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Abstract

In this paper we introduce a method to learn
multiple behaviors in the form of motor prim-
itives from an unlabeled dataset. One of the
difficulties of this problem is that the mea-
sured behaviors can be very mixed, despite
existing a latent representation where they
can be separated more easily. We propose a
mixture model based on a Dirichlet Process
(DP) to simultaneously cluster the observed
time-series and recover a sparse representa-
tion of the behaviors by using a Laplacian
prior as the base measure of the DP. We show
that for linear models, e.g potential functions
generated by linear combinations of a large
number of features, it is possible to compute
analytically the marginal of the observations
and derive an efficient sampler. The method
was evaluated using robot behaviors and real
data from human motion and compared to
other techniques.

1. Introduction

Learning behaviors from multiple unlabeled data
has applications in surveillance, monitoring systems,
robotics and virtual agents, among others. In surveil-
lance the number of behaviors is unknown and we need
to infer a model in a way that allows to predict and
interpret activities in new situations. In robotics and
virtual agents it is common to use large time-series of
human behavior to program robots or virtual charac-
ters. By simultaneously inferring the number of be-
haviors and how the motion primitives (MP) generate
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them, we can bootstrap a set of controllers for many
activities.

There are several difficulties to learn multiple behav-
iors from unlabeled time-series. First, the number of
underlying behaviors is usually not known. Second, it
may be even difficult to label the data by hand based
solely on observations due to perceptual aliasing, dif-
ferent reference frames or not knowing the relevant
features of the problem. In this paper we argue that,
given an unlabeled dataset of possibly multiple behav-
iors, there exist a latent representation of the motion
primitives that allows to generate the different behav-
iors (see (Taylor et al., 2007) for an example of learned
latent representations of dynamical behavior). A nat-
ural way to group these behaviors is to search com-
mon motion primitives that generate them accurately.
Therefore, our objective is to cluster a collection of
time-series and, at the same time, learn the latent con-
trol structure that generates them.

The contribution of the paper is a hierarchical model
that combines a DP mixture of linear models with a
Laplacian distribution as base measure to simultane-
ously cluster trajectories into behaviors and perform
feature selection in a latent representation of the mo-
tion primitives. The motion primitives are represented
as potential functions generated by linear combina-
tions of features. We show that it is possible to derive
an efficient sampler, despite non-conjugacy, by com-
puting in closed form the marginal of each observation
under the base measure of the DP. We also present an
experimental validation of the proposed method in two
applications: clustering robot behaviors and human
trajectories. The results show that the approach ro-
bustly recovers meaningful behaviors by grouping com-
mon sparse latent representations and performs better
than other methods such as a sparse EM algorithm or
learning and clustering the motion primitives indepen-
dently.
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2. Related work

Few works have considered the problem of learning
multiple behaviors from unlabeled time-series of data.
(Babes et al., 2011) introduced an EM algorithm
to cluster time-series in the space of rewards func-
tions using Bayesian inverse reinforcement learning
(Ramachandran & Amir, 2007). In (Dimitrakakis &
Rothkopf, 2011) multi-task priors are defined on the
policy and the rewards for finite MDPs but without
considering the clustering problem and just learning
a different reward function per trajectory. Another
approach is to consider a prior directly on the policy
(Doshi-Velez et al., 2010). (Choi & Kim, 2012) used a
Bayesian formulation of IRL and a DP prior to perform
simultaneously clustering and task learning, generaliz-
ing the previous works. As in our case, trajectories
can be very mixed in the observation space, but have
a compact representation in terms of rewards. Our
approach differs from these works in two important
aspects. First, they all relied on finite state-action
representations while we consider continuous spaces
for the actions and the latent space. Second, we in-
corporate sparsity into the parameter space allowing
for more freedom when designing the features, for in-
stance, when the relevant features are unknown.

Another different but complementary perspective has
been followed where each time-series is explained by
a set of simpler local models. Several authors ap-
proached this problem as a pure regression problem
adding local models as needed (Schaal & Atkeson,
1998) or relying on non-parametric methods (Hannah
et al., 2011; Rasmussen & Ghahramani, 2002; Shah-
baba & Neal, 2009; Wood et al., 2008). Recently, more
complex models have been considered to model each
time series such as a switching system (Fox et al., 2008;
Chiappa & Peters, 2010). In contrast with the the first
type of methods, the difficulty here is the segmenta-
tion of the time series into an unknown number of lo-
cal models rather than finding an unknown number of
global ones. The sparsity property in these approaches
aims at reducing the number of local models and not
to perform feature selection at the behavior level.

The closest work is (Fox et al., 2008) which proposed a
model to jointly extract the local behaviors from mul-
tiple unlabeled sequences. Sparsity is enforced using a
Beta Process that allows to share local behaviors be-
tween the different time series. By using more data it
is possible to better estimate these local behaviors and
the possible transitions among them within each time
series. Another important difference with our work is
that in our model sparsity is enforced on the number
of features defining a global behavior that explains as
many examples as possible according to a DP prior in-
stead of enforcing a sparse number of local behaviors.

Nevertheless, this body of work is complementary to
the one proposed here. An interesting avenue for fu-
ture work would be to cluster global behaviors while
modeling each behavior as a combination of local mod-
els instead of the global one used in this paper.

Finally, it is worth to discuss few works that have in-
cluded sparsity at the feature level within a DP based
clustering algorithm. Gaussian DPMM with variable
relevance determination has been recently addressed
in (Yau & Holmes, 2011). This was achieved by im-
posing a hierarchical prior that shrinks the means of
the mean in each dimension to the same value for all
clusters. The L1-norm was used for Multi-Task com-
pressive sensing using linear models (Qi et al., 2008).
The sparse prior was a Gamma distribution over each
parameter and, due to non conjugacy, the authors used
variational inference instead of Monte Carlo sampling
to approximate the posterior with a truncated number
of possible clusters.

3. Motion primitives representation

This section describes the latent controller space
parametrization at the core of the clustering algorithm
and how it can be learned from data of a single behav-
ior within a Bayesian framework. We are interested
in representations of motions with the following prop-
erties: i) can be learned efficiently from data; ii) can
be used not just for discriminating motions but also to
generate motions; and iii) can represent a large variety
of motions.

We will represent motion as the movement generated
by a particle moving along a potential field V (X)
(Brillinger, 2007). In other words, the velocity of the
particle is given by the gradient of the potential field:

ẋ = −∇V (x) (1)

where x ∈ Rd and V is the potential function gen-
erating the motion. If V is a smooth function then
the observations can be approximated using the model
x(t+∇t)− x(t) = −∇V (x(t))∇t +

√
∇tω, where ω is

an additive noise term, ω ∼ N(0, σ2Id), and ∇t is the
sampling interval. In order to learn this function, we
will consider a linear parametric model for V of the
form V (x) = φ(x)Tβ with φ(x) ∈ Rp a vector of a
priori given features and β ∈ Rp a vector of param-
eters to be estimated. Rearranging the terms of the
previous equation one obtains:

x(t+∇t)− x(t)√
∇t

= −∇φ(x)Tβ
∇t√
∇t

+ ω. (2)

The advantage of this representation over other com-
mon approaches, such as (Ijspeert et al., 2003; Jetchev
& Toussaint, 2011; Khansari-Zadeh & Billard, 2010), is
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that the global solution can be found efficiently even
when including sparsity constraints and this will be
exploited in next section to derive an efficient sampler
for the DPMM. Also, it is a simple but general rep-
resentation equivalent to representations widely used
in robotics (Howard et al., 2009; Jetchev & Toussaint,
2011; Chaumette, 2004) and similar to a Lagrangian
from physics. Note that this representation allows to
encode any type of information within the features, for
instance, it is possible to create large sets of non-linear
features (e.g. combinations of attractors, polynomials
or basis functions) to generate complex motions.

We can now construct a linear system for the whole
trajectory x1:T of the form Y = Xβ, where matrices
Y and X are obtained simply by stacking for all the
points of a trajectory the corresponding terms yt =
x(t+∇t)−x(t)√

∇t
and xt = − ∇t√∇t∇φ(x)T , respectively.

4. Sparse DPMM based clustering of
trajectories in parameter space

In this section, we introduce our algorithm for cluster-
ing trajectories through the use of a linear representa-
tion of each behavior. Given a set of m observed tra-
jectories, we can compute the corresponding input and
feature gradients {Yi, Xi}i=1..m. We assume that they
are generated from a mixture model of K (K < m)
linear dynamical systems (namely a potential function
Vj(·) with parameters βk as described in Eq.1). The
mixture model generating the trajectories is given by:

p(Yi | Xi,B) =

K∑
k=1

πkp(Yi | Xi, βk)

where K is the number of components of the mixture,
πk are the mixing weights with

∑
k πk = 1, p(Yi |

Xi, βk) is the distribution generating the observations
for mixture component k with parameters βk.

To estimate this mixture we use a Dirichlet Process
(DP) (Ferguson, 1973) over the β parameters of each
controller. A DP is a probability measure on the space
of probability measures parameterized by the scale fac-
tor α0 and the base distribution G0,

βk ∼iid G, k = 1..K,

G ∼ DP (G0, α0).

The base distribution is a continuous density that de-
fines the prior over the distributions of the parameters.
The DP induces a discrete probability over the samples
drawn from the base measure and provides a clustering
effect. The scale factor α0, on the other hand, controls
the effective number of classes.

We aim at recovering a sparse representation of each
behavior to automatically select the relevant features.

Sparsity can be incorporated using a Laplacian prior
over the parameters βk = (β1,k · · ·βp,k)T ,

p(βk | σ2) =

p∏
j

λ

2
√
σ2
e−(λ|βj,k|/

√
σ2), (3)

to automatically select relevant features independently
for each cluster (Park & Casella, 2008). Condition-
ing on σ2 is necessary to guarantee a unimodal poste-
rior which eases the convergence of MCMC samplers.
Since each trajectory represents a different behavior,
the sparse latent representation is only appropriate
within each cluster. For this, we incorporated directly
in the base distribution G0 the Laplacian prior over
the parameters βk of each cluster.

The proposed hierarchical model, shown in Fig. 1,
uses the ”stick breaking” construction representation
of a DP to extend the Bayesian Lasso (Park & Casella,
2008) to an unknown number of models:

Yi | Xi, ci = k, βk, σ
2 ∼ N(Xiβk, σ

2IT ) (4)

βk | σ2, τ21,k, · · · , τ2p,k ∼ N(0, σ2Dτk ) (5)

Dτk = diag(τ21,k, · · · , τ2p,k) (6)

τ21,k, · · · , τ2p,k ∼
p∏
j=1

λ2

2
e−λ

2τ2j,k/2dτ2j,k (7)

σ2 ∼ 1

σ2
dσ2 (8)

ci ∼ Multinom(π1, ..., πk) (9)

λ2 ∼ Gamma(a, b) (10)

where the indicator variables ci ∈ {1..K} assign each
trajectory to one of the K components of the mix-
ture. The model uses the representation of a Laplacian
as a scale mixture of normals through the variables
τ21,k, · · · , τ2p,k. Notice that the sparsity term affects in-
dependently each mixture component and, therefore,
features selected in one component do not affect fea-
tures selected in another component.

Under this model, the conditional distributions can be
computed due to the conjugacy properties exploited in
the Bayesian Lasso. In particular, the full conditionals
of βk, τ−2j,k , σ2 and λ2 are respectively

N((XT|kX|k+D
−1
τk

)−1XT|kY|k,σ
2(XT|kX|k+D

−1
τk

)−1), (11)

Inv −Gaussian
(√

λ2σ2

β2
j,k
, λ2
)
, (12)

IG
(
mT−1+Kp

2 ,

∑
k(Y|k−X|kβk)T (Y|k−X|kβk)+βTk D

−1
τk

βk

2

)
, (13)

Gamma(a+Kp, b+
∑K
k=1

∑p
j=1

τ2
j,k

2 ), (14)

where X|k and Y|k denote the stacked matrices of all
trajectories assigned to cluster k and IG denotes an
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Figure 1. Graphical model.

Inverse-Gamma (see (Park & Casella, 2008) for a com-
plete description of the parameterizations of the Inv-
Gaussian, Inv-Gamma and Gamma distributions).

In order to implement the Gibbs sampler for the
DPMM we also need to compute the marginal of each
trajectory under the base measure G0. In our case,
this measure is the prior distribution defined on the
space of the β and τ parameters as defined in Eqs.5
and 7. The corresponding likelihood function is de-
fined in Eq.4. To compute this marginal we note that

q0 =

∫
β,τ2

f(·|β)p(β, τ2 | σ2) dβdτ2

=

∫
β

f(·|β)p(β | σ2) dβ.

since integrating out the τ2 = (τ21 · · · τ2p )T results in
the conditional Laplace prior defined in Eq. 3.

Due to the use of a Laplacian prior, the model does
not preserve conjugacy. However, it is possible to an-
alytically compute q0 (see Appendix A). The deriva-
tion requires to decompose the covariance matrix of
the predictors to decorrelate the features and, due to
the Laplacian prior, to consider the integral on the
positive and negative values of each βj independently.
We provide the full derivation in the supplementary
materials. With such computation we can define an
efficient sampler as shown in Algorithm 1.

5. Results

5.1. Robot Behaviors

We consider a task where a mobile robot has to collect
different types of objects from the environment and
take them to a base. The behavior of the robot is de-
fined by the type of objects it has to collect and the

Algorithm 1
Sparse Dirichlet Process Mixture Model (DPMM)

Given a set of trayectories {Yi, Xi}, i = 1 · · ·m

• Sample s(t), t = 0:

1. Create one cluster per trajectory K(t) = m;

c
(t)
i = i i = 1, · · · ,m

2. Init {β(t)
k , τ

(t)
jk }K

(t)

k=1 ,σ2,(t) and λ2,(t)

• Sample s(t), t ≥ 1

1. s(t) = s(t−1)

2. For i = 1, . . . ,m

(a) Compute q0,i as in Appendix A

(b) Sample assignment c
(t)
i and update K(t)

following (Neal, 2000)

3. For k = 1, . . . ,K(t)

(a) Sample βk
(t) y τjk

(t) with Eqs. 11 and 12.

4. Sample σ2,(t) and λ2,(t) with Eqs. 13 and 14.

ones it has to avoid collisions with. For two classes
of objects, we define five different controllers depend-
ing on which objects to pick (one of the two classes
or both) and on the need for collision avoidance to
get away of objects while fetching and carrying others
(see Figure 2(a)). However, depending on the location
of the objects, they might lead to ambiguities. For
instance, consider two behaviors that differ in their
obstacle avoidance policy. If they do not find an ob-
stacle, they will generate identical trajectories. The
trajectories are difficult to visualize because they are
in a 6D space (the 2D locations p = (pu, pv) of the
robot and the objects). It is clear that any clustering
made on the observed time-series can not work be-
cause the trajectories are context dependent making
any comparison among observed trajectories meaning-
less. The controller of each behavior is implemented
using servoing (Chaumette, 2004) to map each point
of the 6D input space into the speed in each axis of
the plane (vu, vv).

At a given time step we define the following features
for the relative location of the robot p w.r.t. another

location po: φo =
{
e−α‖p−po‖

2

, ‖p− po‖
}

. An extra

feature h indicates whether the robot is holding an
object or not. The full feature vector is then:

φ = {φoh, φo(1− h), o ∈ {ot, o1, o2}} ,

where ot represents the target location and o1 and
o2 are the locations of the objects of each class. For
two classes and one object per class, this amounts to
a total of 12 features. We note that φ corresponds
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(a) (b)

Figure 2. (a) Simulated robot arena. The robot collects
objects of interest while avoiding or ignoring other objects.
(b) Noisy observed robot trajectories for each dimension.
Each color represents a class generated by a different ser-
voing controller. Note that trajectories are mixed in ob-
servation space due to the dependency on the object and
target location.

Figure 3. Averaged confusion matrix for assignments of the
DPMM (top row) for 2,3,4 and 5 classes over ten runs. The
lighter the component (i,j) is the more frequent trajectories
i and j were assigned to the same cluster. The matrix would
ideally be block diagonal.

to simple, generic, features not including any special
domain knowledge. On the other hand, the feature
h does include some domain knowledge, namely the
fact that the robot controller has two modes of oper-
ation depending on whether the robot already picked
up the object or not. However, we believe this is a
very high level information that can be easily encoded
in the algorithm. Furthermore, when comparing the
algorithm to other approaches, all the methods ben-
efit from this domain knowledge. For each behavior
we simulated 200 time steps trajectories from 12 dif-
ferent initial configurations. Every time an object was
taken to the base it reappeared in a random location.
The measurements were corrupted with noise sampled
from N(0, 0.05I6). Figure 2(b) shows the trajectories
of all five behaviors.

5.1.1. Clustering behaviors

We first analyze the clustering obtained by the DPMM
algorithm for different number of classes. We show
our results using a correspondence matrix where each
component i, j of the matrix represents the frequency
of assignment of trajectories i and j to the same clus-
ter. The results shown are averaged over 500 samples
after a burning period of 500. Figure 3 shows that the
DP usually finds the right number of clusters and as-

Figure 4. Frequency of the estimated number of clusters
for different number of classes.

signs the trajectories consistently to the same group.
As mentioned before, there exist some behaviors which
may generate indistinguishable trajectories and this is
observed in the off diagonal blocks, specially for classes
2 and 3 and classes 4 and 5. Figure 4 shows the poste-
rior distribution over the number of clusters provided
by the DPMM algorithm. This figure shows that most
of the probability is assigned to the right number of
classes. The structure of the data makes difficult to es-
timate a smaller number of clusters without incurring
a higher reconstruction error. However, it is possible
to split some of the clusters into two separated ones.

We will now compare our DPMM method with two
baseline algorithms, both assuming that the number
of clusters is known. The first one is a sparse EM
algorithm that uses the L1-norm in the minimization
step to compute the β parameters for each cluster and
allows us to illustrate the benefits of using the DP
prior. The second method corresponds to a naive so-
lution to our problem, denoted Trajectory Reconstruc-
tion and Clustering (TRC). TRC estimates first a con-
troller (i.e. the β parameters) for each trajectory and
then clusters the resulting controllers using Kmeans
(Macqueen, 1967). In this case, we analyze the ben-
efits of simultaneously clustering and discovering the
sparse latent space of the controller. We do not report
results of a direct clustering on the observation and
feature spaces since they results were systematically
much worse.

To analyze the properties of the proposed method,
we consider three cases using 50, 100 and 200 time
steps, respectively. We perform this comparison be-
cause longer trajectories are more informative about
the underlying behavior. The TRC should be able
to estimate more accurately the parameters of each
single trajectory making easier the clustering of the
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Figure 5. Averaged confusion matrix for assignments of the
DPMM (top row), EM (middle row) and TRC (bottom
row) for trajectories of five different behaviors. The figures
of each row show the results for 50 (left), 100 (middle) and
200 (right) time steps, respectively. EM and the TRC were
run with the real number of clusters.

estimated controllers. Figure 5 shows the correspon-
dence matrices obtained by the DPMM, EM and TRC
methods for five different behaviors with trajectories
of different durations. For the DPMM, the results do
not vary significantly. It is always able to recover the
right number of clusters. The only variation is that
the ambiguities between classes diminish for longer
trajectories because the probability of having multi-
ple indistinguishable behaviors decrease. Despite the
number of clusters is known, the EM algorithm is not
able to discriminate properly between similar behav-
iors 1. It behaves better with longer trajectories with
less assignments off the diagonal blocks, but still fails
to distinguish classes 2,3 and 4,5 . Although we used
multiple initializations, the EM seems to get stuck in a
local minima with three dominating clusters instead of
five independently of the trajectory length. The results
for the TCR algorithm show that shorter trajectories
make the estimated β less stable and more difficult to
cluster. If trajectories are long enough, the TCR bet-
ter estimates the controller parameters for each single
trajectory and the confusion matrix is closer, but still
not as good, as the EM one (and much worse than the
DPMM).

The assignment matrix shows if trajectories belonging
to the same class were grouped together. This is useful
in applications where the behaviors need to be identi-
fied unambiguously, e.g. surveillance or robot control.
Other applications will be more interested in the re-
construction quality of the trajectories, being the as-

1The correspondence matrix for the EM is computed
using the correspondence probabilities of the E-step for
each class.

Figure 6. RMSE for different trajectory lengths for the DP,
EM and TRC algorithms.

signments whatever is needed for reconstruction, e.g.
computer graphics. Thus, we also evaluate the predic-
tion error on a test set using the behaviors learned for
the different clusters.

We created 12 test trajectories for each behavior start-
ing from random points. We computed the root mean
square error (RMSE) of the test trajectories on each
of the estimated controllers using Eq. 2. The RMSE
measure how well the potential created by the esti-
mated parameters βk matches the gradients from the
test trajectories. To solve the correspondence prob-
lem, we selected the minimum RMSE. Figure 6 shows
the RMSE obtained by the different algorithms. The
DPMM behaves better than the other algorithms due
to the better clustering properties. For 200 time step
trajectories, the EM algorithm is close to the DPMM,
but it degrades its performance with less informative
trajectories (50 or 100 time steps). Note that the
changes in RMSE per trajectory will not be very large
even if the behavior is not correct since obstacle avoid-
ance is a short and local maneuver that does not accu-
mulate over time. However, not avoiding an obstacle
may be a fatal failure for a robot controller. We con-
clude that DPMM provides a more accurate behavior
assignment, is able to find the correct number of clus-
ters, has better reconstruction properties and is more
robust when few data is available.

5.1.2. Feature selection

We next analyze the feature selection properties of the
DPMM. Table 1 shows that the parameters found by
the DPMM algorithm were quite similar to the sparse
original ones. Furthermore, the correlation between
both parameters was always over .98 since the DPMM
recovered the right coefficients. However, the Lapla-
cian prior did not shrink to zero all parameters not
needed by the controller and some of them kept small
values (under 0.05). Removing the Laplacian prior re-
sulted in much larger L1-norms and the recovered pa-
rameters did not match the true parameters. However,
it did correctly group the trajectories and the recon-
struction error increased only slightly. EM also founds
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sparse parameters but with a worse reconstruction and
assignment matrix.

Table 1. L1-norms of estimated parameters ‖β̂‖1, correla-
tion corr(β, β̂) with the true ones and reconstruction error
(RMSE) on the test set.

class
RMSE

c1 c2 c3 c4 c5
true ‖β‖1 15 13 10 13 10 -

EM
‖β‖1 15.1 10.8 10.7 10.8 10.8

0.35
corr 1 0.98 0.99 0.98 0.99

DPMM ‖β‖1 15.4 12.5 11.0 12.5 10.6
0.3

λ̂ = .15 corr 0.99 0.98 0.99 0.98 0.99
DPMM ‖β‖1 15.56 49.3 352.4 182.2 10.7

0.33
λ = 0 corr 0.99 0.38 0.22 -0.08 0.99

We further tested the ability of the DPMM algorithm
by expanding the feature vector with 78 correlated fea-
tures resulting of cross products of the original ones.
Table 2 shows the L1-norm of the estimated param-
eters and the correlation with the original ones. The
first row shows the results for the sampled values of λ,
while in the other two λ was fixed manually to a lower
value. The Laplacian prior has a strong effect as the
L1-norm increases and the correlation with the original
parameters decrease. Also, the reconstruction error is
better which indicates that sparsity avoids over-fitting.
However, there were no differences in terms of cluster-
ing and correspondence matrices. Therefore, for this
dataset sparsity helps to recover a compact and inter-
pretable controller and to reduce the reconstruction
error but does not play a crucial role in grouping tra-
jectories together.

Table 2. Feature selection with 78 correlated features.
class

RMSE
c1 c2 c3 c4 c5

DPMM ‖β̂‖1 18.4 15.4 12.8 14.9 13.3
0.3

λ̂ = 0.28 corr 0.99 0.98 0.99 0.98 0.99

DPMM ‖β̂‖1 125 92.3 105 101 90.2
0.31

λ = 0.01 corr 0.42 0.47 0.38 0.42 0.51

DPMM ‖β̂‖1 606 644 603 646 514
0.35

λ = 0 corr 0.07 0.07 0.06 0.06 0.06

5.2. Edinburgh Informatics Forum Pedestrian
Database

We now use the Edinburgh Informatics Forum Pedes-
trian Database (Majecka, 2009) to cluster the trajec-
tories of people in a open public space (see Fig. 7(a)).
The input data is a set of 474 trajectories in 2D. Each
trajectory was generated by sampling 22 points from
a six point spline approximation of each tracked peo-
ple in normalized pixel coordinates (u, v). Two type
of features were computed from the trajectory points
using: 1) Gaussian attractors as in Section 5.1 over a
8x8 grid on the image plane located at ot, t = 1 . . . 64,
and 2) a polynomial of degree two. The dimension of

Figure 8. Frequency of the estimated number of clusters
for the EIFPD dataset.

the feature space is therefore 64 + 7.

φ(u, v) =
{

1;u; v;uv;uv2;u2v;u2v2; e−α‖(u,v)−ot‖
2|641
}
.

To evaluate the algorithm, we used the hand-made
clustering provided in (Majecka, 2009) where trajec-
tories were grouped in 51 classes based solely on man-
ually selected entry and exit points. The correspon-
dence matrix is shown in Fig. 7(b). The reconstruc-
tion error (RMSE) obtained with the potential func-
tions estimated from the manually labeled trajectories
was 1.95. We also ran a KMeans with 51 classes, the
number of classes provided by manual labeling, on the
trajectories to assess the difficulty of the clustering on
the observed trajectories space. The correspondence
matrix for KMeans is shown in Fig. 7(c). Although
the matrix has some structure similar to the ground
truth, the assignments are more randomly distributed
and the reconstruction error is higher (3.04).

The DPMM algorithm was run with 1000 samples and
a burn-in period of 300. Figure 8 shows the posterior
distribution for the number of clusters. The average
number of clusters is 28.7, but there is no clear peak
indicating multiple possible groupings. The number of
cluster was less than the ground truth partition, due to
the grouping of different entry/exit points when their
trajectories could be explained by a single potential
function. The correspondence matrix is shown in Fig.
7(d). It shows more structure than the KMeans and
recovers a more similar pattern to the hand-made clus-
tering. The reconstruction error was 1.58, lower than
the one provided by the ground truth. This improve-
ment is due to the fact that the DPMM was able to
consider the whole trajectory and fit functions that ap-
proximated the global behavior measured in the image,
not just entry and exit points. Figure 7(e) shows the
reconstructed trajectories from each initial point given
the parameters obtained with the most likely particle.
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(a) (b) (c) (d) (e)

Figure 7. EIFPD dataset. (a) Trajectories of the EIFPD to be clustered (color is non-informative). (b-d) correspondence
matrix for the 474 trajectories for the labeled ground truth, the KMeans in measurement space and the DPMM, respec-
tively. (e) Reconstructed trajectories from the initial point using the estimated parameters of the DPMM algorithm. Due
to the large number of clusters, colors are repeated for different clusters.

We see that they represent very accurately the aver-
age behavior per class of which each individual demon-
strations was a noisy observation. This shows how the
reconstructed trajectories can indeed represent the be-
havior of each class and be used to generate new mo-
tions and potentially be used for behavioral predic-
tion. We did more experiments to test the sensitivity
with the choice of features. Training the DPMM only
with Gaussian attractors resulted in a slightly higher
RMSE of 1.69 and a mean number of clusters of 26.
For polynomials, the RMSE decreased to 1 due to a
higher number of clusters (mean of 61.2) and a cor-
respondence matrix with less structure. These results
show that the algorithm is able to deal with different
feature spaces with good accuracy in terms of RMSE.
Depending on the problem domain, different choices of
features will lead to different interpretations of the re-
sulting behavior models.

We also evaluated the effect of the sparsity prior on
the clustering process by fixing different sparsity levels.
Contrary to the robot example, sparsity decreased the
total number of clusters, the mean of the estimated λ
was 1.573 and the sum of the L1-norm of the estimated
parameters of 10.41 for the whole feature vector (0.236
and 68.64 with only Gaussian attractors). When λ was
fixed to 10−4, the mean number of clusters was 38, the
RMSE was 1.37 and the sum of the L1-norm of the
estimated parameters was 1.22 ·105. This is due to the
fact that the number of clusters is not so clearly defined
by the data and a sparse β regularize trajectories and
make their clustering less costly.

6. Conclusions

In this paper we presented a novel algorithm for learn-
ing an unknown number of behaviors from a set of
unlabeled trajectories which can be highly mixed in
the measurement space. It estimates the number of
behaviors in a latent controller space and selects the
relevant dimensions for each one. By selecting a lin-
ear representation, in this paper a potential function

generated by a linear combination of features, it is pos-
sible to derive a sparse version of the DPMM based on
Laplacian priors over the parameters and compute the
marginal of the observations in closed form.

The results show that the latent controller space al-
lows to reliably recover groups of behaviors with a
sparse representation that can be used to generate new
instances of the learned behaviors without losing in
terms of reconstruction error. The effect of the spar-
sity prior on the clustering depends on the problem at
hand and the selected features. Although it may not
always change the clustering, the recovered representa-
tion is always simple and more interpretable with sim-
ilar accuracy. The results also show that the proposed
method behaves better than a sparse EM version for
mixture models and naive approaches such as cluster-
ing directly on the feature space or fitting a controller
for each trajectory and then cluster the estimated pa-
rameters.

There are some interesting future directions. First,
the method can be applied to any linear representa-
tion. The potentials used in this paper do not directly
model sequential data and it would be interesting to
extend this to models that do so, for instance, linear
auto-regressive models. Second, it may be possible
to combine this type of clustering of global trajecto-
ries with recent work on learning multiple behaviors
within a single sequence using multiple sequences as
in (Fox et al., 2008) or (Chiappa & Peters, 2010).

A. Expression for
∫
β
f(·|β)p(β | σ2) dβ

This appendix provides the expression for q0 =∫
β
f(·|β)p(β | σ2) dβ when the likelihood model is a

Multivariate Normal and the prior is a Laplacian dis-
tribution. After resolving the integral over β we get
the following expression

q0 =

(
λ

2σ

)p
1

T
√

2πσ2
exp

(
−Y

TY

2σ2

)
I
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I =

p̂∏
i=1

(T1i + T2i)

p∏
i=p̂+1

− 2

bi

T1i = exp

(
(bi − ei)2

2di

)√
π

2di
erfc

(
−(bi − ei)√

2di

)
T2i = exp

(
(bi + ei)

2

2di

)√
π

2di
erfc

(
−(bi + ei)√

2di

)
where p̂ is the rank of matrix A = 1

σ2X
TX and di are

the eigenvalues of matrix A. The integral requires to
decompose matrix A = SDS−1 to compute the vector

ET = Y T

σ2 XS and the vector BT = (−λσ , · · · ,
−λ
σ )R,

where matrix R is defined as the component wise ab-
solute value of matrix S.
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