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Motivation
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What Is our Objective?

FIGURE – A Gaussian distribution. On the tail rare events might occur..
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Rare Events - Douglas Adams

Extremely rare event in Doublas Adams’ opinion..

FIGURE – “Oh no, not again...” (Douglas Adams)
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Rare Events - Nassim Taleb

Extremely rare event in Nassim Nicholas Taleb opinion..

FIGURE – “Oh no, not again...” (Douglas Adams)
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Catastrophic Events

Sometimes rare events might be catastrophic
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Avoiding Catastrophes

Of course, we would like to build autonomous systems sensible to the risk..
This is important in diverse fields :

Fields

Finance

Smart grids

Health

Robotics
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Not only the average case

Very often people optimize the average case.

max
θ

EX(θ)

In a risk aware setting we are interested in
the distribution of things.
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Risk in Reinforcement Learning

Common Optimization problem in classical RL :

max
π

EJ(π)

But it is not all just about rewards..

Distribution of the return

Ergodicity

Probability of catastrophic states

Uncertainty about the model

...
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Taxonomy

We can divide Risk-Aware RL in two main categories 1 :

Optimization Criterion

Worst Case

Risk Sensitive

Constrained

Exploration Process

External Knowledge
Initial Knowledge
Policy from Demonstration
Ask for Help
Teacher Provide Advices

Risk Directed

1. garcia2015comprehensive.
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Quick Reinforcement Learning Reminder
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Worst Case Criterion
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Worst Case Criterion

We want to maximizes the minimum possible expected return :

max
π

min{J(π)}
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Q̂-Learning (Heger 1994)

Direct minimization of the worst case :

Q(s, a) := min{Q(s, a), r + γmax
a′

Q(s′, a′)}

The idea is to maintain the memory of the worst sample observed. Note that no
learning rate is required.

Too pessimistic ;

requests an optimistic initialization of the Q.
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β-pessimistic Q-Learning (Gaskett 2003)

We want to mitigate the strong pessimism of Q̂-Learning

Q(s, a) = (1− α)Q(s, a) + α
(

r + (1− β)max
a′

Q(s′, a′) + βmin
a′

Q(s′, a′)
)

This method does not truly optimize the worst case criterion, but it works in practice
better.
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The Cliff Environment

Gridworld 20x10

Each step, reward -1

On the bottom, a
cliff. End of episode
and reward = -100.

Hitting the walls :
-100.
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Exercize 1

Exercize 1 - Risk Aware Q-Learning

1 Open “ex1” with Jupyter

2 Fill out the update rule with a risk update and try it out !

3 Try β = 0.05, 0.1, 1.5. What happens with Q̂-Learning?

Reminder :

1 Q̂-Learning :
Q(s, a) := min{Q(s, a), r + γmax

a′
Q(s′, a′)}

2 β-pessimistic Q-Learning :

Q(s, a) = (1− α)Q(s, a) + α
(

r + (1− β)max
a′

Q(s′, a′) + βmin
a′

Q(s′, a′)
)
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Risk Sensitivity
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Worst Case vs Better Risk Metric

Worst Case
Worst Cases 

  Left Tail Pessimistic Distribution
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Distribution

Set of event I, i.e. {head, tail}
Set of values X(i) ∈ R
Set of probability for each event µ(i)
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Valuation Function

A valuation function is a mapping between distributions and real values, such that :

1 Is monotonic : ρ(X , µ) ≤ ρ(Y , µ) whenever X(i) ≤ Y (i)∀i ∈ I ;

2 is invariant w.r.t. the translation : ρ(X + y1, µ) = y + ρ(X , µ).

moreover, if the valuation function is concave, e.g.,

ρ(αX + (1− α)Y , µ) > αρ(X , µ) + (1− α)ρ(Y , µ)

then ρ is risk averse.
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Entropic Mapping

A notable valuation function is the entropic mapping :

ρη(X , µ) =
1
η
log
∑

i

µ(i)eηX(i)

It is very interesting to note that the entropic mapping is the solution to the problem :

ρη(X , µ) = min
q

∑
i

X(i)q(i) +
1
η

KL(q||µ)

1 η → −∞ we have min operator

2 η → 0 we have the average E
3 η → +∞ we have max operator
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Exercize 2

Exercize 2 - Entropic Map

1 Open “ex2” with Jupyter

2 Fill out the entropic map function (you can use either np.exp and np.log or from
scipy.special the logsumexp, where b is the parameter weighting the
summation)

3 Run the script, and observe how the distribution changes. We can notice that the
entropic map is equivalent to the definition of the optimization problem defined.

Reminder :
ρη(X , µ) =

1
η
log
∑

i

µ(i)eηX(i)
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Utility Shortfall

Let’s assume u : R→ R a continuous and strictly increasing function. The

ρu
x0
(X , µ) := sup

{
m ∈ R

∣∣∑
i

u(X(i)−m) ≥ x0
}

is a shortfall induced by u with acceptance level x0. It is possible to show that

ρ is a proper valuation function (cite Föllmer and Schied 2004) ;

if u(x) = x and x0 = 0 we have the expected value ;

u(x) being concave determines risk-adversity, or risk-seeking in the opposite
case ;

u(x) = eηx and x0 = 1 determines the entropic map.
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Risk Aware Q-Learning (Shen et al, 2014)

We want to solve the risk aware bellman equation :

Q∗(s, a) = U
(

R(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Q∗(s′, a′)
)

where U is a valuation function (i.e. entropic map).

If U is generated by the utility-based short-fall with utility u and acceptance level x0,
then the correspondend Q-Learning will have update formula

Q(s, a) := Q(s, a) + α

[
u
(

r + γ
∑
s′

P(s′|s, a)max
a′

Q∗(s′, a′)− Q(s, a)
)
− x0

]
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Robust Markov Decision Process
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Markov Decision Process

Set of states S
Set of actions A
Transition probability P
Reward function R
Initial distribution µ
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Robust Markov Decision Process

Set of states S
Set of actions A
Set of transition probabilities P
Reward function R
Initial distribution µ
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Robust Value Iteration

Let’s define the Robust Bellman Equation

V∗(s) = max
a

r(s, a) + γ inf
P∈P

Es′∼P(s,a)V
∗(s′)

For convenience, let’s use a vector notation,

σP(s,a)V := inf{P t V : P ∈ P(s, a)}

and the Bellman Operator T∗ as

T∗V := max
π

rπ + γσP,πV .

It is possible to show that T∗ is a contraction, and V∗ is its unique fixed point.
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Robust Least Square Policy Iteration

Let D be a positive diagonal matrix.

V (s) is encoded as φ(s)ω

Classic LSPI :
ωk+1 = (φT Dφ)−1(φT Dr + γDφωk

)
Robust LSPI (under some assumptions) :

ωk+1 = (φT Dφ)−1(φT Dr + γDσπφωk
)

But how to solve σπ ?
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The Inner Problem

How do we solve
inf

p∈P(s,a)

∑
s′

p(s′)φ(s′)ωk?

It much depends about how we define the set P(s, a).
P(s, a = {p : Dist(p, p̂) ≤ ε, pT 1 = 1, p ≥ 0})

L1 Distance : (Strehl and Littman 2005)
KL Distance : (Iyengar 2005) and (Nilim and El Ghaoui 2005)

Interval or ellipsoidal models

For parametric pθ we can use policy gradient
∇θ pθ[φ(s)Tωk ] = E[∇θ log pθ(s)φ(x)Tωk ]
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