
 

Abstract—This paper proposes a novel approach to localize 
the contact location of a tactile sensor on an object. By taking 
advantage of some correspondences between visual and tactile 
sensing, it is proposed to localize tactile readings in visual 
images by sharing same sets of feature descriptors through two 
sensing modalities. Thus the recursive Bayesian filtering is 
employed and feature-based measurement model and Gaussian 
based motion model are built. In our tests, a tactile array sensor 
is utilized to generate tactile images during interaction with 
objects and test results have proved its feasibility. 

I. INTRODUCTION 

Humans tend to utilize both vision and the tactile 
sensations of hands during grasping and/or manipulating 
objects. Key features, e.g., corners and edges, are first 
captured by our eyes and direct hands to an appropriate pose to 
handle objects. However, these visual features become 
unobservable during the manipulations in hand as vision is 
occluded. In this case, touch sensation makes up the 
information loss caused by the occlusion. The corresponding 
features are sensed in the tactile modality and poses of objects 
can thus be inferred. In this process prominent features act as a 
bridge between vision and tactile sensing, making our hand 
movements consequent. To apply this biological mechanism 
in robotics, we propose to use same feature descriptors in both 
vision and tactile sensing to localize the tactile features in 
visual images. 

Earlier researchers have attempted to fuse vision and touch 
since decades ago but tactile sensors were only utilized to 
verify contacts or infer force direction due to the low 
resolution [1] [2]. Thanks to the increasing spatial resolution 
and spatiotemporal response, recently developed off-the-shelf 
tactile   sensors  have  shown   the  ability   to   serve  as  “imaging”  
devices. Schneider et al. [3] took tactile images as features 
directly to recognize objects in a framework of Bag-of-Words 
(BoW) originated from computer vision. By use of the same 
streamline, Pezzementi et al. [4] took one step further: 
multiple kinds of features were extracted from tactile readings 
and their performances were compared. Liu et al. [5] 
recognized objects by classifying local features through the 
covariance analysis of pressure values in tactile images. All of 
these works show the potential of taking both visual and tactile 
readings as images and extracting features of the same type 
through two modalities for object contact estimation. Thus we 
propose to localize tactile readings in visual images using 
recursive Bayesian filtering, in which feature descriptors of 
the same type are extracted from both visual and tactile images. 
This novel approach is promising to be used to facilitate 
manipulations in hand. 

Figure 1 illustrates our experimental system: a webcam 
(not shown here) and a Weiss tactile sensor of 14×6 sensing 
elements are utilized to obtain visual and tactile images of 

objects respectively; a Phantom Omni haptic device to which 
the tactile sensor is attached is employed to acquire the 
positions of the tactile sensor. A 3D printed gecko model is 
utilized to test our algorithm, which has a 2D shape that 
protrudes from its base 4mm. The sensor is controlled to press 
at multiple steps to follow its surface and the sensor plane is 
kept normal to the surface of the gecko. 

Fig. 1. Experimental setup, which consists of a webcam (not shown here) and 
a tactile sensor attached to a manipulator. A 3D print gecko model is selected 
as the test object. 

II. METHODOLOGY AND EXPERIMENTS 

The recursive Bayesian filtering is employed to estimate 
the location (state) xt of the tactile sensor in the visual map m 
at each time step t, as illustrated in Fig. 2. The tactile readings 
zt and movements of the tactile sensor ut  in the 3D space are 
collected to update the belief distributions over possible 
locations (states) in the visual map. Based on the input streams, 
it can be divided into two steps, i.e., control update and 
measurement update.  

Fig. 2. Robot object interaction for localization and the data flow. Left: 
prediction of the contact location in the visual map, with the red region as the 
most probable contact location. Right: data flow of the control and 
measurement update. 
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In control update, the belief 𝑝̂(𝑥௧|𝑢௧)  at xt=(x1,x2) is 
obtained by summing each product of the probability at the 
deterministic state (x1-a,x2-b) and its nearest k states (k=8 in 
our case) at time t-1, measured in Euclidean distance, and the 
Gaussian probability density f(i,j). Here, (i,j) is the shift from 
the deterministic state. In the measurement update, the belief 
𝑝(𝑥௧)  is obtained as the product of  𝑝̂(𝑥௧|𝑢௧)  and the 
probability 𝑝(𝑧௧|𝑥௧)that the measurement 𝑧௧  may have been 
observed for each hypothetical posterior state 𝑥௧. 𝑝(𝑧௧|𝑥௧) is 
inverse to the Euclidean distance 𝑑൫𝑝௜,௝, 𝑧௧൯  between 
descriptors extracted from segmented sub-image 𝑝௜,௝ with 
index (i,j) and the tactile image zt. 

These features are adapted Scale Invariant Feature 
Transform (SIFT) descriptors [6], taking the invariance to 
translation and rotation into consideration. Compared to the 
classic SIFT algorithm, scale-space pyramids and key point 
localization are removed as in [7]. As shown in Fig. 3, each 
tactile image is segmented into three overlapped sub-images 
of the same size and one SIFT descriptor is extracted from 
each sub-image, taking sub-image centers as “key points”. 
More details can be found in our previous work [8].  

Fig. 3. Each tactile image is segmented into three overlapped sub-images and 
one 32-dimensional feature (f1, f2, f3) is extracted from each sub-image. 

The same approach is also applied to the visual images, 
extracting three SIFT descriptors from each sub-image. As 
shown in Fig. 4, a sliding window with the size of tactile 
image is carried out to get matching probability for each pixel.  

Fig. 4. Feature matching between visual and tactile images. (a) A sliding 
window (marked in red) in the visual image. (b) Tactile image zt at time t. 

In total, 22 experiments were carried out and in each of the 
experiment the tactile sensor explored the gecko model in 
different exploration paths. At the end of the exploration 
process, the robot can locate the tactile sensor in the gecko 
map with a large certainty. As shown in Fig. 5, it can be 
noticed that the localization errors tend to decrease through the 
localization process. To conclude, the experimental results 
prove the feasibility of our proposed framework in localizing 
the tactile sensor in a visual object map. 

Fig. 5. Sample localization process and results. First row: obtained tactile 
images at each step; Second row: corresponding ground truth locations of the 
tactile sensor (marked as red) in the visual map. Last row: Corresponding 
probability distribution of locating the tactile sensor at different states.  

III. CONCLUSION 
This paper proposes a novel approach to integrate the 

vision and tactile sensing applied in localizing the tactile 
readings in the visual object image, which is solved by the 
recursive Bayesian filtering. The Gaussian noises are used to 
model the motion. In measurement update, revised SIFT 
descriptors are extracted from both the tactile and visual 
images and the belief distributions are updated by feature 
matching. Test results have proven its feasibility and it is 
promising to be used to facilitate robotic hand manipulations. 
More details can be found in [9]. 

REFERENCES 
[1] P.  K.  Allen,  “Integrating  vision  and  touch  for  object  recognition  tasks,”  

Int. J. Rob. Res., vol. 7, no. 6, pp. 15–33, 1988. 
[2]   H. Wu, H. Liu, and D. Liu. “Two-Dimensional Direction Recognition 

Using Uniaxial Tactile Arrays,” IEEE Sens. J., vol. 13, no. 12, pp. 
4897-4903, 2013. 

[3] A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W. 
Burgard,   “Object   identification   with   tactile   sensors   using  
bag-of-features,”  in  IROS, 2009, pp. 243–248. 

[4] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager,  “Tactile-Object 
Recognition  From  Appearance  Information,”  IEEE Trans. Robot., vol. 
27, no. 3, pp. 473–487, 2011. 

[5] H. Liu, X. Song, T. Nanayakkara, L. D. Seneviratne, and K. Althoefer, 
“A  Computationally  Fast  Algorithm  for  Local  Contact  Shape  and  Pose 
Classification  using  a  Tactile  Array  Sensor,”  in  ICRA, 2012, pp. 1410–
1415. 

[6] D.   G.   Lowe,   “Distinctive   Image   Features   from   Scale-Invariant 
Keypoints,”  Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004. 

[7] A.  Bosch,  A.  Zisserman,  and  X.  Mu,  “Scene  Classification  via  pLSA,”  
in ECCV, 2006, pp. 517–530. 

[8] S.   Luo,   W.   Mou,   M.   Li,   K.   Althoefer,   and   H.   Liu,   “Rotation   and  
Translation   Invariant   Object   Recognition   with   a   Tactile   Sensor,”   in  
IEEE Sensors Conference, 2014, pp. 1030–1033. 

[9]   S.   Luo,  W.  Mou,   K.   Althoefer   and   H.   Liu,   “Localizing   the   Object  
Contact  through  Matching  Tactile  Features  with  Visual  Map”,  in ICRA,  

         2015, to appear. 

ft,1 , ft,2 , ft,3  

fi,j,1 , fi,j,2 , fi,j,3 
 

(b) 

Feature matching 

(a) 

f2 

f1 

f3 


