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Abstract— Classical methods to estimate the dynamics of

a robot in presence of external contacts rely on joint-torque

sensing, estimation of the contact position and accurate system

identification. While the contact position can be estimated by

whole body tactile sensors, this approach requires a kinematic

spatial calibration, which is prone to errors. As an alternative

to classical model-based approaches we propose a data-driven

mixture-of-experts learning approach using Gaussian processes.

This model predicts joint torques directly from raw data of

tactile and force/torque sensors. We show that the learned model

accurately predicts the joint torques resulting from contact

forces, is robust to changes in the environment and outperforms

existing dynamic models that use of force/torque sensor data.

I. INTRODUCTION

Fig. 1: The humanoid
robot iCub used in the
experiments.

A key challenge for torque-
controlled humanoid robots is to
accurately estimate their dynamics
in presence of contacts, e.g., dur-
ing manipulation in clutter [11],
whole-body movements [12] or
ground contacts in locomotion [1].
Analytic dynamics models suffer
from inaccurate parameter estima-
tion, unmodeled dynamics (e.g.,
friction, couplings, elasticities) and
noisy sensor measurements. With
contacts the problem is even more
challenging due to discontinu-
ities and additional non-linearities,
which are difficult to model or estimate. Moreover, if contact
locations are not fixed a priori or known with sufficient
precision, small errors in the localization of the external force
can substantially deteriorate the inverse dynamics compu-
tation [7]. With inaccurate dynamics models, many control
strategies like inverse dynamics control [8], computed torque
control [17] or model predictive control [13] that rely on
accurate dynamic models produce suboptimal policies. We
present the newest developments on this topic stemming
from [2]. In contrast to classical techniques based on the
identification of dynamics parameters [19], [15], [18], we
use a fully data-driven machine learning approach based on
non-parametric models, where both the rigid body dynamics
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and the effect of external forces on the robot structure are
learned directly from data collected on the real robot. This
model makes use of the raw sensor data and does not
require a kinematic/dynamics calibration [19], [15], [18] nor
a spatially calibrated model of the skin [6].

II. PROBLEM FORMULATION

The inverse dynamics of a robot in presence of a set of
contacts with the environment C = {c1 . . . cn} is defined as

⌧ = M (q) q̈ + h (q, q̇)| {z }
⌧RBD

+✏(q, q̇, q̈) +
X

ci2C
J>

ci(q)�i , (1)

where q, q̇ and q̈ are the joint positions, velocities and
accelerations, respectively, M (q) is the inertia matrix and
h (q, q̇) is the matrix combining the contributions from
Coriolis and centripetal, friction (viscous and static) and
gravity forces. The term ✏(q, q̇, q̈) captures the errors of
the model, such as unmodeled dynamics (e.g., elasticities
and Stribeck friction), inaccuracies in the dynamic parame-
ters (e.g., masses, inertia), vibrations, couplings, and sensor
noise. The last term

P
ci2C J

>
ci(q)�i accounts for the ad-

ditive effect of the external wrenches �i applied at contact
location ci, and Jci(q) is the contact Jacobian.

Classical approaches for computing ⌧ or ⌧RBD rely on
the dynamics model with known or identified kinematics
and dynamics parameters. The torques ⌧RBD = M (q) q̈ +
h (q, q̇) can be computed analytically through the rigid
body dynamics model of the robot, a standard parametric
description of the robot [9]. The term ✏(q, q̇, q̈) is often
neglected, or implicitly taken into account by considering
a perturbation in the dynamics parameters of ⌧RBD.

When contacts are exerted on the robot structure at loca-
tions other than the classical end-effectors, it is still possible
to compute an inverse dynamics model, but this requires both
pervasive joint torque sensing, such as in Toro [15], and addi-
tional force/torque and tactile sensing, such as in iCub [10].
Moreover, it requires the precise knowledge of the contact
locations detected by the tactile sensors, which necessitates
a spatial calibration of the skin [6]. This procedure is prone
to errors, and small errors in the kinematics calibration of
the taxels (i.e., the tactile units) can induce non-negligible
errors in the estimation of the contact forces [7].

III. LEARNING INVERSE DYNAMICS WITH CONTACTS

When learning inverse dynamics with contacts (1), we
assume that the contact-free inverse dynamics can be com-
puted precisely, either from an analytic model or from a
learned model [14]. As a result, only the model of the
residual term of the external forces

P
ci2C J

>
ci(q)�i has
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Fig. 2: Our approach extends existing inverse dynamics with-
out contacts by learning many contact models, which serve as
correction terms under different contact types. Which contact
model to activate is decided by a gating network.

to be separately learned. We consider a robot provided
with skin measurements S from the tactile sensors, force
measurements F from the force torque sensors (FTS) and the
ground truth of the torques ⌧ from the joint torque sensors
(JTS). The problem of learning the external forces can be
defined as learning a mixture-of-experts model such that

X
ci2C

J>
ci(q)�i =

X
j2J

fj([q,F ]) + w , (2)

where J is the set of active contacts and fj the expert
corresponding to each contact. The advantage of this for-
mulation is that the high-dimensional skin input S is not
explicitly part of the inputs of the experts. Therefore, each
single expert fj is now sufficiently low-dimensional to be
modeled independently and the skin S is used in the gating
network to determine which expert is currently active. An
illustration of our approach is shown in Fig. 2. As single
expert fj we use Gaussian processes [16], a state-of-the-art
regression method often used in robotics to learn dynamics
models [5] and for control [4].

IV. EXPERIMENTAL EVALUATION

The experiments were conducted on the iCub, a humanoid
robot with 53 degrees of freedom equipped with four 6-axis
force/torque sensors placed proximally in the middle of legs
and arms, and an artificial skin consisting of many distributed
tactile elements (taxels) mounted on the robot covers [3].
These sensors are used to estimate the joint torques and the
external contact forces by the iDyn library [10].

We consider a scenario having the iCub performing a
circular motion with its left arm. We initially performed
two experiments with an obstacle either on the left and on
the right of the reference trajectory (see Fig. 3). With the
data collected in these two contact cases, we trained two
independent expert models f1, f2, one for each contact. We
repeated the experiment, but this time with both left and
right contacts and used this last unseen case to validate our
models. Fig. 4 shows an example of the prediction and the
corresponding activation of the two contact models. During
both the right and the left contact, the corresponding experts
are activated by the gating network. Therefore, we can
successfully combine the contributions of the single contact
models learned to generalize to unseen cases with multiple
contacts. Moreover, the gating network allows us to combine

Fig. 3: The robot performs
a circle with its left arm.
The forearm collides al-
ternatively with the left,
the right or both contacts.

Fig. 4: Prediction of torques
with multiple contacts and the
corresponding activation of the
gating network. Our mixture-
of-experts model combines the
learned single-contact models
into a multiple-contact model.

the experts to generalize to unseen environments, such as in
the case of both contacts.
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