Install python, tensorflow, gym (e.g. with pip)

Download ppo_tuto.py from your mailbox



Approximate Policy Iteration and PPO
Implementation



MDP notations

*MDP: (S, A, R, gamma, P)
* R(s,a): reward
* P(s’|s,a): transition proba.
e Given Q.(s,a)=E[r(s,qa,),yr(s,a,),y’r(s,a,),..|sy=s,a,=al

e Goal: Find n"*=argmax,J(x)=argmax.E,_, , .Q.(s,a)



Policy Iteration
* Given policy q:
* Policy evaluation step: compute Q,(s,a)
* Policy Iimprovement step: generate new policy
n st E.[Q.(s,a)]=E [Q.(s,a)] for all s
*e.g. n(s)=argmax,Q(s,a)

* Policy improvement implies J(xm)>J(q)



Approximate policy Iteration

* For large state spaces:
- Policy evaluation: use function approximation for

Q_q(s.a)

* Regression problem... fine

- Policy update: use function approximation for policies
- e.9. t(al|s)=Normal (neuralnet (s), )

« Cannot ensure that En[Qq(S,a)]ZEq[Qq(S,a)] is true
for all s!



Staying close to data policy

* Workaround: improve In expectation

E, .[E,..[Q,(s,a)]]ec](x)

- Impractical because of the expectation over the
state distribution of pi

* Switch state distribution to that of g
a ESNq[Ea~n[Qq(S3a)]]

- Can guarantee improvement in J only if g and pi are
close! (improve in never reached states otherwise)

Kakade et al., Approximately optimal approximate reinforcement learning, ICML 2002



APl summary

e Generate data from ¢

* Policy evaluation: Approximate Q_q(s,a)

» Policy update: maximize E,_ [E,_.[Q.(s,a)]]
— But make sure that g and pi are close!



PPO

* Policy update is PPO’s key step:
_ LPPO(E):Es,aNq[min(I(S’a)Qq<5’a)9C<I<S’a)’E>Qq(Sﬁa)>]
- I(s,a) = pi(als) / q(als)

- c(X, e) =min(max(x, 1 -e), 1 + e)), clips x to [1-e,
1+e]

» E, . [I(s,a)Q.(s,a)]=E, [E, .[Q,(s,a)]]

 The min and the clipping are what prevents ¢
and pi from deviating too much from each other



Let’'s implement PPO

* PPO is straightforward to implement

* Policy evaluation: can use any from the
iterature

* Policy update: code and optimize via gradient
aSCeNt Lyy(n)=E, . [min(I(s,a)Q,(s,a),c(I(s,a),e)Q,(s,a))]



Three step tutorial

#0: Implement a Gaussian policy with mean
given by a neural network in tensorflow

#1: Perform policy evaluation via standard MSE
regression

#2: Update policy following PPQO’s loss



Policy evaluation: regression

* We will use the advantage function for update
- Let V. (s)=E,..[Q.(s,a)] and A_(s,a)=Q,(s,a)—V,(s)
* We will only learn V and estimate A from it

* Learn V as regression problem:
- Let V(s), value given by a neural network
- Minimize E,_ (V(s)-V™")

- V™ can be the sum of rewards over one path



Policy evaluation: targets

« V. can be the sum of rewards over one path

e V{ can be the first reward + V of next state
(TD(0) method)

» V™ can be the first two rewards + V of next
next state

« V" can be an average of all such estimates
(TD(lambda) method)



Policy update

* Policy update of PPO.:
— Lppo(m)=E, . [min(I(s,a)A,(s,a),c(I(s,a),e)A(s,a))]

- I(s,a) = pi(als) / q(als)
- c(X, e) =min(max(x, 1 -e), 1 + e)), clips x to [1-e,
1+e]



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

