Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP

Risk Aware Reinforcement Learning

Theory and Algorithms

Tosatto Samuele

Intelligent Autonomous Systems Technische Universität Darmstadt

05 August 2018

Motivations	Taxonomy 000	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP 000000

Outline

1 Motivations

2 Taxonomy

- 3 Quick Reinforcement Learning Reminder
- 4 Worst Case Criterion
- 5 Risk Sensitivity

6 Robust MDP

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
00000					

Motivation

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
000000					

What Is our Objective?

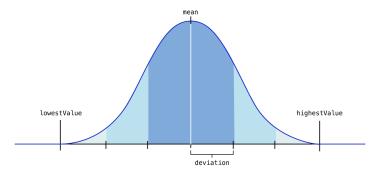


FIGURE - A Gaussian distribution. On the tail rare events might occur.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
000000					

Rare Events - Douglas Adams

Extremely rare event in Doublas Adams' opinion..

FIGURE - "Oh no, not again..." (Douglas Adams)

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
000000					

Rare Events - Nassim Taleb

Extremely rare event in Nassim Nicholas Taleb opinion..

FIGURE - "Oh no, not again..." (Douglas Adams)

Motivations	Taxonomy		Risk Sensitivity	Robust MDP
		-	 	

Sometimes rare events might be catastrophic

I can explain...

Motivations	Taxonomy		Risk Sensitivity	Robust MDP
		-	 	

Sometimes rare events might be catastrophic

Motivations	Taxonomy		Risk Sensitivity	Robust MDP
		-	 	

Sometimes rare events might be catastrophic

Motivations	Taxonomy		Risk Sensitivity	Robust MDP
		-	 	

Sometimes rare events might be catastrophic

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
000000					

Avoiding Catastrophes

Of course, we would like to build autonomous systems sensible to the risk.. This is important in diverse fields :

FinanceSmart gridsHealth	Fields
Robotics	FinanceSmart gridsHealth

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Not only the average case

Very often people optimize the average case.

 $\max_{\theta} \mathbb{E} X(\theta)$

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Not only the average case

Very often people optimize the average case.

 $\max_{\theta} \mathbb{E} X(\theta)$

In a risk aware setting we are interested in the distribution of things.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Common Optimization problem in classical RL :

 $\max_{\pi} \mathbb{E} J(\pi)$

But it is not all just about rewards ..

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Common Optimization problem in classical RL :

 $\max_{\pi} \mathbb{E} J(\pi)$

But it is not all just about rewards ..

Distribution of the return

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Common Optimization problem in classical RL :

 $\max_{\pi} \mathbb{E} J(\pi)$

But it is not all just about rewards ..

- Distribution of the return
- Ergodicity

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Common Optimization problem in classical RL :

 $\max_{\pi} \mathbb{E} J(\pi)$

But it is not all just about rewards ..

- Distribution of the return
- Ergodicity
- Probability of catastrophic states

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Common Optimization problem in classical RL :

 $\max_{\pi} \mathbb{E} J(\pi)$

But it is not all just about rewards ..

- Distribution of the return
- Ergodicity
- Probability of catastrophic states
- Uncertainty about the model

····

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
	000				

Taxonomy

We can divide Risk-Aware RL in two main categories ¹ :

Optimization Criterion	
Worst CaseRisk SensitiveConstrained	

Exploration Process

- External Knowledge
 - Initial Knowledge
 - Policy from Demonstration
 - Ask for Help
 - Teacher Provide Advices
- Risk Directed

1. garcia2015comprehensive.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
		•			

Quick Reinforcement Learning Reminder

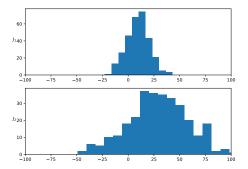
Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
			00000		

Worst Case Criterion

Motivations	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP

Worst Case Criterion

We want to maximizes the minimum possible expected return :



Motivations	Taxonomy 000	Quick Reinforcement Learning Reminder O	Risk Sensitivity	Robust MDP

\hat{Q} -Learning (Heger 1994)

Direct minimization of the worst case :

$$Q(s, a) := \min\{Q(s, a), r + \gamma \max_{a'} Q(s', a')\}$$

The idea is to maintain the memory of the worst sample observed. Note that no learning rate is required.

- Too pessimistic ;
- requests an optimistic initialization of the Q.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
			000000		

β-pessimistic Q-Learning (Gaskett 2003)

We want to mitigate the strong pessimism of \hat{Q} -Learning

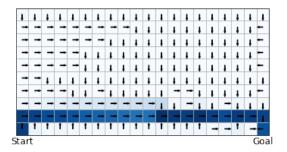
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha \left(r + (1 - \beta) \max_{a'} Q(s', a') + \beta \min_{a'} Q(s', a')\right)$$

This method does not truly optimize the worst case criterion, but it works in practice better.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
			000000		

The Cliff Environment

- Gridworld 20x10
- Each step, reward -1
- On the bottom, a cliff. End of episode and reward = -100.
- Hitting the walls : -100.



Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
			000000		

Exercize 1

Exercize 1 - Risk Aware Q-Learning

- Open "ex1" with Jupyter
- 2 Fill out the update rule with a risk update and try it out !
- **3** Try $\beta = 0.05, 0.1, 1.5$. What happens with \hat{Q} -Learning?

Reminder :

Â-Learning :

$$Q(s,a) := \min\{Q(s,a), r + \gamma \max_{a'} Q(s',a')\}$$

2 β -pessimistic *Q*-Learning :

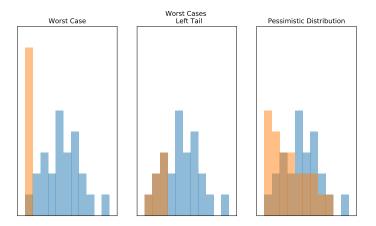
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha \left(r + (1 - \beta) \max_{a'} Q(s', a') + \beta \min_{a'} Q(s', a')\right)$$

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
				0000000	

Risk Sensitivity

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
				0000000	

Worst Case vs Better Risk Metric



Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP

Distribution

- Set of event *I*, i.e. {head, tail}
- Set of values $X(i) \in \mathbb{R}$
- Set of probability for each event $\mu(i)$

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP

Valuation Function

A valuation function is a mapping between distributions and real values, such that :

- Is monotonic : $\rho(X, \mu) \le \rho(Y, \mu)$ whenever $X(i) \le Y(i) \forall i \in I$;
- **2** is invariant w.r.t. the translation : $\rho(X + y\mathbf{1}, \mu) = y + \rho(X, \mu)$.

moreover, if the valuation function is concave, e.g.,

$$\rho(\alpha X + (1 - \alpha)Y, \mu) > \alpha \rho(X, \mu) + (1 - \alpha)\rho(Y, \mu)$$

then ρ is risk averse.

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Entropi	c Mappin	g			

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Entropi	c Mappin	g			

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

It is very interesting to note that the entropic mapping is the solution to the problem :

$$\rho_{\eta}(X,\mu) = \min_{q} \sum_{i} X(i)q(i) + \frac{1}{\eta} KL(q||\mu)$$

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Entropi	c Mappin	g			

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

It is very interesting to note that the entropic mapping is the solution to the problem :

$$\rho_{\eta}(X,\mu) = \min_{q} \sum_{i} X(i)q(i) + \frac{1}{\eta} KL(q||\mu)$$

1 $\eta \rightarrow -\infty$ we have min operator

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Entropi	c Mappin	g			

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

It is very interesting to note that the entropic mapping is the solution to the problem :

$$\rho_{\eta}(X,\mu) = \min_{q} \sum_{i} X(i)q(i) + \frac{1}{\eta} KL(q||\mu)$$

1 $\eta
ightarrow -\infty$ we have min operator

2 $\eta
ightarrow$ 0 we have the average $\mathbb E$

Motivations 000000	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Entropi	c Mappin	g			

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

It is very interesting to note that the entropic mapping is the solution to the problem :

$$\rho_{\eta}(X,\mu) = \min_{q} \sum_{i} X(i)q(i) + \frac{1}{\eta} KL(q||\mu)$$

- 1 $\eta \rightarrow -\infty$ we have min operator
- **2** $\eta \to 0$ we have the average $\mathbb E$
- 3 $\eta \rightarrow +\infty$ we have max operator

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
				00000000	

Exercize 2

Exercize 2 - Entropic Map

- Open "ex2" with Jupyter
- Fill out the entropic map function (you can use either np.exp and np.log or from scipy.special the logsumexp, where b is the parameter weighting the summation)
- Run the script, and observe how the distribution changes. We can notice that the entropic map is equivalent to the definition of the optimization problem defined.

Reminder :

$$\rho_{\eta}(X,\mu) = \frac{1}{\eta} \log \sum_{i} \mu(i) e^{\eta X(i)}$$

Motivations	Taxonomy 000	Quick Reinforcement Learning Reminder O	Worst Case Criterion	Risk Sensitivity	Robust MDP
Utility S	hortfall				

Let's assume $u : \mathbb{R} \to \mathbb{R}$ a continuous and strictly increasing function. The

$$\rho_{x_0}^u(X,\mu) := \sup\big\{m \in \mathbb{R}\big|\sum_i u(X(i) - m) \ge x_0\big\}$$

is a shortfall induced by u with acceptance level x_0 . It is possible to show that

- ρ is a proper valuation function (cite Föllmer and Schied 2004);
- if u(x) = x and $x_0 = 0$ we have the expected value;
- u(x) being concave determines risk-adversity, or risk-seeking in the opposite case;
- $u(x) = e^{\eta x}$ and $x_0 = 1$ determines the entropic map.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
				0000000	

Risk Aware *Q*-Learning (Shen et al, 2014)

We want to solve the risk aware bellman equation :

$$Q^*(s, a) = \mathcal{U}\Big(R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^*(s', a')\Big)$$

where \mathcal{U} is a valuation function (i.e. entropic map).

If \mathcal{U} is generated by the utility-based short-fall with utility u and acceptance level x_0 , then the correspondend Q-Learning will have update formula

$$Q(s, a) := Q(s, a) + \alpha \left[u \left(r + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^*(s', a') - Q(s, a) \right) - x_0 \right]$$

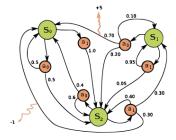
Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

Robust Markov Decision Process

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

Markov Decision Process

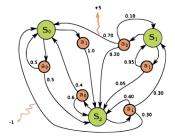
- Set of states S
- Set of actions A
- Transition probability \mathcal{P}
- Reward function R
- $\blacksquare \ \mbox{Initial distribution } \mu \\$



Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

Robust Markov Decision Process

- Set of states S
- Set of actions A
- Set of transition probabilities \mathcal{P}
- Reward function R
- $\blacksquare \ \mbox{Initial distribution } \mu \\$



Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

Robust Value Iteration

Let's define the Robust Bellman Equation

$$V^*(s) = \max_{a} r(s, a) + \gamma \inf_{P \in \mathcal{P}} \mathbb{E}_{s' \sim P(s, a)} V^*(s')$$

For convenience, let's use a vector notation,

$$\sigma_{\mathcal{P}(\boldsymbol{s},\boldsymbol{a})} \boldsymbol{V} := \inf\{\boldsymbol{P}^t \boldsymbol{V} : \boldsymbol{P} \in \mathcal{P}(\boldsymbol{s}, \boldsymbol{a})\}$$

and the Bellman Operator T^* as

$$T^*V := \max_{\pi} r^{\pi} + \gamma \sigma_{\mathcal{P},\pi} V.$$

It is possible to show that T^* is a contraction, and V^* is its unique fixed point.

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

Robust Least Square Policy Iteration

- Let *D* be a positive diagonal matrix.
- V(s) is encoded as $\phi(s)\omega$

Classic LSPI :

$$\omega_{k+1} = (\phi^T D \phi)^{-1} (\phi^T D r + \gamma D \phi \omega_k)$$

Robust LSPI (under some assumptions) :

$$\omega_{k+1} = (\phi^T D \phi)^{-1} (\phi^T D r + \gamma D \sigma_\pi \phi \omega_k)$$

But how to solve σ_{π} ?

Motivations	Taxonomy	Quick Reinforcement Learning Reminder	Worst Case Criterion	Risk Sensitivity	Robust MDP
					000000

The Inner Problem

How do we solve

$$\inf_{\boldsymbol{p}\in\mathcal{P}(\boldsymbol{s},\boldsymbol{a})}\sum_{\boldsymbol{s}'}\boldsymbol{p}(\boldsymbol{s}')\phi(\boldsymbol{s}')\omega_k?$$

It much depends about how we define the set $\mathcal{P}(s, a)$.

$$P(s, a = \{p : \text{Dist}(p, \hat{p}) \le \epsilon, p^T \mathbf{1} = 1, p \ge 0\})$$

- L₁ Distance : (Strehl and Littman 2005)
- KL Distance : (Iyengar 2005) and (Nilim and El Ghaoui 2005)
- Interval or ellipsoidal models
- For parametric p_{θ} we can use policy gradient $\nabla_{\theta \mid \theta} [\phi(s)^T \omega_k] = \mathbb{E}[\nabla_{\theta} \log p_{\theta}(s) \phi(x)^T \omega_k]$