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I. INTRODUCTION

Articulated tracked vehicles (ATVs) are widely used on
applications where terrain conditions are difficult and unpre-
dictable, or the environment may be hazardous for humans [3].
Depending on their mechanical design, these robotic platforms
can either increase or decrease the contact area of tracks
with the ground, providing better traction on harsh terrains
and, on the other hand, energy saving on horizontal nearly-
flat surfaces. Such flexibility greatly depends on the ability
of the controller to accurately adapt the active sub-tracks,
namely flippers, to the terrain shape. In principle, the robot can
relay on its perceptive capabilities to locally model the terrain
and define a trajectory over this approximation. However,
the complexity of the whole robot motion, e.g., due to the
undefined contact points between the flippers and the terrain,
greatly reduces the application of this method in practice. One
effective solutions is to allow a compliance interaction between
the flipper and the terrain. This approach completely avoids
any control and modeling efforts over smooth surfaces, but
also reduces the effective traction of the flippers. Still, on
terrain discontinuities, care must be taken to avoid trapping
the robot or part of it (e.g., on emergency stairs in urban
scenarios).

Clearly, any control strategy depends on the contact in-
teraction between the flippers and the ground, and thus, the
detection or sensing of the contact event may provide valuable
information to the control design. By considering any flipper
unit as part of a tree-shaped open kinematic chain rigidly
attached to a mobile base, we can unveil the contact event
by resorting to state-of-the-art dynamic collision detection
strategies for robot manipulators, extended to ATV platforms.
In other words, we assume that the contact event can be
identified as an unexpected collision of the flipper with the
unknown terrain. In particular, we are interested into exploit
the generalized momenta Fault Detection and Isolation (FDI)
[4], where the collision detection is based on unexpected
transient perturbations of the failure signal dynamics. The
failure signal, or residual, is obtained through a non-linear
observer of the arm generalized momenta.

Formally, the extension of the FDI approach to our case
requires an accurate knowledge of the mobile platform dynam-
ics, and thus, an accurate model of the terrain. In particular,

as stated in [1][2], FDI cannot be achieved on one particular
input channel in the presence of non structured disturbances
acting on the same channel. That is, any unexpected motion
of the mobile platform introduces disturbances resembling
those introduced by a collision of the flipper. However, by
assuming that the platform displacements and terrain fluctua-
tion introduce disturbances that are limited by to some low-
band frequency range, we might expect that the residual signal
may present some disturbance patterns that can be identified
and possible discriminated by those generated by unexpected
hight-frequency collisions of the flippers with the ground.
Our idea is to model the dynamic of the residual as a linear
combination of two disturbance sources, that can be identified
by its evolution patterns. To this end, we propose a statistical
learning approach to estimate (i) the disturbance patterns and
(ii) the mixing model to allow both the decomposition and
classification of any residual signal.

II. PROBLEM STATEMENT

Each flipper unit can be modeled as a single joint manip-
ulator attached to a common base link. For an inertial base
link, the whole system dynamics is described by:

M(q) + c(q, q̇)q̇ + g(q) = τT = τ − τD (1)

where q and q̇ are the measured joints position and velocities
of the flippers, M(q) is the positive definite symmetric inertia
matrix, c(q, q̇)q̇ is the Coriolis and centrifugal vector, g(q)
is the gravity vector and τT is the total torque acting on the
system. This torque is given by the difference between the
commanded torque τ and the unknown disturbance torques
τD. For a moving base link undergoing small accelerations
we can rewrite the disturbance vector as:

τD = τM + τU (2)

Here τM and τU represent the disturbance due to the non
modeled dynamics of the moving base link and the unexpected
disturbances, respectively. Based on the generalized momenta
FDI framework, the residual signal r is governed by:

r = K

[∫
(τ−α(q, q̇)−r)dt− p

]
(3)

where α(q, q̇) depends on the system dynamics, p represents
the generalized momenta p=M(q)q̇ and K is a positive



definite diagonal matrix. It can be shown that r correspond
to a exponentially stable linear filter driven by the unknown
disturbance τD [1], that is:

ṙ = −Kr + KτD = −Kr + K(τM+τU ) (4)

Since the dynamics of the mobile base link depends on
the unknown shape of the terrain, we cannot provide an
explicit model of the disturbance τM . However, we can
assume that the disturbance patterns of the dynamics (and
thus of the residual r) generated by the motion of the base
link are directly related to both the pattern fluctuations of the
terrain and the bounded control inputs generating the motion.
Therefore, assuming that the terrain is defined by a compact
sufficiently smooth surface and that the control velocity inputs
also bounded in amplitude and frequency, we can express the
disturbance τM as a linear combination of a certain number
of nM basis functions φi. Analogously, we can assume that
the collision of the flippers with the terrain is defined by a set
of nU basis functions ϕj , such that:

τM =

nM∑
i=1

aiφi, τU =

nU∑
j=1

bjϕj (5)

Let ∆φ,span
{
φ1, . . .,φnM

}
be the span generated by the

basis functions φi, and ∆ϕ the space generated by the
basis functions ϕj . Assuming that any pattern τM cannot
be expressed as a linear combination of the basis ϕj and,
analogously, any pattern τU does not lie entirely on the span
∆φ∩∆ϕ, the disturbed residual evolution can be expressed
as:

ṙ = −Kr + K

nD∑
k=1

ckγk (6)

where the nD≤(nM+nU ) basis functions γk are a sub-
set of the basis φi and ϕj such that ∆γ=∆φ∪∆ϕ, with
∆γ,span

{
γ1, . . .,γnD

}
, i.e. the span generated by the γk

basis functions. Given a residual dynamic and assuming that
the basis γk are known, the computation of the coefficients
ck can lead to the identification (classification) of the distur-
bance source. Therefore, our contact sensing problem can be
addressed trough the identification of the unknown set of basis
functions γk.

We assume that the set of basis γk includes all φi and
ϕj basis functions and that nM and nU are unknown. Under
this set of assumptions, we can re-write the disturbed residual
evolution in eq. (6) as follows:

ṙ + Kr = K

nM∑
i=1

aiφi +

nU∑
j=1

bjϕj

 (7)

which highlights that the problem of estimating the whole set
of basis φi and ϕj can be divided into two sub-problems:
(i) estimating the set φi from experiments with disturbances
induced by the non modeled dynamics generated by the motion
of the base link and, (ii) estimating the set ϕj from experi-
ments simulating the unexpected collisions of the flippers.

Yet, to decompose any residual signal and discriminate the
underlying disturbance sources, we have to determine, upon
estimating the set of basis φi and ϕj , the two mutually
exclusive subsets of basis characterizing the corresponding
type of source, that is, the identification of the subset of basis
not generating the span ∆φ∩∆ϕ.

III. PROPOSED APPROACH

Let us assume that each term τM and τU can be modeled as
a mixture of Gaussian Processes (GP) with unknown number
of components. Under this assumptions, the aforementioned
sub-problems can be addressed by learning the parameters
of two different Dirichlet Process-Gaussian Process (DP-GP)
mixture models [6, 7].

Next, the identification of the subset of basis generating
the span ∆φ∩∆ϕ can be obtained as follows. We validate
each learned disturbance model over the experimental data
used to build the other, that is, we compute the approximate
representations τ̃M and τ̃U of the form:

τM ≈ τ̃M =

nU∑
j=1

b̃jϕj , τU ≈ τ̃U =

nM∑
i=1

ãiφi (8)

The estimation of the coefficients ãi and b̃j provides a quanti-
tative cross-information about how much ϕj and φi are well-
representative of the observed residual revolution signals. The
basis ϕj and φi for which the coefficients ãi and b̃j exceed a
certain threshold can be considered as belonging to the set of
basis generating the span ∆φ∩∆ϕ. As the basis function are
already known, any standard linear regression technique can
be used for the estimation of the coefficients ãi and b̃j .

At this point, the whole set of basis φi and ϕj can be
divided into three disjoints sets: the first, generating the span
∆φ∩∆ϕc; the second, generating the span ∆φc∩∆ϕ; the
third, generating the span ∆φ∩∆ϕ. Any residual dynamic
can now be decomposed as the superposition of three distinct
sources: the first, due to the unknown dynamics of the moving
base link; the second, due to the unexpected collisions; the
third, due to either disturbance sources. The values of associ-
ated coefficients ai and bj to the first two disjoint set of basis
functions, respectively, allow us to determine the contribution
of each kind of disturbance affecting the residual signal.

IV. CONCLUSIONS

Recently, Menna et al. [5] developed a contact sensor
for ATVs based on a classifier trained with Support Vector
Machines (SVM). In formal terms, this sensor extends the
classical fault detection approach based on the analysis of
the large variations of commanded torques/motor currents,
allowing the isolation. The isolation of the fault is obtained
by manual labeling of the contact signal necessary, in turn, to
train the model. In contrast, the proposed approach provides
both detection and isolation without relying on manual data
labeling. Moreover, this approach does not require the determi-
nation of the contact points of the flippers, thus overcoming
the principal methodological and practical limitations of the
previous approach.
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