
4UBUF 4QBDF .PEFMJOH

Topics Covered
• Inverted pendulum modeling.

• Introduction to state-space models.

• Model validation.

Prerequisites
• Integration laboratory experiment.

• First Principles Modeling laboratory experiment.

• Pendulum Moment of Inertia laboratory experiment.

• Rotary pendulum module is attached to the QUBE-Servo 2.
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The rotary pendulum model is shown in Figure 1.1. The rotary arm pivot is attached to the QUBE-Servo 2 system
and is actuated. The arm has a length of Lr, a moment of inertia of Jr, and its angle θ increases positively when it
rotates counter-clockwise (CCW). The servo (and thus the arm) should turn in the CCW direction when the control
voltage is positive (Vm > 0).

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it center of mass is
at Lp/2. The moment of inertia about its center of mass is Jp. The inverted pendulum angle α is zero when it is
hanging downward and increases positively when rotated CCW.

Figure 1.1: Rotary inverted pendulum model

The equations of motion (EOM) for the pendulum system were developed using the Euler-Lagrange method. This
systematic method is often used to model complicated systems such as robot manipulators with multiple joints.
The total kinetic and potential energy of the system is obtained, then the Lagrangian can be found. A number of
derivatives are then computed to yield the EOMs. The complete derivation of the EOM for the pendulum system are
presented in the Rotary Pendulum Modeling Summary and Maple workbook.

The resultant nonlinear EOM are:
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with an applied torque at the base of the rotary arm generated by the servo motor as described by the equation:
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km

(
Vm − kmθ̇

)

Rm
(1.3)

When the nonlinear EOM are linearized about the operating point, the resultant linear EOM for the inverted pendulum
are defined as: (
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Solving for the acceleration terms yields:
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The linear state-space equations are
ẋ = Ax+Bu (1.9)

and
y = Cx+Du (1.10)

where x is the state, u is the control input, A,B,C andD are state-space matrices. For the rotary pendulum system,
the state and output are defined

x =
[
θ α θ̇ α̇

]T
(1.11)

and
y =

[
θ α

]T
. (1.12)
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Topics Covered
• Energy control.

• Nonlinear control.

• Control switching logic.

Prerequisites
• Filtering laboratory experiment.

• Rotary Pendulum Modeling laboratory experiment.

• Rotary pendulum module is attached to the QUBE-Servo 2.
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In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation, the pendulum will keep
on swinging with constant amplitude. The idea of energy control is based on the preservation of energy in ideal
systems: The sum of kinetic and potential energy is constant. However, friction will be damping the oscillation in
practice and the overall system energy will not be constant. It is possible to capture the loss of energy with respect
to the pivot acceleration, which in turn can be used to find a controller to swing up the pendulum.

The dynamics of the pendulum can be redefined in terms of the pivot acceleration u as

Jpα̈+
1

2
MpgLp sinα =

1

2
MpLpu cosα. (1.1)

Here, u is the linear acceleration of the pendulum.

The potential energy of the pendulum is

Ep =
1

2
MpgLp (1− cosα) ,

and the kinetic energy is
Ek =

1

2
Jpα̇

2.

The pendulum angle α and the lengths of the pendulum are illustrated in the free body diagram in Figure 1.1.

Figure 1.1: Free-body diagram of pendulum

The potential energy is zero when the pendulum is at rest at α = 0and equalsMpgLp when the pendulum is upright
at α = ±π. The sum of the potential and kinetic energy of the pendulum is

E =
1

2
Jpα̇

2 +
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MpgLp (1− cosα) . (1.2)
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Differentiating Equation 1.2 yields
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Recalling Equation 1.1 and rearranging terms as
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Since the acceleration of the pivot is proportional to current driving the arm motor and thus also proportional to the
drive voltage, it is possible to control the energy of the pendulum with the proportional control law

u = (Er − E)α̇ cosα. (1.4)

By setting the reference energy to the pendulum potential energy (Er = Ep), the control law will swing the link to its
upright position. Notice that the control law is nonlinear because the proportional gain depends on the cosine of the
pendulum angle α. Further, the control changes sign when α̇ changes sign and when the angle is ±90degrees.

For the system energy to change quickly, the magnitude of the control signal must be large. As a result the following
swing-up controller is implemented in the controller as

u = satumax (µ(Er − E)sign(α̇ cosα)) (1.5)

where µ is a tunable control gain and the satumax function saturates the control signal at the maximum acceleration
of the pendulum pivot, umax. The expression sign(α̇ cosα) is used to enable faster control switching.
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The energy swing-up control in Equation 1.4 (or Equation 1.5) can be combined with the balancing control law from
the Balance Control Lab to obtain a control law that swings up the pendulum and then balances it.

Similarly as described in the Rotary Pendulum Modeling laboratory experiment, the balance control is to be enabled
when the pendulum is within ±20degrees. When it is not enabled, the swing-up control is engaged. Thus the
switching can be described mathematically by:

u =

{
ubal if |α|− π ≤ 20◦

uswing_up otherwise
(1.6)
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