activity of cells from a rat during a spatial navigation task and the decoded movement
trajectories. The right picture shows the KUKA lightweight arm we used for the experiments.

4

Contribution
We use a recurrent spiking neural network (SNN) as model structure that is grounded in the theory

of probabilistic inference and can reproduce the transient firing of the rat experiments[38]. The SNN
is an abstraction of biological neural networks. In planning problems, it is necessary to deal with
temporal sequences and the distributions are time-varying. For such time-varying distributions SNNs are
able to learn a generative model of temporal sequences, e.g., movement trajectories, through synaptic
plasticity rules. After learning, the neural network performs effectively forward sampling from the
target distribution. When running freely, the movement trajectories sampled from the neural network
represent random walks. By injecting proper task related input to the network through additional task
neurons, the samples are drawn from the posterior distribution representing the planning problem.

The basic structure of the models used in this work to solve planning problems consists of two different
kinds of neuron populations, state and task neurons. While the state neurons model the planning space
(either task or joint space) and encode the state transition model in their synaptic connections, the task
neurons encode task related information like, for example, initial and target position or obstacles.

Figure 1.3.: (A) Two-dimensional task space planning model. (B) The factorized model for joint space
planning consisting of N independent one-dimensional models.

state neurons

task neurons task neurons

x

y

(task space, fully connected)

state neurons

joint

(joint space)

state neurons

joint

(joint space)

.

.

.

n times

.

.

.

Figure 1.4.: Hierarchical model for task space planning and inverse kinematic mapping.

5

In this work, we propose three different spiking neural network models for planning. The first model
is used for planning in a two-dimensional task space, i.e., planning in a Cartesian x y plane spanning the
reachable area of the robot endeffector. It uses a full population code, meaning that the state neurons fill
up the entire space and are fully connected. This architecture suffers from the curse of dimensionality
and the model becomes impractical when using more than three dimensions.

To scale up the model to higher dimensional problems, we use an approximation based on factorized
models. E.g., for planning in six-dimensional joint space, we learned six independent one-dimensional
models and combined their generated trajectories at the end. This makes planning in higher dimensional
space feasible, but because the models do not share information during planning, this approach cannot
be used in environments with obstacles.

To overcome this, we developed a third model that combines the two previous models. In this
hierarchical model, we used the model for planning in two-dimensional task space to solve the given
planning problem. Additionally, we extended that model with six factorized models that map the
planned task space movement into joint space trajectories during planning.The six factorized models
encode the inverse kinematics, which we learned from human demonstrations as well. During sampling
of a movement trajectory, the spikes of the task space model are used as input to the inverse kinematic
models to map the movement into joint space. The spikes from the inverse kinematic models are
used as additional input to the task space planning model to provide feedback from the joints to the
planning process. With this approach, we can generate higher dimensional joint space trajectories
with a factorized spiking neural network model architecture, while having the advantages of the full
population code of the task space model for obstacle avoidance.

6

1.2 Related Work

As motion planning is a fundamental task for robots, there have been a multitude of algorithms
proposed and used over the years. Here, we want to give a brief overview of three commonly
used algorithms, Rapidly-Exploring Random Trees (RRTs)[22], Stochastic Trajectory Optimization
for Motion Planning (STOMP)[19] and Covariant Hamiltonian Optimization for Motion Planning
(CHOMP)[36][45].

RRTs are a randomized data structure for path planning in some metric space, e.g., joint or task
space. Path planning is generally be viewed as a search in that metric space for some continuous
path connecting the initial and target states. RRTs are constructed such that all generated nodes and
edges lie entirely in the free area of the space, i.e., they represent reachable and applicable locations
or configurations, respectively paths. A RRT is iteratively built up starting from an initial state. In
each iteration, a random valid state is generated and the closest (in terms of some distance metric)
neighbouring node in the RRT is selected. Next the control input which minimizes the distance between
the random state and the nearest node is selected. The new state, which is obtained by applying this
control to the nearest node and predefined transformation rules, is added as a new node to the RRT.
This new node is connected with a new edge corresponding to the control input to the nearest node.
The algorithm converges if the target state or a fixed number of iterations is reached. To improve the
convergence of the RRT algorithm, several extensions have been proposed [6][21][24].

In comparison to RTTs, that handles planning as a search, STOMP handles motion planning as an
optimization problem. A smooth trajectory is found by minimizing some costs that include target
reaching, obstacle avoidance and constraints. One big advantage of STOMP is that it can deal with more
general cost functions, because it does not rely on gradients. Trajectories have a fixed length T and
are discretized over time into N equally spaced waypoints. With that a trajectory can be represented
as a simple vector θ ∈ RN . The algorithm starts with an initial randomized, maybe even infeasible,
trajectory vector. In each iteration K new noisy trajectories are created by adding normal distributed
noise to the trajectory vector. The costs of each of the K trajectories are evaluated and transformed into
probabilities. To update the trajectory vector θ the noisy parameters are combined probability-weighted
for each timestep and for the final update step this combined parameter update is smoothed. The
algorithm converges if the trajectory cost doesn’t change any more.

CHOMP treats motion planning as an optimization problem as well, and minimizes a combination of
smoothness and obstacle avoidance costs to improve an initial trajectory. In contrast to STOMP it requires
gradient information for these objectives. Trajectories are represented as vectors of configurations over
time (waypoints) as described before for STOMP, but CHOMP is designed to be invariant to the particular
used trajectory representation. In each iteration the trajectory is improved by minimizing a local
approximation (first-order Taylor expansion) of the cost function that allows only smooth perturbations
to the trajectory. The resulting update rule is a special case of covariant gradient descent. The optimization
problem in each iteration can be seen as a Lagrangian form of optimization. It tries to maximize the
decrease in the objective function while allowing only small changes in the average acceleration of the
trajectory.

7

1.3 Outlook

In Section 2, we give an overview of the biological background that motivated our approach. For
that, we give a basic introduction into the brain and briefly introduce the cell types that are part of the
brain’s internal navigation system. We also introduce the machine learning algorithms for planning and
model learning that we use, i.e., the framework of planning as probabilistic inference and contrastive
divergence for model learning.

In Section 3, we discuss the spiking neural network models used in this work. First, a basic introduction
of spiking neural networks is given and how samples can be drawn from those. After that, three different
models are described and how the models can adapt to different planning tasks. Finally, we show how
contrastive divergence can be used to learn the state transition models and the inverse kinematics from
human demonstrations.

In Section 4, the experiments to evaluate our models are presented. First, we describe the learning
progress of our models including the gathering of real robot training data. Next, we describe how the
models are used to generate smooth movement trajectories. Finally, we evaluate our models on target
reaching and obstacle avoidance tasks in simulation and on the KUKA lightweight arm.

In Section 5, we summarize our results and discuss possible future work.

8

2 Background

2.1 Planning & cognitive maps in the brain

To understand the motivation of the proposed model and the connection to the biological background,
this section gives a brief overview of the concepts and experiments that motivated the spiking neural
network model proposed here and used to solve robot planning problems.

2.1.1 The brain & neurons - A brief overview

The brain is by far the most complex system we know about and has been optimized through evolution
over thousands of years. Although a huge effort was and still is undertaken, e.g., the Human Brain
Project1, the brain and its functionality are not well understood yet. This overview given here should
be considered as a very rough and high-level description of the brain and its main units, the neurons.
The given description should provide a basic knowledge to understand the biological inspiration of the
proposed work.

The brain is the center of the (central) nervous system. It acts as the highest control and relay station,
preprocessing sensory input, producing motor commands and is responsible for almost all functions of
the body. Located in and protected by the skull the brain is close to the primary sensory organs for vision,
hearing, balance, taste and smell. A typical human brain roughly consists of 16 billion neurons and each
neuron has connections to up several thousand other neurons, building a huge, complex network. The
brain is divided in different structural parts as well as in functional parts. Different brain regions are
highly optimized for certain tasks, although a clear assignment of, e.g., cognitive tasks to a single region
can’t be made due to long distance synapses.

Neurons are the information processing units inside the brain (and the central nervous system) and are
linked through synapse to other neurons. Synapses are the location where neurons exchange information
through electrical or chemical processes changing the neurons environment. A synapse consists of
two parts, the presynapse where the presynaptic neuron releases its information and the postsynapse
where the postsynaptic neuron receives the released information. The exchange of information between
the neurons is based on signal pulses called action potentials or spikes. They result in the release of
neurotransmitters which are chemicals that carry the information from the presynaptic neuron through
the synaptic cleft to the postsynaptic neuron. As a neuron has up to several thousand synapses it receives
information from many other neurons at the same time and at different locations. The information
received is spatio-temporal integrated and the result determines if the neuron should spike to propagate
the information to the other postsynaptic neurons. Populations of interconnected neurons form a
dynamic and complex network.

One of the above mentioned specialized areas inside the brain is the hippocampus, respectively
mammals mostly have two hippocampi located in the medial temporal lobe of each side (hemisphere)
of the brain. The temporal lobe is a part of the neocortex, the most outer part of the brain, and is
located at the sides of the brain. The neocortex is folded very strong and medial means that it is located
to the inside. The hippocampus plays an important role for memory and navigation, e.g., to transfer
information from the short-term memory into the long-term memory, the connection of different spatial
locations or for navigational tasks.
1 https://www.humanbrainproject.eu/

9

https://www.humanbrainproject.eu/

Figure 2.1.: Sketch of a synapse, neurons and their interaction. Picture from Wikipedia1

Figure 2.2.: Sketch of the anatomical position of the hippocampus. Pictures from Wikipedia2 and NYU
School of Medicine3

1 https://en.wikipedia.org/wiki/Synapse
2 https://en.wikipedia.org/wiki/Hippocampus
3 http://www.med.nyu.edu/adc/participate-research/brain-donation

10

https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Hippocampus
http://www.med.nyu.edu/adc/participate-research/brain-donation

2.1.2 Place cells & the brain’s internal navigation system

The brain’s internal navigation system is a complex dynamic system and consists of different specialized
parts and cells types, which are still under research and not completely understood. But so far, several
different cell types that play important roles were identified. These different cell types are called border
cells, head direction cells, grid cells and place cells.

Border cells[39] show an increased activity if there are boundaries in the environment at a particular
distance and direction from the animals actual location. They help to form a model of the environment
which is used during navigation tasks and movement planning. As the border cells model parts of the
environment, they are dependent on the environment.

In contrast, the head directions cells[41][42] are independent from a certain environment and are
even (mostly but not completely) independent from sensory input. They are mainly driven by the
vestibular1 system and show an increased activity for particular directions of the head. Thus, they
help to perform self localization in the environment and are involved in planning movements as well.

A very important role within that complex system is played by the grid cells[11][15]. Grid cells
basically encode the Euclidean space in a cognitive representation and by this they can model distance
measurements. The grid cells show an increased activity if the animal enters small regions in the
environment, but in contrast to the place cells described next, each grid cell is associated with multiple
locations. These locations or small areas, called firing fields, are roughly equal in size and are arranged
in a regular pattern of triangular arrays. Different grid cells have different firing fields, e.g., they can
have the same size and spacing of the triangular arrays but are displaced from each other or they may
have a different size and spacing of the triangular arrays. By this they can encode the Euclidean space,
measure distances and play a very important role within the brains navigation system.

The last cell type we want to look at are the place cells[14][28][32] and their functionality. Place
cells build the foundation of the model used in this work. Place cells are specialized neurons and are
only located in the hippocampus. These cells have an increased activity if the animal enters a certain
location in the environment. These locations are called place fields and denote the preferred location of
the associated place cell. Depending on the size of the current environment, each place cell has only one
or up to a few associated place fields. The population of place cells form a cognitive representation of
the environment, known as a cognitive map [40]. In an abstract and simplified view, a place cell can be
seen as a landmark to a certain location in the world. If the animal enters this location while walking
or during mental planning the activity of the associated place cell is increasing. The spike pattern of the
place cells are determined by the internal belief of the current state in the environment and external
preprocessed sensory input. To adapt to changing environments, e.g., the rat is placed inside a new
maze, place cells can change their spike pattern and place fields, which is called remapping.

Figure 2.3.: Sketch of place cells activities and their related place fields as a rat moves along a track. At
different locations different place cells have increased activity. Taken from [30].

1 the sensory system that provides information about balance and spatial orientation

11

2.2 Transient firing in rats while planning

Recent results [8][33] showed the correlation of observed transient firing in behaving animals in phases
of mental planning while solving different tasks and the resulting movements. The experiment in [33] is
described here briefly, to show that the neural activity of hippocampal place cells is able to support the
generation of goal-directed movement trajectories.

The environment of the experiment was a 2× 2m open-field arena in which there were 36 predefined
and clearly separated locations. While the rat was solving the tasks of finding the liquid chocolate inside
this arena, up to 250 hippocampal cells were recorded using an implanted miniaturized lightweight
microdrive with 40 adjustable tetrodes. 20 tetrodes were targeted towards each dorsal hippocampal
area CA1 . The setup of the tasks the rat had so solve was the following: each trial of the experiment was
divided into two different phases. In the first phase the reward, in form of liquid chocolate, was located
at a random and unknown location. So in order to get that reward the rat has to explore its environment.
After the rat obtained the reward, a new reward was automatically placed at the home location of the
rat. Such that to obtain the new reward the rat had to memorize the home location and plan a path
back to this location. The recorded spike trains were decoded into a sequence of spatial locations which
reflect the path of the rat. The neural activity of these specialized place cells depict a movement path to
a given location during mental planning.

With our spiking neural network model we want to reproduce these observed neural activity of
hippocampal place cells encoding future paths to use it for robot motion planning.

Figure 2.4.: The recorded neural activity (a) gets decoded into a sequence of spatial locations (b), which
results in movement plan (c) reflecting the path of the rat. Taken from [33]

12

2.3 Machine learning algorithms for planning & model learning

This section gives a brief introduction and overview of the basic techniques used in this work like
planning as probabilistic inference and a general description of the used model learning algorithm
contrastive divergence.

2.3.1 Planning as probabilistic inference

In planning as probabilistic inference (PAI) [4], an agent makes use of an internal generative model that
represents the future as a joint probability distribution over states, actions and rewards. The agent can
infer a probability of any sequence of states and actions. To perform planning it can sample sequences
from the model. But regarding that the agent has an internal generative model representing a probability
distribution, it can do even better by conditioning on rewards. The agent assumes that its actions lead
to a reward in each timestep and uses inverse inference to find the sequence of actions that explains
this assumption best. Taking a more technical view, the agents action policy can be seen as a set of
parameters which define a probability distribution over actions for each state. Planning as probabilistic
inference then finds the maximum likelihood estimate of those actions conditioned on receiving reward.

S
t A S

t+1

current state future stateunknown actions

Figure 2.5.: Sketch of the idea behind probabilistic inference for planning. The current state denoted by
St, the desired target or future state denoted by St+1 and the unknown intermediate actions
denoted by A.

Let’s consider a simple example[37] to illustrate the idea of PAI. A sketch of the example is shown
in Figure 2.5, where S denotes the state and A the actions. These states and actions are modelled by
random variables. In this simple planning example there is no reward. The current state at time t St and
the desired target (future) state St+1 are known, indicated by the shaded node, whereas the intermediate
actions A are unknown. To calculate the probabilities of the intermediate actions, which are required to
reach the desired state from the current state, we condition on the known states St and St+1. To denote
a particular value of one of the random variables lower case letters are used, e.g., a for an instance from
the actions A. Its probability is denoted by P(A = a), where P(a) is used as shorthand. Now we can
formulate a mathematical description of this simple planning problem example. This involves two steps,
first modelling of the interaction between the random variables and second inference to solve the defined
planning problem. The interaction between the random variables is modelled by a joint distribution
over all random variables, p(st , a, st+1) = p(st)p(a|st)p(st+1|a), where the dependencies are visualized
in the graphical model in Figure 2.5. In a graphical model, nodes represent random variables and edges
represent dependencies between the random variables. Learning the parameters of the model can be
done by different sophisticated methods, e.g., Expectation-Maximization.

Having defined the model, we can now answer the questions we are interested in by performing
inference in the model. So the probability of a certain action is given by

p(a|st , st+1) =
1

Z
p(st)p(a|st)p(st+1|a), (2.1)

where Z denotes the normalization constant that ensures proper probabilities and is given by the
marginal distribution over all possible actions, i.e., Z =

∑

a′∈A p(st)p(a′|st)p(st+1|a′). With that the

13

most probable action a that solves the given planning problem can be inferred. The planning problem
can easily be extended to more complex multi-step planning problems by replacing the action a with a
sequence of actions < a1, a2, .., aT > or a sequence of states < s1, s2, .., sT > of length T .

An advantage of the probabilistic inference for planning perspective is that we can include a
multitude of different random variables into the model. These random variables can represent arbitrary
information, e.g., features of the states or goals and constraints of the given planning problem.
Additionally, random variables can also be used to represent prior knowledge about the problem in
the model.

Solving the inference problem in graphical models can be done by different techniques, e.g., message
passing, variational inference or sampling methods. We will use a sampling based method in this work
to solve the inference problem for robot movement planning.

Figure 2.6.: A more complex example for PAI. (A) The generative model is represented as a Bayesian
Network where nodes represent random variables; states s, actions a and reward r. Edges
represent conditional dependencies. The connections from a state to an action contain the
policy π. A block node is known or clamped to a known value. PAI assumes to receive reward
and searches for the most probable policy under that assumption. Thus, PAI finds the most
probable sequence of actions, respectively states. (B) An example of PAI used in robotics
where it has been applied, for example, to motor control problems. In the example here,
PAI uses approximate inference to discover a feasible motion for grasping an occluded object
under a desk. Images taken and adapted from [4].

14

2.3.2 Model learning using contrastive divergence

Contrastive divergence (CD) is a model learning algorithm proposed by Geoffrey Hinton [16] that
approximates the maximum likelihood gradient by drawing samples from a proposed distribution. In this
section a higher level description and derivation is shown based on the notes from Oliver Woodford [44].

Let us assume that the probability of a data point x is modelled by a function f (x;Θ), with Θ as a
vector of the model parameters. The probability of the data p(x;Θ) must integrate to 1 over all x to be
a valid probability distribution. Thereby the probability of x is given by

p(x;Θ) =
1

Z(Θ)
f (x;Θ) , (2.2)

where Z(Θ) is the partition function that normalizes the probabilities and is defined as

Z(Θ) =

∫

f (x;Θ) d x . (2.3)

The goal of the learning process is to maximize the probability of the training data, i.e., to find the
optimal parameters Θ∗ that explain the data best. We denote the set of independent and identically
distributed (i.i.d.) training examples as X= x1,..,K , with K examples. Thus, the probability of the training
data is given by

p(X;Θ) =
K
∏

k=1

1

Z(Θ)
f (xk;Θ) . (2.4)

This formulation is equivalent to the minimization of the negative logarithm of p(X;Θ), which is
commonly denoted as the energy. It is defined as

E(X;Θ) = log Z(Θ)−
1

K

K
∑

k=1

log f (xk;Θ) . (2.5)

To minimize the energy, in order to find the optimal parameters Θ∗, we differentiate Equation (2.5)
w.r.t. the parameters Θ. The gradient of the energy function is given by

∂ E(X;Θ)
∂Θ

=
∂

∂Θ
�

log Z(Θ)
�

−
∂

∂Θ

1

K

K
∑

k=1

log f (xk;Θ)

!

. (2.6)

Differentiating the second term on the right hand side of Equation 2.6 gives

∂

∂Θ

1

K

K
∑

k=1

log f (xk;Θ)

!

=
1

K

K
∑

k=1

∂ log f (xk;Θ)
∂Θ

=
�

∂ log f (x;Θ)
∂Θ

�

X
. (2.7)

15

The symbol 〈..〉X denotes the expectation over the set of training data points X. Next, we differentiate
the first term on the right hand side of Equation 2.6, i.e., we differentiate the partition function Z(Θ)
w.r.t. the parameters Θ,

∂

∂Θ
�

log Z(Θ)
�

=
1

Z(Θ)
∂ Z(Θ)
∂Θ

=
1

Z(Θ)
∂

∂Θ

∫

f (x;Θ) d x

=
1

Z(Θ)

∫

∂ f (x;Θ)
∂Θ

d x

=
1

Z(Θ)

∫

f (x;Θ)
∂ log f (x;Θ)

∂Θ
d x

=

∫

1

Z(Θ)
f (x;Θ)

∂ log f (x;Θ)
∂Θ

d x

=

∫

p(x;Θ)
∂ log f (x;Θ)

∂Θ
d x

=
�

∂ log f (x;Θ)
∂Θ

�

p(x;Θ)
. (2.8)

The expectations in Equation (2.7) and (2.8) are the same despite that in Equation (2.7) it is taken over
the training data and in Equation (2.8) it is taken over the model distribution p(x;Θ). This calculation
is in general intractable as it depends on the partition function Z(Θ). However, the expectation can be
approximated by drawing samples from the model distribution p(x;Θ). This approximation is done by
performing Markov Chain Monte Carlo (MCMC) sampling starting from Markov Chains initialized with
the training data. As the Markov Chains iterate the sampled data get closer to samples from the proposed
distribution. Denoting the state of the Markov Chains after n cycles with Xn, we have all ingredients to
formulate the parameter update rule. Therefore we plug the derivatives in Equation (2.7) and (2.8) back
into Equation (2.6) which leads to

∂ E(X;Θ)
∂Θ

=
�

∂ log f (x;Θ)
∂Θ

�

p(x;Θ)
−
�

∂ log f (x;Θ)
∂Θ

�

X

=
�

∂ log f (x;Θ)
∂Θ

�

X∞
−
�

∂ log f (x;Θ)
∂Θ

�

X0
. (2.9)

To compute accurate approximations of the gradient many MCMC cycles are required. Such
computations are expensive and therefore it is often impractical to compute accurate approximations. In
[16] it was suggested that only a few MCMC cycles are needed to obtain useful approximations of the
expectations in practice. Already after very few cycles the sampled data has moved from the training
data towards the model distribution which indicates the direction towards which the model distribution
should change in order to model the training data more accurate. Empirically, it was shown in [16]
that even a single MCMC cycle has sufficient information to let the learning process converge to the
maximum-likelihood solution.

Using this insight we can write the general parameter update equation as

Θt+1 =Θt +α
��

∂ log f (x;Θ)
∂Θ

�

X0
−
�

∂ log f (x;Θ)
∂Θ

�

X1

�

, (2.10)

where α denotes the learning rate. This update rule defines the iterative learning algorithm contrastive
divergence which is an efficient learning algorithm for complex models based on approximations through
sampling.

16

3 Path planning with spiking neural networks
This section describes the basic structure of the proposed spiking neural network models, the different

kinds of neuron populations, their relationships and how movement planning and learning of the
state transition models is done. The proposed models are not a direct one-to-one implementation of
the biological foundation described in Subsection 2.1, but rather try to abstract and adapt the basic
mechanisms to the problem of path planning for robots. We introduce three different models here. First,
a two-dimensional model for planning in task space. Second, a factorized model for planning in six-
dimensional joint space. Third, a hierarchical model for planning in two-dimensional task space with
on-the-fly mapping into joint space using a learned factorized inverse kinematic model.

3.1 Spiking neural networks

Artificial neural networks are built by a set of interconnected simple processing units, the neurons, and
are inspired by the observations of biological learning systems built in that way. Information-processing
in such systems is highly parallel and depends on information representations distributed over many
neurons.

Spiking neural networks (SNNs) are an advanced generation of artificial neural network models which
add a new layer of realism to neural simulations. They are implemented as recurrent neural networks
and communication in the model is done by sequences of spikes. It has been shown that SNNs can solve
all problems that are solvable by classic neural networks and that SNNs are computationally even more
powerful[26].

Basically SNNs work very similar to classic artificial neural networks where neurons are connected
through weighted synapses to exchange information. The most important difference is that they
incorporate the concept of time. This means the output (spike) of a presynaptic neuron is only
considered as input for the postsynaptic neuron if that spike arrives in a certain time window. In the
context of learning this time window is called the Spike Timing Dependent Plasticity (STDP) window
and determines the time period in which spikes are considered as correlated. Timing is very crucial
for the propagation of information in such models. The generation of a spike is determined by the
membrane potential, which relates to the electrical charge of a neurons membrane. Incoming spikes
increase or decrease this value depending on arriving spikes at excitatory or inhibitory synapses.

Considering the simplest neuron model, i.e., so called (deterministic) integrate-and-fire neuron, the
neuron spikes if a certain threshold is reached and the information is propagated to its neighbours. In a
probabilistic model, like ours, the membrane potential is used as a probability and a spike is determined
based on that probability. The output of a SNN model is a spike train, which is the neural activity of the
neurons over time. This spike train can be the activity of some output neurons or of the whole population
of neurons, depending on the modelled problem.

SNNs are implemented as recurrent neural networks that can model and learn temporal dynamics.
During learning of the model the synaptic weights are adapted. A broad and nice introduction to SNNs
can be found in [34].

17

3.2 Neural dynamics as sampling

Sampling can solve any inference task with arbitrary precision, assuming we can sample from the
desired distribution and have enough computational resources and time. As we are using the framework
of probabilistic inference to solve planning problems (Subsection 2.3.1), we need to take a look at how
samples can be drawn from a spiking neural network model (Subsection 3.1) in discrete time.

By simulating the inherent stochastic dynamics of the spiking neural network model, samples can be
drawn from the modelled distribution[7], as the dynamics implement forward sampling. The sample is
drawn iteratively, i.e., the sample is not drawn at once but rather is built up over time. Values of the
sample at time t are determined by the values at time t − 1. Clamping some neurons, which model
variables, to fixed values, observations or assumed rewards can be taken into account and the spiking
neural network can produce samples from the conditional distribution. This is used in the planning
as probabilistic inference framework. The neurons that model the concrete planning task are clamped
to a certain probabilistic spiking pattern and the movement trajectory samples are drawn using this
input as condition (see Subsection 3.3 for details of the different neurons, membrane potential and
model structure). Operating in discrete time and using a fixed refractory period τ that decays linearly,
the neurons spike in each timestep with a probability determined by their membrane potential. This
membrane potential is determined by the synaptic connections of the neurons and the activity of the
connected neurons in the previous timestep. All spikes from connected presynaptic neurons get weighted
by the corresponding synaptic weight and are integrated to an overall postsynaptic potential (PSP). In a
more realistic model not only the previous timestep t − 1 is used as presynaptic input, but a spike has
influence on the postsynaptic neuron for a certain time. In the case of a fixed influence time that decays
linearly over time, this is called rectangular window. If this window size is not larger than the refractory
period τ, the PSPs are non-additive, since two spikes never can occur faster than τ.

This procedure generates a sequence of the states of the neurons, i.e., a sequence of spiking activity.
The whole spike train generated by this represents the sample drawn from the modelled distribution.

Figure 3.1.: Snapshots at different timesteps during sampling from the proposed SNN.

18

3.3 Two-dimensional task space planning model

The spiking neural network models used in this work are realized as recurrent neural networks and
basically consist of two different populations of neurons; a layer of K state neurons and a layer of N task
neurons. State neurons encode locations and task neurons encode desired goals or obstacles to avoid.
First, the two-dimensional model for task space planning is introduced in detail here. The factorized
joint space model and the hierarchical model are modelled by the same mechanisms.

state neurons

task neurons

task neurons

x

y

(fully connected)

Figure 3.2.: Sketch of the two-dimensional task space planning model.

Each constraint or any task related information is modelled by a population of task neurons, e.g., for
the simplest planning problem being at position A and going to position B, there are two task neuron
populations, each encoding one position.

In Figure 3.2, a simplified sketch of a two-dimensional model with two constraints is shown. There
are six task neurons per constraint, which are located around the positions illustrated as the blue and
red dots. The dashed lines do not show synaptic connections but should indicate the position of the task
neurons. To keep the sketch clear the connections between the task and state neurons are not shown.
Only the nearest neighbour connections out of the fully connected state neurons are shown.

All neurons have a position in a defined coordinate system. In our models, the state neurons are
equally aligned within the desired state space. The task neurons are uniformly distributed around the
constraint (a goal or an obstacle) that they encode with a very small variance. There are no connections
in between the task neuron population, but each task neuron is connect to all state neurons by the
synaptic weights θ j,k, i.e., connecting task neuron j to state neuron k. The state neuron population is
fully connected, i.e., each state neuron has a connection to every other state neuron by the synaptic
weight wi,k, i.e., connecting state neuron i to state neuron k. We denote the activity of the state neurons
by vt = (v t,1, .., v t,K), where v t,k = 1 if state neuron k spiked at time t and v t,k = 0 else. The activity
of the task neurons is denoted the same way by yt . The synaptic weights between the state neurons
model the state transition model T (vt |vt−1) that encodes how likely it is to end up in state vt given state
vt−1. The state neurons can be seen as an abstract and simplified version of the place cells described in
Subsection 2.1.2. By this they model a cognitive map of the environment.

19

The described spiking network model defines a multi-modal distribution over state sequences, i.e., over
movement trajectories. State neurons are modelled by stochastic neurons which build up a membrane
potential based on the weighted neural activity of the state neurons in the previous timestep and the
neural activity of the task neurons. Task neurons have no afferent connections and spike with a certain,
fixed probability. All neurons have a defined refractory period τ in which they cannot spike again after
the last spike. Assuming linear dendritic dynamics the membrane potential of the state neurons is given
by

ut,k =
K
∑

i=1

wi,kṽ i(t) +
N
∑

j=1

θ j,k ỹ j(t) , (3.1)

where ut,k denotes the membrane potential for neuron k at time t and Equation (3.1) defines a simple
stochastic version of the spike response model[13]. The first sum is over the K state neurons and models
the influence of the state transition model, wi,k denotes the synaptic weight between state neuron i and
k, and ṽ i(t) denotes the effects of PSPs from neuron i. The second sum is over the N task neurons and
models the influence of task related input, where θ j,k encodes the synaptic weight between task neuron
j and state neuron k, and ỹ j(t) denotes the effects of PSPs from neuron j.

Using the membrane potential, a probability to spike for the state neurons can be defined by

ρt,k = p(v t,k = 1) = f (ut,k) , (3.2)

where f (ut,k) denotes the activation function, that is required to be differentiable. Now the probability
for generating a state sequence v1:T of length T and starting from a given initial state v0 is defined by
the model distribution

q(v1:T |θ) = p(v0)
T
∏

t=1

K
∏

k=1

ρ
v t,k
t,k (1−ρt,k)

1−v t,k (3.3)

= p(v0)
T
∏

t=1

T (vt |vt−1)φt(vt ;θ) . (3.4)

In this work we focus on model learning, so we are mainly interested in learning T (vt |vt−1) encoded
in the synaptic weights wi,k. The synaptic weights θ j,k between task and state neurons are handcrafted,
e.g., based on the Euclidean distance between the desired goal and the preferred location of the state
neuron. This is the location that is encoded by the state neuron, i.e., the coordinates of the state neuron,
and refers to its place field. The neural activity yt of the task neurons is determined by a probability
depending on the kind of constraints the task neurons population models, i.e., task neurons encoding
the initial state only spike at the beginning of the planning process, target encoding task neurons are
active after that initial phase and obstacle task neurons are active the whole time. This task related input
can be learned using reinforcement learning techniques that maximize the probability of generating
rewarding (successful) trajectories. This reinforcement learning was studied in recent prior work [38].
As the task neurons model task related constraints they are only activated for solving a particular task.
The state transition model is task independent and is used in the unconstrained stochastic process for
planning,

q(v1:T) = p(v0)
T
∏

t=1

T (vt |vt−1) , (3.5)

which defines a freely moving agent. The state neurons membrane potential simplifies to

ut,k =
K
∑

i=1

wi,kṽ i(t) . (3.6)

Sampling from Equation (3.5) can be implemented by a recurrent spiking neural network (e.g., ideas
from [5][17][20]) and generates random walk trajectories of length T in the modelled state space.
Injected task related input modulates these random walks towards goal-directed movement plans.

20

3.4 Decoding continuous states with spike patterns

The neurons encode binary random variables and the solution to a given planning problem found by
the proposed model is the spike train of the state neurons. This spike train is a sequence of binary activity
vectors vt . To execute the generated movement trajectory on a robot, the spike train needs to be decoded
into a sequence of spatial locations. This decoding of the real world state xt (e.g., the position in task or
joint space) from the neural activity of the state neurons is done by a simple decoding scheme[12][25],

xt =
1

|v̂t |

K
∑

k=1

v̂ t,kpk and |v̂t |=
K
∑

k=1

v̂ t,k , (3.7)

with pk denoting the preferred position of state neuron k and v̂ t,k is the filtered neural activity of state
neuron k at time t. The filtered neural activity is determined by applying a Gaussian window filter to
the binary spiking activity of the state neurons. We used a window size of 100ms. With this decoding
scheme, continuous random variables can be modelled by binary activity patterns.

3.5 Factorized population codes for high-dimensional models

The proposed spiking neural network model suffers from the curse of dimensionality and more than
three dimensions cannot be efficiently modelled. To use spiking neural networks for higher dimensional
planning problems, we propose a factorized approximation using N independent one-dimensional
models.

For each dimension a SNN model is learned and samples are drawn from these models, which are
combined afterwards. The model structure of each independent model is the same as described in
detail for the two-dimensional task space planning model (Subsection 3.3), i.e., the state and task
neurons are build the same way. By this we can learn models dealing with seven-dimensional planning
problems in task space (Cartesian x , y, z and four-dimensional quaternion for endeffector orientation)
or n-dimensional planning problem in joint space (the KUKA arm has seven dimensions in joint space
as well, although only six joints are used in this work). These models can generate smooth movement
trajectories together for high dimensional state spaces, but as they are independent and cannot exchange
information during sampling, they cannot deal with obstacle occurring in the environment. Dealing with
obstacles in the independent models is an open question so far. Using this factorized approximation
approach makes spiking neural network models feasible for planning in higher dimensional spaces. In
general, each model consists of relatively few neurons, such that sampling from them can be done
very fast. Sampling and generating a solution movement trajectory in each model is independent and
therefore can be done in parallel. This speeds up the whole planning progress even more.

state neurons

task neurons task neurons

joint

(fully connected)

N times

Figure 3.3.: Sketch of the factorized model consisting of N independent one-dimensional models.

21

3.6 Hierarchical models for high-dimensional planning problems

One possible solution to overcome the missing ability to deal with obstacles of the independent models,
is to join a lower dimensional model for planning in task space that can deal with obstacles with N
independent models that map to joint space. This mapping is known as the inverse kinematics.

Thus, inverse kinematics are a mapping from task space to joint space in the form of q = f (x), e.g., a
mapping from positions in task space x (like Cartesian x , y coordinates of the endeffector) to the joint
configuration q that is required to get the endeffector into that position. In order to learn the inverse
kinematics, we recorded additionally to the seven-dimensional task space data the seven-dimensional
joint space trajectories of the KUKA lightweight arm during kinesthetic teaching (Subsection 4.1).

The hierarchical model is built by combining the two-dimensional task space planning model
(Subsection 3.3) with the factorized inverse kinematic models. This model can solve a given planning
task in task space and transforms the movement plan into joint angle trajectories at the same time.

The state neurons of the inverse kinematic models do not have lateral connections. In contrast, the
state neurons of the task space planning model are fully connected, and project to all state neurons of
the inverse kinematic models through symmetric weights. This connectivity is sketched in Figure 3.4.

The symmetric connections have an interesting effect. Feedback can be projected from the task space
to the joint space and vice versa. It has been shown that such links facilitate smooth trajectories[43].

state neurons

task neurons task neurons

x

y

(task space, fully connected)

state neurons

joint

(joint space)

state neurons

joint

(joint space)

.

.

.

n times

.

.

.

Figure 3.4.: Sketch of the hierarchical model with the two-dimensional task space planning model on the
left and the independent joint space models on the right.

3.7 Task adaption through task neurons

In typical robot planning problems, the planning algorithm has to consider a number of constraints that
may also change dynamically, such that the algorithm has to adapt to new tasks online. The architecture
of the proposed spiking neural network implements a simple task adaption mechanism without learning
of the transition model. Task constraints are modelled by task neurons, which are independent from the
transition model. To define a new task, simply a set of task neurons with proper synaptic weights and
activity patterns have to be added. Positions that should be reached are modelled by task neurons with
an excitatory connection to the state neurons. The activity pattern depends on when a position should be
reached. Obstacles on the other hand are modelled by task neurons with inhibitory connections. State
neurons in the area of the obstacle are inhibited and no sampled movement will cross this area.

22

3.8 Model learning with spiking networks

Learning state transition models
The state transition model is encoded in the synaptic weights wk,i between the state neurons of the

proposed SNN model. We want to learn this transition model with training data recorded from the real
robot through kinesthetic teaching, in order to get a realistic transition model according to the covered
area of the robot. For this purpose we use contrastive divergence as described in Subsection 2.3.2 which
is a very efficient learning algorithm for large and complex models based on approximation through
sampling. This section shows how contrastive divergence is used to learn the transition model from real
robot training data.

Therefore, we derive a spike dependent version of contrastive divergence to learn the synaptic weights,
similar to results in [31]. The transition model of our spiking neural network model is given by

T (vt |vt−1) = exp

K
∑

k=1

wk,iv t−1,kv t,i

!

, (3.8)

where we consider w.l.o.g. a resetting rectangular PSP kernel of one time step length (v t−1,k). Using
instead a PSP kernel of τ time step length (ṽk(t)) follows the same derivation.

We start by differentiating the transition model (log T (vt |vt−1)) w.r.t wk,i. This results in

∂ log T (vt |vt−1)
∂ wk,i

=
∂

∂ wk,i
logexp

K
∑

k=1

wk,iv t−1,kv t,i

!

=
K
∑

k=1

∂

∂ wk,i
wk,iv t−1,kv t,i

= v t−1,kv t,i . (3.9)

Now inserting (3.9) into the general contrastive divergence update rule in Equation (2.10) leads to

∆wk,i = α
�¬

v t−1,kv t,i

¶

X0 −
¬

v t−1,kv t,i

¶

X1

�

. (3.10)

Learning is done by replaying the human demonstrations such that for each timestep there is only one
training data for each synaptic weight in form of activity pairs (ṽ t−1,k, ṽ t,i). This training spike pattern,
denoted by ṽ , is compared with the sample drawn from the current transition model (denoted by v).
With the presynaptic training data as input this leads to the final synaptic update rule

∆wk,i = α
�

ṽ t−1,kṽ t,i − ṽ t−1,kv t,i

�

. (3.11)

This parameter update rule can be seen as a Hebbian like learning rule. State neurons that spike
successively will increase their synaptic weights and state neurons that do not spike successively will
decrease their synaptic weights. By this the learned model will prevent jumps in the state space and will
only allow small movements per timestep. Note that only closely neighboured state neurons receive
excitatory lateral inputs and distant neurons are inhibited.

23

Learning inverse kinematic models
To learn the inverse kinematic models in the hierarchical model from the recorded human

demonstrations, we basically use the same learning procedure as for the transition model described
before. The difference is that synaptic weights between state neurons in task space and the state
neurons in joint space are learned. Thus, we want to learn a mapping from task space to joint space.
This transition model between task and joint space is given by

T (v joint
t |vtask

t−1) = exp

K
∑

k=1

wk,iv
task
t−1,kv joint

t,i

!

. (3.12)

We derive the synaptic weight update rule in the same way as for the state transition model shown
before. This results in the following synaptic weight update rule,

∆wk,i = α
�

ṽ task
t−1,kṽ joint

t,i − ṽ task
t−1,kv joint

t,i

�

. (3.13)

Using this learning rule we can learn the mapping from task space to joint space by replaying the spike
patterns from both spaces to the model. Moreover, the independent inverse kinematic models can be
learned simultaneously.

24

4 Robot experiments
For all of our experiments we used a KUKA lightweight arm. For the two-dimensional task space

planning model, the control problem is absorbed by a built-in Cartesian tracking controller. The
trajectories are executed using inverse kinematics to obtain a referent joint trajectory and inverse
dynamics to execute it. The trajectories generated by the factorized model for planning in the six-
dimensional joint space are directly executed using inverse dynamics control. The output of our
hierarchical model are also joint trajectories and get executed the same way. For evaluating our models,
we defined two different tasks with different configurations. The first task is a simple target reaching
task, where an initial and desired target position are given, in task or joint space respectively. In the
second task the difficulty is increased by adding obstacles.

4.1 Gathering training data through kinesthetic teaching

As stated in Subsection 3.8, we want to use real robot data to learn a realistic transition model of the
robot and its task space. To collect proper training data we used kinesthetic teaching. Thus, we took the
robot by the hand and showed it the task it should learn (e.g., imagine a tennis or golf coach). In our
particular setup, we guided the robot through the whole task space.

Figure 4.1.: Snapshots of the kinesthetic teaching (A) and the recorded task space training data plotted
over a heatmap of the visited states (B).

In total, we recorded about 15 minutes of arbitrary movements, sampled at 1ms which resulted in
about 900.000 state transitions (ṽt−1, ṽt) to learn from. Figure 4.1 shows snapshots of the training data
recording and recorded movements plotted over a heatmap of the visited states in the task space. A
visited state is determined by the nearest state neuron according to Euclidean distance. The covered task
space of the robot in x and y coordinates spans a grid of 70× 70cm.

25

Additionally to the x and y coordinates, the third Cartesian dimension z and the four-dimensional
quaternion based orientation of the end-effector were recorded. This data was used to solve the higher
dimensional planning problems. In order to learn a model for planning in joint space and the inverse
kinematic models, the trajectories of all seven joints of the KUKA arm were recorded as well. The
recorded training data had 14 dimensions consisting of task and joint space trajectories.

The recorded demonstrations of the six joints are shown in Figure 4.2. They are plotted next to
histograms representing the frequency of the visited states. Only six joints are shown here due to
we did not use the seventh joint (the wrist joint) in the demonstrations and kept it fixed. The seven
trajectories plotted represent seven separate trials.

Figure 4.2.: The recorded joint space training data. The trajectories of the used six joints are plotted next
to a histogram representing the frequency of the visited states.

26

4.2 Preparing the training data

In order to use the recorded training data, it has to be transformed from continuous movement
trajectories into binary spike patterns of the state neurons, i.e., we need to compute the vectors ṽt−1, ṽt .

For the two-dimensional task space planning model, we learned a state transition model with 15 state
neurons per dimension. For that purpose the training data of the endeffector movement in task space
is transformed using 15 Gaussian basis functions per dimension aligned uniformly between [−1, 1].
This results in a grid of 225 state neurons covering the task space in the x and y dimension. Continuous
activity values of the state neurons are then determined by the distance of the state neuron to the current
movement and its Gaussian basis function. These continuous activity values are transformed into binary
spike patterns by using them as input to an inhomogeneous Poisson process. All recorded demonstrations
were also mapped into [−1,1] before they get transformed into binary spike patterns.

Figure 4.3.: 2.5s snippet of transformed training data in two-dimensional task space (x y) using 15× 15
state neurons.

In our experiments we used the Gaussian bandwidth parameter σ2 = 0.03, an additional Poisson rate
offset λo f f = −1.5 to fine tune the spike pattern and a refractory period of 10ms. Figure 4.3 shows
a 2.5s snippet of the transformed training data used for learning of the state transition model of the
two-dimensional task space planning model.

For learning the factorized joint space models and the hierarchical model, the recorded trajectories
of each joint are transformed into spike patterns the same way as the cartesian trajectories, with the
difference that 30 Gaussian basis functions were used, i.e., 30 state neurons per dimension. Therefore
we get six spike trains describing the one-dimensional movement of each joint. With those spike trains
we learned the factorized joint space model. Having the spike trains of the recorded demonstrations of
the task space endeffector movements in x , y and the corresponding spike patterns of the movements
of the six joints, we can learn the inverse kinematics using those spike trains simultaneously. Each of
the used six joints is modelled by a SNN that maps the spike pattern of the movement trajectory in task
space (spikes of the 225 state neurons in task space) into a spike pattern of that joint (spikes of the 30
state neurons in each joint space).

27

4.3 Learning the transition models

With all training data recorded and transformed as described in Subsections 4.1 and 4.2, the state
transition model T (vt |vt−1) is learned as described in Subsection 3.8 using Equation (3.11). All synaptic
weights wk,i were initialized with strong uniformly distributed inhibition, wk,i ∼ U (−0.99,−0.95).
Learning is done by replaying the transformed demonstrations in task space (see Figure 4.1) to the model
while updating the synaptic weights wk,i, i.e., each timestep is successively used as postsynaptic activity
ṽ t,i with the previous timesteps ṽ t−1,k, determined by the refractory period of 10ms, as presynaptic
activity. The training data, (ṽ t−1,k, ṽ t,i), is compared to the state transition (ṽ t−1,k, v t,i) sampled from
the current model using the presynaptic activity ṽ t−1,k as input. The synaptic weight wk,i of the two-
dimensional task space model is updated according to Equation (3.11). A learning rate of α = 0.05 was
used.

Figure 4.4.: Snapshots of the two-dimensional task space state transition model (consisting of 225 state
neurons) learning progress over the replay time of the demonstrations. The final model is
shown in the lower right area (894.5s replay time).

Figure 4.4 shows snapshots of the learning progress over the replay time of the demonstrations.
Starting with randomly distributed inhibitory weights, the learning progress follows the demonstrations
by updating synaptic weights between state neurons according to the position of the demonstration.
After replaying of all demonstrations, the final learned state transition model is shown in the last panel
in Figure 4.4. The training data is only replayed once for learning, because the arbitrary movements
of the demonstrations cover all states multiple times, such that there is enough training data for all
synaptic weights in a single replay. Replaying the training data multiple times did not improve the state
transition model and the synaptic weights did not change any more. To improve the state transition
model, more and diverse demonstrations are required that include new unseen state transitions. As one
can see in Figure 4.1, not all areas of the state space are covered equally well and thus the learned state
transition model is not equally accurate in all areas. Learning of about 15 minutes of demonstrations
took less than 15 minutes on a standard computer1 in MATLAB. Analysing the learned model reveals that
only close neighbouring state neurons have an excitatory connection and the closer they are the stronger
the synaptic weights are. More distant neurons have inhibitory synaptic weights and with this model
structure only small steps in each timestep are allowed. This prevents to generate movements that jump
in the space.
1 2.7 GHz Intel Core i7, 8 GB 1333 MHz DDR3

28

Learning of the six independent models in joint space, works the same way as the learning of the
two-dimensional task space planning model. The training data for each model were the movement
trajectories in each dimension (see Figure 4.2). The synaptic weights were initialized with strong random
inhibition again and were updated during replaying of the training data according to Equation (3.11).
After learning, each model encodes the state transition model of the corresponding dimension in the
joint angle space.

Figure 4.5.: The synaptic weights of the six independent models encoding the state transitions in the six
joint spaces after learning.

In Figure 4.5 the state transition models of each dimension are shown after learning converged.
Analysing the structure of the learned transition models reveals the same structure as in the two-
dimensional task space model. Close neighbours have an excitatory synaptic connection that decreases
with increased distance until the synaptic weights become an inhibitory connection for distant neurons.
Again, this structure prevents to generate trajectories that jump, but now in the joint space.

29

The hierarchical model consists of two different types of models. First, a two-dimensional task
space planning model using the full population code and second, six independent models for the
joint space mapping. For task space planning, the two-dimensional model that was learned before
was used. Only the six independent models have to be learned additionally. The six models of the
inverse kinematics were learned by replaying the transformed demonstrations in task space and the
corresponding transformed movements in the joint space. This was done simultaneously and using
Equation (3.13) to update the weights. All synaptic weights were initialized with strong random
inhibition. After replaying the 15 minutes of training data, the weights of the six learned SNNs modelling
the inverse kinematics converged and are shown in Figure 4.6.

Figure 4.6.: The synaptic weights of the SNNs modelling the inverse kinematics of the used six joints of
the KUKA lightweight arm after learning.

The hierarchical model is now built of the learned two-dimensional task space planning model and
the learned six independent SNNs modelling the inverse kinematics. Each of those six SNNs encodes
a mapping from task space to the corresponding joint space. Because the two-dimensional task space
planning model consists of 225 state neurons and each one-dimensional movement in joint space is
encoded by 30 state neurons, each of the inverse kinematic models is of size 225× 30. During sampling
of a movement the output of the two-dimensional task space planning model, i.e., the spiking activity
of the 225 task space state neurons, is used as input to determine the spiking activity of the 30 state
neurons encoding the joint spaces. The spikes of the joint space state neurons are used as additional
input to the task space model to provide feedback of the current joint states to the task space planning
model.

30

4.4 Generating smooth movement trajectories

In order to get a smooth movement trajectory that is executable on the robot several steps were
performed. First, samples are drawn by simulating the spiking neural network dynamics which
implement forward sampling (see Subsection 3.2). This means, the neural activity of the state neurons in
each timestep is determined by the neural activity of the state neurons in the previous timestep and task
related input from the task neurons. Starting at time t = 1, each timestep t of the sample is successively
drawn until the predefined sample length with t = T is reached. Next, the binary spike pattern vt of the
sample is decoded into a sequence of spatial locations xt using a Gaussian window filter and the simple
decoding scheme described in Subsection 3.4.

Due to the probabilistic model and the built in exploration, not all samples are equally good. To reject
the bad samples three criteria were used. First, the filtered Euclidean distance using a Gaussian window
filter over a small time window to the initial position and second, to the target position. Third, the
maximum jerk1 between timesteps with a small step size was used. All samples that do not reach the
initial and target position were rejected, i.e., a sample gets rejected if its average distance is greater than
a given precision threshold (5− 7% of the modelled space, e.g., 5cm in the task space). Additionally,
samples that are too fast get rejected based on their maximum jerk, i.e., if the maximum jerk is greater
than a given threshold (0.12− 0.15ms−3). The jerk is calculated in timesteps of 20ms.

The set of accepted samples was used to build the final movement trajectory. In our experiments, we
used the average position of all accepted samples in each timestep to combine the samples, i.e., using the
mean trajectory of the accepted samples. By this the resulting movement trajectory is much smoother
than the trajectories from the single samples.

For the obstacle avoidance task, we used only a single sample in the real robot. Simple averaging
would not work in that task. There are mostly multiple solutions in an obstacle avoidance task and
averaging over different solutions will result in (possibly) infeasible trajectories. To solve this problem,
there are different possibilities, e.g., perform clustering on the samples to separate the different solutions
and average the trajectories in each cluster or simply use a single sample that is more wiggly.

Before we execute the generated trajectories on the real robot, we shortened the movement trajectory
by extracting the part of the movement from where it is closest to the initial position to where it is closest
to the target position.

Finally, we had to map the trajectory back from the space of our model [−1,1] to the space of the
robot. Additionally, the movement speed was decreased to execute the sampled trajectories on the real
robot. For that we stretched the trajectories from approx. 1s to 5s using linear interpolation.

1 rate of change of acceleration

31

4.5 Target reaching task

To evaluate the learned models from Subsection 4.3, we used them to plan movement trajectories
for real robot planning problems. Therefore we define different planning tasks involving different task
settings and difficulties. We start with a simple target reaching task without any obstacles, where the
robot has to move from a given initial position to a known target position.

For this purpose we defined the two positions and model each of it with 10 task neurons. These task
neurons were randomly distributed around the position their encode with a very small variance and
have fixed probability to spike. They have the same refractory period of 10ms as the state neurons. The
timing of their spikes is defined by the kind of position they encode, i.e., for the population that encodes
the initial position, we chose activity patterns of 300ms. This allows the network to initialize itself at
the given initial position. After this time the task neurons encoding the initial position stopped spiking
and the task neurons encoding the target position started to spike until the predefined sample length
was reached, here T = 1300ms (resp. 1000ms for the factorized model and the hierarchical model).

We evaluated the models with several different initial and target positions. We calculated the
acceptance rate of the rejection sampling, the time to generate one movement trajectory (including
sampling and decoding), the average smoothness and a target reaching error. All three models were
able to generate smooth goal directed movement trajectories that could be executed on the real robot.

Table 4.1 shows the results for these criteria. In total 1000 trajectories were generated with each
model. These were split into 10 different tasks, i.e., different combinations of initial and target positions,
and 100 trajectories were generated for each task. The acceptance rate is calculated as the ratio of
accepted samples to total samples generated. The computational time is the time required to sample
and decode a movement trajectory1. The smoothness criteria is calculated as the average jerk of the
trajectories. For this calculation not every 1ms timestep of the trajectory was used. The jerk is calculated
in timesteps of 20ms. The target error denotes the smallest distance of the trajectories to the desired
target position.

As the hierarchical model generates a movement trajectory in task space (T) and simultaneously the
corresponding trajectories in joint space (J), we evaluated both results. The acceptance rate and the
computational times are only calculated once, as rejection sampling is only executed in task space
sampling and the computational time includes sampling and decoding of the trajectories in both spaces.
For calculating the smoothness and target error criteria of the joint trajectories of the hierarchical model
they were mapped into task space using forward kinematics.

Model Acceptance rate Computational time Smoothness (ms−3) Target error

2D task space 0.89 680± 40ms 0.87± 0.15× 10−2 2.24± 1.93cm

Factorized 0.96 82ms± 2ms 1.73± 0.68× 10−2 0.11± 0.13rad

Hierarchical (T) 0.89 1370± 72ms 0.96± 0.19× 10−2 2.37± 1.53cm

Hierarchical (J) 0.89 1370± 72ms 0.87± 0.18× 10−2 4.22± 2.79cm

Table 4.1.: Evaluation of the three models on simple target reaching tasks. The hierarchical model
generates a movement in task space (T) and the corresponding movement in joint space (J).
The state space had the dimension 70× 70cm.

1 using MATLAB on a 8 Core i7 3.4 GHz, 32 GB RAM machine

32

The factorized model is the fastest, however, the trajectories are less smooth compared to the other
models. Note that, we did not use any parallelization. Due to the independence of the joint models in
the hierarchical model, their sampling could be done in parallel to speed up the computational time. The
task space trajectories of the two-dimensional task space model and of the hierarchical model achieve
equally good results on the target error. However, the joint space trajectories of the hierarchical model
are slightly worse. This may reflect that the learned inverse kinematic models cannot map the movements
perfectly from task to joint space.

4.5.1 Inspecting the sampled trajectories

Next we take a closer look at the results of the three models for a simple target reaching task.
We start with the model for two-dimensional task space planning. To generate a smooth movement

we sampled 30 trajectories from the learned model, filtered and combined them as described in
Subsection 4.4. Figure 4.7 shows the sampled and combined movement trajectories for a particular
planning problem. It illustrates the exploration of the different samples and that by combining multiple
samples, a much smoother and more goal-directed trajectory can be obtained. Sampling and decoding
one trajectory of length 1300ms from the model took 680± 40ms (see Table 4.1).

33

Figure 4.7.: Target reaching task solved with the two-dimensional task space planning model. (A-C) Show
the movement trajectories in x y space with the underlying state neurons (black dots); initial
position denoted by black circle, target position denoted by blue cross. (A) The samples that
got rejected. (B) The accepted samples that are used to generate the smooth movement.
(C) The smoothed and shortened final movement trajectory. The numbers indicate the start
and end cut positions and the total length in ms. (D) The smoothed and shortened (mean)
trajectory and the standard deviation of the accepted samples plotted for x and y ; horizontal
lines indicate the initial and target positions. (E) The cumulated spike train of the 225 state
neurons of the accepted samples.

34

For the evaluation of the factorized joint space planning model we defined a simple target reaching task
in the joint space instead of the task space. The six independent models sampled movement trajectories
solving the target reaching task in each dimension independently. We used the same techniques for
rejecting and smoothing as before, however with one-dimensional movement trajectories and in the joint
space. For generating the final movement trajectories, 30 samples with each model were generated.

Figure 4.8.: Shown here are the cumulated spike trains of the 30 state neurons of each model of the
accepted samples. The fraction above the spike trains indicate the fraction of accepted
samples. Next to the spike trains the associated smoothed movement trajectories (means) in
each dimension are plotted. Horizontal lines indicate initial (blue) and target (red) positions.

Sampling and decoding one trajectory of length 1000ms from one independent model took 82ms±2ms
(see Table 4.1). Due to the independence of the single models, the samples of each model for one
complete joint trajectory can be sampled in parallel. Compared to the full population code model in
two-dimensional task space, the factorized model is much faster. Due to the independence of the single
models, they cannot exchange any information during sampling. Because of this, the factorized model
cannot deal with obstacles directly. Another drawback resulting from this lack of information exchange
is that the final movement of the six joints are not synchronized. The movement in each dimension is
generated by taking the mean of the samples and are completely independent. Therefore, after putting
together the single one-dimensional movements into one movement in higher dimensional space, the
resulting movement may not be natural. This means the movement speed in each dimension may vary.
Each joint will try to reach its target position as fast as possible independent of the others. In the extreme
case the joints reach their target position one after another instead of reaching the overall target position
of all joints simultaneously.

As the factorized model generates movement trajectories in joint space, the movements can be executed
directly on the robot, i.e., no inverse kinematic model is required.

35

Now in order to evaluate the hierarchical model, we defined a planning task in task space. The task
space model samples the movement trajectory. The generated spikes of the state neurons were used
as input for the inverse kinematic models to simultaneously translate the task space movement into
joint space movements. The activity of the state neurons of the inverse kinematic models are used
as feedback in each timestep and are considered as additional input to the task space planning model
during planning. Sampling and decoding of one trajectory in the hierarchical model took 1370± 72ms
(see Table 4.1).

Figure 4.9.: Shown here are the cumulated spike trains of the 30 state neurons of each model of the
accepted samples. Samples are rejected in task space like with the two-dimensional task space
model. Next to the spike trains the associated smoothed movement trajectories (means) in
each dimension are plotted.

Figure 4.9 and Figure 4.10 show the results of the hierarchical model. In Figure 4.9, the cumulated
spike trains of the inverse kinematic models are plotted for each joint. Next to the spike train the
movement trajectory of the corresponding joint is plotted. For building the smooth trajectory the mean
of the accepted samples is taken. As planning is done in task space there are no initial and target
positions in joint space. In comparison to Figure 4.8 (the independent SNNs results), the trajectories
smoothly converge to a target value. Thus, the correlation between the task space and the joint space
prevents jumps.

We used the same techniques for rejecting samples and combining multiple samples into a smooth
movement as described before. Figure 4.10 shows the cumulated spike train of the task space neurons
of the accepted samples and the movement trajectories.

36

Figure 4.10.: Target reaching task solved with the hierarchical planning model. (A-C) Show the movement
trajectories in x y space with the underlying state neurons (black dots); initial position
denoted by black circle, target position denoted by blue cross. (A) The samples that got
rejected. (B) The accepted samples that are used to generate the smooth movement.
(C) The smoothed and shortened final movement trajectory. The numbers indicate the
start and end cut positions and the total length in ms. (D) The smoothed and shortened
(mean) trajectory and the standard deviation of the accepted samples plotted for x and y ;
horizontal lines indicate the initial and target positions. (E) The cumulated spike train of the
225 task space state neurons of the accepted samples.

37

4.6 Obstacle avoidance task

In Subsection 4.5 we showed that we can use the transition models learned from demonstrations to
generate smooth and goal directed movement trajectories. Although that those results show that the
biological inspired approach based on spiking neural network models are applicable and useful for real
robot problems, the experiment setup was quite simple. Given an initial position and a target position
the optimal solution is just a straight line. In contrast, real world robot problems are rarely that easy. So
in order to evaluate our models on more difficult problems we increased the complexity of the task by
adding obstacles.

As described in Subsections 3.3 and 3.7, the proposed spiking neural networks can model multi-modal
distributions to encode multiple solutions. Obstacles can be modelled easily by putting a strong
inhibition on the state neurons covered by an obstacle. By this these covered state neurons cannot be
active any more and no sampled movement trajectory will cross the area covered by an obstacle. As
mentioned in Subsection 3.5 the factorized model consisting of N independent one-dimensional models
cannot deal with obstacle directly, thus we only considered the two-dimensional task space planning
model and the hierarchical model for the obstacle avoidance task.

Additionally to the initial and target positions, each modelled by 10 context neurons, we added two
obstacles that were modelled by 20 context neurons. These two obstacles had different size and shape
and blocked the direct way to the target position, i.e., the solutions from the target reaching task became
infeasible.

Without changing the parameters of the model, especially the spiking activity and weights of the
task neurons, the acceptance rate for the obstacle avoidance task is much lower than for the simpler
target reaching task. This rate can be improved by finding better parameters, which can for example be
done using reinforcement learning as in [38]. However, the focus of this work was the learning of the
transition model and building an advanced model including the inverse kinematics. So we kept the task
neurons activity and weights fixed. In total, we drew 200 samples for the obstacle avoidance task and
rejection sampling was done as in the previous experiment, i.e., based on the accuracy of a trajectory
and its speed.

For a statistical comparison of the two models, we evaluated the same four criteria as in the target
reaching task. For both models we averaged over 10 tasks with 100 trajectories each.

Model Acceptance rate Computational time Smoothness (ms−3) Target error

2D task space 0.45 635± 8ms 0.85± 0.16× 10−2 2.71± 2.24cm

Hierarchical (T) 0.64 1361± 73ms 0.96± 0.18× 10−2 2.21± 1.48cm

Hierarchical (J) 0.64 1361± 73ms 0.87± 0.20× 10−2 4.04± 2.35cm

Table 4.2.: Evaluation of the two-dimensional task space model and the hierarchical model on obstacle
avoidance tasks. The hierarchical model generates a movement in task space (T) and the
corresponding movement in joint space (J). The state space had the dimension 70× 70cm.

The computational time and the smoothness do not change for both models when obstacles are added.
However, the acceptance rate drops for both models. The hierarchical model has the higher acceptance
rate. This indicates that the correlation between task and joint space helps to generate rewarding
trajectories. The two-dimensional task space model performs slightly worse at the target error while
the hierarchical model can slightly increase its accuracy. In total, however, the target error of both
models stays roughly the same compared to the results of the target reaching tasks.

38

4.6.1 Obstacle avoidance with the task space model

Figure 4.11 shows two example trajectories of an obstacle avoidance task solved with the two-
dimensional task space planning model. Both trajectories reach the target position precisely while
avoiding the two obstacles with different movements. Because we just used a single sample here
instead of combining multiple samples, the resulting movements are less smooth than in the previous
experiment.

Figure 4.12 shows another two examples, where the neural activity of the state neurons are contrasted.

Figure 4.11.: (A) Raw sample drawn from the learned model with the activity of the task (context)
neurons in the upper part and the state neurons in the lower part. (B) The decoded
movement trajectories plotted over the integrated neural activity of the state neurons for
two different solutions to the obstacle avoidance task sampled from the learned model. (C)
Snapshots of the execution of the second solution on the KUKA lightweight arm.

39

Figure 4.12.: Two solutions to the given obstacle avoidance task sampled from the two-dimensional task
space planning model. (A) The raw samples drawn from the two-dimensional task space
planning model for the given task. Shown are the spiking activities of the state neurons
encoding the movements. (B) The decoded movement trajectories from the raw samples
plotted over the integrated neural activity of the state neurons. (C) The final movement
trajectories. The numbers indicate the start and end cut positions and the total length in
ms.

40

4.6.2 Obstacle avoidance with the hierarchical model

Sampling, decoding, rejecting and executing of the sampled movements is done in the same way as
described in detail in the target reaching task description of the hierarchical model (Subsection 4.5).

In Figure 4.13, the spike trains of the inverse kinematic models are plotted for each joint and next to
them the associated movements in joint space are shown. The rejection step is done in task space. Figure
4.14 shows two sampled solutions in task space with the associated movements and activities of the task
space state neurons.

Figure 4.13.: Shown here are the spike trains of the 30 joint space state neurons of each inverse kinematic
model of one accepted sample. Samples are rejected in task space like with the two-
dimensional task space model. Next to the spike trains the associated joint space trajectories
generated by the inverse kinematic model in each dimension are plotted.

If we compare the movements of the two-dimensional task space planning model to the hierarchical
model, we clearly see that the movements of the hierarchical model are better. They are more goal-
directed, do not have loops and when executed on the real robot they look more natural. This may
come from the feedback of the joint states during the planning progress in the hierarchical model. Note
that the resulting joint space trajectories are smooth enough to be executed on the real robot after the
stretching procedure.

41

Figure 4.14.: Two solutions to the given obstacle avoidance task sampled from the hierarchical model
directly in task space. (A) The raw samples drawn from the hierarchical model for the
given task. Shown are the spiking activities of the task space state neurons encoding the
movements in task space. (B) The decoded movement trajectories from the raw samples
plotted over the integrated neural activity of the task space state neurons. (C) The final
movement trajectories, numbers indicate the start and end cut positions and the original
length.

42

5 Conclusion & Future Work
Conclusion

In this thesis, we demonstrated that spiking neural networks (SNN) are suitable robot control models
with interesting features compared to classical planning methods. The approach is motivated by recent
findings in the neural activity in rats during phases of mental planning.

We showed that with the proposed SNN model learning of arbitrary complex functions can be
realized, i.e., the proposed state transition and kinematics models can represent non-linear and non-
unique mappings. One of the learned models can be queried in both directions. Thus, forward and
inverse models can be learned at the same time. For learning of the models, we used kinesthetic teaching
and derived a spike dependent learning rule based on contrastive divergence.

Using factorized population codes we scaled a neural controller to high-dimensional systems and
evaluated it on a six-dimensional planning problem. In addition to an existing task space planner,
two models were developed. First, an independent factorized joint space control model and second,
a hierarchical model operating in task and joint space simultaneously.

This hierarchical model combines the benefits of the task space and the factorized joint space control
approaches, i.e., the ability to scale to high-dimensional systems and the feature of encoding obstacles
as repelling forces. The hierarchical model generates movement plans in task space and joint angles
trajectories at the same time. Encoding obstacles of arbitrary shape is implemented through synaptic
inhibition of the state neurons such that no sampled movement will cross this area. The state neurons
that are deactivated by this inhibition mechanism act like repelling forces that prevent the movements to
cross the obstacle areas.

The proposed models sampled movement plans in 80 to 1300ms. For an executed robot movement of
5s, the plans were generated 4 to 60 times faster than real-time. This buffer can be used for foraging
robot control by preparing multiple alternatives to planning problems and deciding online which plan
to execute. Online rejection sampling was implemented to achieve target reaching errors of less than
3cm in a 70× 70cm operational area, corresponding to 4%.

The learned transition models had a Gaussian-like shape and resulted in smooth trajectories. No post
processing as in RRT was required, the trajectories could be directly executed on the robot. Best results
were achieved with the hierarchical model due to the bidirectional feedback between task space and
joint space neurons.

Future Work
During all of our experiments we kept the properties of the task neuron populations fixed, i.e., the

synaptic connections to the state neurons and their activity patterns. As it was shown in [38], this task
related input can be learned through reinforcement learning. A promising robot controller could be
developed by combining the learning rules and results of both studies.

Another interesting research direction is the grid representation of the state neurons. The number
of state neurons and their positions are manually set and define the complexity of the model. These
parameters may be learned as well[8]. Using such a dynamic approach, the effect of the curse of
dimensionality may be reduced as the number of neurons is only relatively high in areas where high
precision is required and low anywhere else. Additionally, the model may adapt to dynamically changing
task requirements.

Furthermore, the model provides some interesting possible extensions for planning or neuroscientific
studies, e.g., additionally encoding actions[10], installing multiple cognitive maps[1] or simulating
forward and backward replays[9][18].

43

Bibliography
[1] A. H. Azizi, L. Wiskott, and S. Cheng. A computational model for preplay in the hippocampus.

Frontiers in computational neuroscience, 7, 2013.

[2] J. Bill and R. Legenstein. A compound memristive synapse model for statistical learning through
stdp in spiking neural networks. Frontiers in neuroscience, 8, 2014.

[3] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[4] M. Botvinick and M. Toussaint. Planning as inference. Trends in Cognitive Sciences, 16(10):485 –
488, 2012.

[5] J. Brea, W. Senn, and J. pascal Pfister. Sequence learning with hidden units in spiking neural
networks. In Advances in Neural Information Processing Systems 24, pages 1422–1430. Curran
Associates, Inc., 2011.

[6] J. Bruce and M. Veloso. Real-time randomized path planning for robot navigation. In Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages 2383–2388 vol.3,
2002.

[7] L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as sampling: A model for stochastic
computation in recurrent networks of spiking neurons. PLoS Comput Biol, 7(11):e1002211, 11
2011.

[8] U. M. Erdem and M. E. Hasselmo. A goal-directed spatial navigation model using forward trajectory
planning based on grid cells. The European Journal of Neuroscience, 35(6):916–931, 2012.

[9] D. J. Foster and M. A. Wilson. Reverse replay of behavioural sequences in hippocampal place cells
during the awake state. Nature, 440(7084):680–683, 2006.

[10] N. Frémaux, H. Sprekeler, and W. Gerstner. Reinforcement learning using a continuous time actor-
critic framework with spiking neurons. PLoS Comput. Biol, 9(4), 2013.

[11] M. Fyhn, T. Hafting, M. P. Witter, E. I. Moser, and M.-B. Moser. Grid cells in mice. Hippocampus,
18(12):1230–1238, 2008.

[12] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding of movement
direction. Science, 233(4771):1416–1419, 1986.

[13] W. Gerstner and W. M. Kistler. Spiking neuron models: Single neurons, populations, plasticity.
Cambridge university press, 2002.

[14] N. J. Gustafson and N. D. Daw. Grid cells, place cells, and geodesic generalization for spatial
reinforcement learning. PLoS computational biology, 7(10):e1002235, 2011.

[15] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser. Microstructure of a spatial map in
the entorhinal cortex. Nature, 436(7052):801–806, 2005.

[16] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Comput.,
14(8):1771–1800, Aug. 2002.

44

[17] Y. Huang and R. P. Rao. Neurons as monte carlo samplers: Bayesian inference and learning in
spiking networks. In Advances in Neural Information Processing Systems 27, pages 1943–1951.
Curran Associates, Inc., 2014.

[18] A. Johnson and A. D. Redish. Neural ensembles in ca3 transiently encode paths forward of the
animal at a decision point. The Journal of neuroscience, 27(45):12176–12189, 2007.

[19] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 4569–4574, May 2011.

[20] D. Kappel, B. Nessler, and W. Maass. Stdp installs in winner-take-all circuits an online
approximation to hidden markov model learning. PLoS Comput. Biol, 10:e1003511, 2014.

[21] J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to single-query path planning. In
Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on, volume 2,
pages 995–1001 vol.2, 2000.

[22] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical report,
1998.

[23] S. M. LaValle. Planning Algorithms. Cambridge University Press, New York, NY, USA, 2006.

[24] S. M. Lavalle, J. J. Kuffner, and Jr. Rapidly-exploring random trees: Progress and prospects. In
Algorithmic and Computational Robotics: New Directions, pages 293–308, 2000.

[25] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget. Bayesian inference with probabilistic population
codes. Nature neuroscience, 9(11):1432–1438, 2006.

[26] W. Maass. Networks of spiking neurons: the third generation of neural network models. Neural
networks, 10(9):1659–1671, 1997.

[27] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.

[28] E. I. Moser, E. Kropff, and M.-B. Moser. Place cells, grid cells, and the brain’s spatial representation
system. Annu. Rev. Neurosci., 31:69–89, 2008.

[29] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[30] K. Nakazawa, T. J. McHugh, M. A. Wilson, and S. Tonegawa. Nmda receptors, place cells and
hippocampal spatial memory. Nature Reviews Neuroscience, 5(5):361–372, 05 2004.

[31] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs. Event-driven contrastive
divergence for spiking neuromorphic systems. Frontiers in Neuroscience, 7(272), 2014.

[32] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. preliminary evidence from unit
activity in the freely-moving rat. Brain research, 34(1):171–175, 1971.

[33] B. E. Pfeiffer and D. J. Foster. Hippocampal place-cell sequences depict future paths to remembered
goals. Nature, 497(7447):74–79, 05 2013.

[34] F. Ponulak and A. Kasinski. Introduction to spiking neural networks: Information processing,
learning and applications. Acta Neurobiol Exp (Wars), 71(4):409–433, 2011.

[35] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B. Strukov. Training
and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature,
521(7550):61–64, 2015.

45

[36] N. Ratliff, M. Zucker, J. A. D. Bagnell, and S. Srinivasa. Chomp: Gradient optimization techniques
for efficient motion planning. In IEEE International Conference on Robotics and Automation (ICRA),
May 2009.

[37] E. Rueckert. On biologically inspired motor skill learning in robotics through probabilistic inference.
Technical report, Ph.D. Thesis, University of Technology, Graz, Austria, 2014.

[38] E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski, and J. Peters. Recurrent spiking networks solve
planning tasks. under review, 2015.

[39] T. Solstad, C. N. Boccara, E. Kropff, M.-B. Moser, and E. I. Moser. Representation of geometric
borders in the entorhinal cortex. Science, 322(5909):1865–1868, 2008.

[40] K. L. Stachenfeld, M. Botvinick, and S. J. Gershman. Design principles of the hippocampal cognitive
map. In Advances in Neural Information Processing Systems 27, pages 2528–2536. Curran Associates,
Inc., 2014.

[41] J. S. Taube, R. U. Muller, and J. B. Ranck. Head-direction cells recorded from the postsubiculum in
freely moving rats. i. description and quantitative analysis. The Journal of Neuroscience, 10(2):420–
435, 1990.

[42] J. S. Taube, R. U. Muller, and J. B. Ranck. Head-direction cells recorded from the postsubiculum
in freely moving rats. ii. effects of environmental manipulations. The Journal of Neuroscience,
10(2):436–447, 1990.

[43] M. Toussaint and C. Goerick. A bayesian view on motor control and planning. In From Motor
Learning to Interaction Learning in Robots, pages 227–252. Springer, 2010.

[44] O. Woodford. Notes on contrastive divergence.

[45] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A. D. Bagnell, and
S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning. International
Journal of Robotics Research, May 2013.

46

A List of publications

A.1 Comments and Contributions to Publications

The paper "Recurrent spiking networks solve planning tasks"[38] presents parts of the results
developed in this thesis. In particular, using the two dimensional planning model on the real robot and
the model learning results were presented.

The paper "Spiking deep networks for robot control" by Daniel Tanneberg, Jan Peters and Elmar
Rueckert is in the progress of writing (2015). Section 3.6 and Secition 4 provide the foundation for
this manuscript.

47

	Introduction
	Motivation & Goals
	Related Work
	Outlook

	Background
	Planning & cognitive maps in the brain
	The brain & neurons - A brief overview
	Place cells & the brain's internal navigation system

	Transient firing in rats while planning
	Machine learning algorithms for planning & model learning
	Planning as probabilistic inference
	Model learning using contrastive divergence

	Path planning with spiking neural networks
	Spiking neural networks
	Neural dynamics as sampling
	Two-dimensional task space planning model
	Decoding continuous states with spike patterns
	Factorized population codes for high-dimensional models
	Hierarchical models for high-dimensional planning problems
	Task adaption through task neurons
	Model learning with spiking networks

	Robot experiments
	Gathering training data through kinesthetic teaching
	Preparing the training data
	Learning the transition models
	Generating smooth movement trajectories
	Target reaching task
	Inspecting the sampled trajectories

	Obstacle avoidance task
	Obstacle avoidance with the task space model
	Obstacle avoidance with the hierarchical model

	Conclusion & Future Work
	Bibliography
	List of publications
	Comments and Contributions to Publications

