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I. INTRODUCTION

The use of parameterized policies has become prevalent in
reinforcement learning on high-dimensional robotic systems
due to difficulties in representing and approximating the
value function. Many state-of-the-art reinforcement learning
algorithms work by iteratively sampling trajectories from a
parameterized policy and updating its parameters to minimize
the expected cost. However, explicit representation and satis-
faction of constraints along trajectories has not been satisfac-
torily addressed in such sampling-based learning algorithms.

In this abstract, we present a stochastic policy parameteri-
zation for sampling and learning trajectories that satisfy con-
straints. We model the trajectory as a Markov Random Field
(MRF) with pair-wise potentials that represent a smoothness
cost. The resulting joint distribution is then conditioned on
linear or locally linear constraints, which allows sampling of
trajectories directly on the constraint manifold. Sparsity in
the graph structure can be exploited to make this sampling
process efficient. We show preliminary results from applying
a sampling-based trajectory optimizer on a 100-DOF simulated
planar robot with end-effector constraints.

II. MARKOV RANDOM FIELD TRAJECTORY MODEL

We represent a robot trajectory in a d-dimensional con-
figuration space, discretized into 7' timesteps, resulting in a
trajectory vector x € RT?, Each element of this parameter
vector is considered a node in the MRF. The smoothness of
this trajectory is measured as the sum of squared accelerations

along each dimension of the trajectory:
d

Qr(x) = > (Dy;x)"(Da;x) = x'Rx (1)
j=1
where Dy ; is a second order finite differencing matrix for
joint 7, and R = Z‘;zl D3 ;D ;. The stochastic policy is
then defined as:

P(x]8) = exp (—(x — 6)"R(x — 6)) @)
where @ € RT“ are the policy parameters which represent the
mean trajectory. Samples from this policy lie in the vicinity
of the mean, and deviations from the mean are smooth, since
distances are measured with respect to the metric R. This joint
distribution can be seen as a Gaussian MRF, where each non-
zero element of R corresponds to a pair-wise Gaussian po-
tential between two nodes. Note that R has a sparse, banded-
diagonal structure and only requires O(T'd) of memory.

III. SAMPLING FROM THE CONDITIONAL DISTRIBUTION

Sampling from the multivariate normal joint distribution (2)
is achieved by first computing the cholesky factorization
of R = LL". Each sample x is then drawn by solving

L'™x = €, where € = N(0,I). Linear constraints Ax = b
(A € R™*Td p ¢ R™) can be incorporated in this sampling
process by conditioning the joint distribution (2) on the con-
straints: P(x|0, Ax = b), which is also multivariate normal.
Although the resulting covariance matrix could be explicitly
computed, it is computationally more efficient to first draw an
unconditioned sample x followed by an optimal projection to
obtain a conditioned sample x’ as follows [2]:
¢’ =z —-RTAT(ART'AT) " (Ax — b) (3)

The complexity of computing the projector (due to sparsity)
is O(m? +mTd), which only needs to be computed once for
an entire set of samples. Sampling is then O(mTd).

Conditioning on linear constraints provides a compact and
general way to represent many typical scenarios, such as
fixing the start and goal positions, velocities, and accelerations,
passing through via points, and respecting kinematic loop
closure constraints. Constraints that are globally linear can
be satisfied exactly by this method. Non-linear kinematic
constraints are locally linearized using the Jacobian, and can
hence only be approximately satisifed during sampling, but
typically converge after multiple iterations of the optimizer.

IV. OPTIMIZATION AND EVALUATION

Apart from the intrinsic trajectory
cost (1) and constraints, we define
an extrinsic cost J(x), which is task-
dependent and typically includes terms
related to avoiding collisions and achiev-
ing the desired task. We use the STOMP
algorithm [1] in conjunction with our
constrained sampling procedure to opti-
mize the parameters of the MRF policy

Fig. 1.
planar

A 100-DOF
robot moves

to minimize the expected trajectory cost.
We conducted a preliminary evaluation
on a simulated planar robot, with vary-
ing degrees of freedom up to 100, and
100 time-steps per trajectory. Sampling
and optimization time was observed to
scale linearly with number of DOFs. We

from point to point

while  keeping its
end-effector  upright
and avoiding the red
obstacle. The black
vertical line shows
the initial (stationary)
trajectory.

are currently working on applying this method for planning
dynamic maneuvers with switching contact conditions on a
31-DOF humanoid robot, and expect to have results from these
experiments before the workshop.
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