
Learning action features for structured exploration

Nicolas Heess, Gerhard Neumann, David Silver, Yee Whye Teh

Introduction High-dimensional control problems are a significant challenge for many learning algorithms. They
suffer from the curse of dimensionality, and näıve exploration, e.g. by adding a small amount of uncorrelated noise to
the action vector, can be highly inefficient (leading to “motor babbling”) and even damaging for the plant. Knowing
about the dependencies between action dimensions inherent to many control problems can guide our search through the
high-dimensional space and greatly speed up learning. Many real world reinforcement learning applications therefore
rely on action representations in the form of “action features” or “motor primitives” that capture domain specific
knowledge and hence simplify the learning problem. In this work we are interested in how to learn such features.
One area where there has recently been been much success in feature learning for a diverse sets of perceptual tasks
(e.g. in computer vision or natural language processing) is the deep and unsupervised learning community. These
works employ general architectures such as neural networks or related probabilistic formulations which are able to
learn distributed and hierarchical representations of the data.

Here, we employ such a generic learning architecture in the form of a neural network in order to learn a low-dimensional
representation of actions for a high-dimensional control problem, the octopus arm. In order to learn a diverse set of
features we consider a multi-task setup with a small set of carefully chosen, relatively simple training tasks to learn a
distributed representation of actions. These learned action features capture important correlations between the action
dimensions. We propose to use these features in a probabilistic architecture that can take advantage of the learned
dependencies performing structured exploration, and we demonstrate that this combination can significantly speed up
learning of novel tasks.

Environment To illustrate our approach we consider a simulated octopus arm (Engel et al., NIPS 2005). The goal
is to control the arm to move from an initial position to hit a target with its tip while avoiding obstacles. Our arm
consist of C = 8 segments, each associated with a 8 dim. continuous state vector (i.e. 8C = 64 state dimensions in
total) and a 3 dim. binary action vector (two lateral muscles and a transversal muscles per segment; 3C = 24 action
dimensions in total).

Learning architecture We use a variant of the episodic natural actor critic algorithm (eNAC) proposed by (Peters
& Schaal, Neurocomp. 2008). We parameterize the policy using a 2-layer sigmoidal neural network, with (continuous)
input layer s, binary hidden layer h (8 hidden units), and binary output layer a (see Fig. 1). In order to allow for
structured exploration, taking into account correlations between the actions, we use stochastic hidden units so that the
overall policy is given by πθ(a; s) =

∑
h
p(a,h|s; θ) =

∑
h
p(a|h; θ)p(h|s; θ). The conditional probabilities are given by

p(hi = 1|s; θ) = σ(WSs + bi) and p(aj = 1|h; θ) = σ(WAa + cj). Marginalization over the latent variables h allows
the policy to capture correlations between the action dimensions. Note that deterministic hidden units allow for a
non-linear dependence on the state but do not induce stochastic dependencies between the action units.

states

actions

hidden units

(stochastic)

Shared across tasks

State weights

Task specific

 a1
 a2 a3

 a4

 h1 h2

 s1 s2 s3 s4 s5

 W
AAction weights

 W
S

1e+06 2e+06
0

50

100

test task 319

st
ep

s
to

 ta
rg

et

init single 1

init single 2

init multi

from scratch

1e+06 2e+06
0

50

100

test task 317

1e+06 2e+06
0

50

100

test task 307

1e+06 2e+06
0

50

100

test task 325

1e+06 2e+06
0

50

100

test task 324

1e+06 2e+06
0

50

100

of training actions

re
tu

rn
 p

er
 e

pi
so

de

1e+06 2e+06
0

50

100

of training actions
1e+06 2e+06

0

50

100

of training actions
1e+06 2e+06

0

50

100

of training actions
1e+06 2e+06

0

50

100

of training actions

Figure 1: Left : Illustration of policy parameterization. Right : Convergence of learning for the 5 test tasks. Top: steps
to target; bottom: return per episode. Blue and red traces show results for policies learned from scratch, and with
pre-learned action features respectively. Cyan and magenta traces show results obtained with action features obtained
with single training tasks. Traces show averages over multiple runs, typically 2-4. Error bars show std-dev..

Multi-task feature learning We design a small number of training tasks that activate muscles in different parts of
the arm (e.g. muscles close to the tip, close to the base, on the left side of the arm, the right side of the arm etc.) and

1

learn a controller jointly for these tasks: The mapping from hidden units to actions p(a|h; θ) is shared across tasks
(i.e. we learn a single set of parametersWA, c), but there is a task-specific, stochastic mapping p(h|s; θ) from the states
to the hidden units (i.e. we learn a separate set of parameters WS

k , ck for each task k = 1 . . .K). With M < 3C the
hidden units h can be seen as providing a low-dimensional representation of actions, capturing dependencies between
actions.

Once learning in the multi-task controller is complete we test the effectiveness of the learned action features for learning
novel tasks (differing from the training tasks wrt. the initial configuration of the arm and the positions of targets and
obstacles): We attempt to learn controllers for different test tasks, fixing the action features (WA, c) to those from
the multi-task setup and learning only a new mapping from the state to the hidden units h.

Results We use three training tasks and 5 test tasks (some videos of training and test tasks can be seen here1).
Figure 1 shows convergence of learning for the test tasks. We compare convergence with pre-learned action features
(only WS , b are learned) to a baseline where the full policy is learned from scratch (i.e. WA, c,WS ,b are all learned
anew). In all cases learning is considerably faster when the pre-learned action features are used (compare red/blue
traces). For one of the test tasks (324) learning only succeeds with pre-learned action features. We further find that
the choice of training tasks matter: action features obtained by learning to solve only a single one of the training tasks
are effective for some of the test tasks but generalize less well (compare red traces with magenta / cyan traces). In
additional experiments (not shown) we find that pre-learning action features is considerably more effective than pre-
learning state features, and that the use of stochastic hidden units (allowing for correlated exploration) are important
to exploit the learned features fully.

Discussion Our preliminary results suggest that a multi-task setup in combination with a sufficiently general learning
architecture allows to learn useful representations of actions. The proposed approach is not tied to a particular learning
task, algorithm (e.g. the particular form of policy gradient that we have chosen here), or policy parameterization,
although our results suggest that the ability of the parametric policy to model dependencies between actions is
important. One interesting direction for future work is to investigate the possibility to use richer parametric forms
than the simple NN considered here to learn more complex, non-linear action features, possibly in a hierarchical
manner. An especially appealing approach would be to design a sequence of training tasks of increasing difficulty, akin
to a “curriculum”, where simple tasks are used to learn simple features first, which subsequently facilitate learning of
more complex ones. A second interesting direction would be to extend this work in the temporal domain in order to
capture not just “spatial” dependencies between action dimensions but also correlations over time (e.g. , in the case
of the octopus arm, to maintain activation of a muscle group over several time steps).

1http://www.gatsby.ucl.ac.uk/~nheess/papers/rssabstract/

2

