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I. OVERVIEW

Policy search methods can allow robots to autonomously
learn a wide variety of behaviors. However, policies learned
using such methods often rely on hand-engineered components
for perception and low-level control. For example, a policy
for object manipulation might specify motions in task-space,
using hand-designed PD controllers to execute the desired
motion and relying on an existing vision system to localize
objects in the scene [5]. The vision system in particular can be
complex and prone to errors, and its performance is typically
not improved during policy training, nor adapted to the goal
of the task.

We propose a method for learning policies that directly map
camera images and joint angles to motor torques. The policies
are trained end-to-end using real-world experience, optimizing
both the control and vision components on the same measure
of task performance. This allows the policy to learn goal-
driven perception, which avoids the mistakes that are most
costly for task performance. Learning perception and control
in a general and flexible way requires a large, expressive
model. We use convolutional neural networks (CNNs), which
have 92,000 parameters and 7 layers. Deep CNN models have
achieved state of the art results on supervised vision tasks
[1, 6], but sensorimotor deep learning remains a challenging
prospect. The policies are extremely high dimensional, and the
control task is partially observed, since part of the state must
be inferred from images.

To address these challenges, we extend the framework of
guided policy search to sensorimotor deep learning. Guided
policy search decomposes policy search into two phases: a
trajectory optimization phase that determines how to solve the
task in a few specific conditions, and a supervised learning
phase that trains the policy from these successful executions
with supervised learning [3]. Since the CNN policy is trained
with supervised learning, we can use the tools developed in
the deep learning community to make this phase simple and
efficient. We handle the partial observability of visuomotor
control by optimizing the trajectories with full state informa-
tion, while providing only partial observations (consisting of
images and robot configurations) to the policy. The trajectories
are optimized under unknown dynamics, using real-world
experience and minimal prior knowledge.

The main contribution of our work is a method for end-
to-end training of deep visuomotor policies for robotic ma-
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Fig. 1: Our method learns visuomotor policies that directly
use camera image observations (left) to set motor torques on
a PR2 robot (right).

nipulation. This includes a partially observed guided policy
search algorithm that can train high-dimensional policies for
tasks where part of the state must be determined from camera
images, as well as a novel CNN architecture designed for
robotic control, shown in Figure 1. Our results demonstrate
improvements in consistency and generalization from train-
ing visuomotor policies end-to-end, when compared to the
more standard approach of training the vision and control
components separately. A complete description of our work
can be found in our recent technical report [2], and videos
of the learned policies can be found on the project website:
[http://sites.google.com/site/visuomotorpolicy].

II. EXPERIMENTAL RESULTS

We evaluated our method by training policies on a PR2
robot for hanging a coat hanger on a clothes rack, inserting
a block into a shape sorting cube, fitting the claw of a toy
hammer under a nail with various grasps, and screwing on a
bottle cap (see Figure 1). The cost function for these tasks
encourages low distance between three points on the end-
effector and corresponding target points, low torques, and, for
the bottle task, spinning the wrist. The equations for these cost
functions follow prior work [3]. Each task involved variation
of about 10-20 cm in the horizontal position of the target object
(the rack, shape sorting cube, nail, and bottle). The coat hanger
and hammer tasks were also trained with two and three grasps,
respectively. All tasks used the same policy architecture.

We evaluated the visuomotor policies in three conditions:
(1) the training target positions and grasps, (2) new target
positions not seen during training and, for the hammer, new
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Fig. 2: Visuomotor policy architecture. The network contains three convolutional layers, followed by a spatial softmax and an
expected position layer that converts pixel-wise features to feature points, which are better suited for spatial computations. The
points are concatenated with the robot configuration, then passed through three fully connected layers to produce the torques.

grasps (spatial test), and (3) training positions with visual
distractors (visual test). A selection of these experiments can
be viewed in the supplementary videos. For the visual test,
the shape sorting cube rested on a table, the coat hanger was
placed on a rack with clothes, and the bottle and hammer tasks
were performed in the presence of clutter.

The success rates for each test are shown in Table I. We
compared to two baselines, both of which train the vision
layers in advance for pose prediction, instead of training the
entire policy end-to-end. The features baseline discards the last
layer of the pose predictor and uses the feature points, resulting
in the same architecture as our policy, while the prediction
baseline feeds the predicted pose into the control layers.

The pose prediction baseline is analogous to a standard
modular approach to policy learning, where the vision system
is first trained to localize the target, and the policy is trained
on top of it. This variant achieves poor performance, because
although the pose is accurate to about 1 cm, this is insufficient
for such precise tasks. As shown in the supplementary video,
the shape sorting cube and bottle cap insertions have tolerances
of just a few millimeters. Such accuracy is difficult to achieve
even with calibrated cameras and checkerboards. Indeed, prior
work has reported that the PR2 can maintain a camera to end
effector accuracy of about 2 cm during open loop motion [4].
This suggests that the failure of this baseline is not atypical,
and that our visuomotor policies are learning visual features
and control strategies that improve the robot’s accuracy.

When provided with pose estimation features, the policy
has more freedom in how it uses the visual information, and
achieves somewhat higher success rates. However, full end-
to-end training performs significantly better, achieving high
accuracy even on the challenging bottle task, and successfully
adapting to the variety of grasps in the hammer task. This
suggests that, although the vision layer pre-training is clearly
beneficial for reducing computation time, it is not sufficient by
itself for discovering good features for visuomotor policies.

The policies exhibit moderate tolerance to distractors that
are visually separated from the target object. However, as
expected, they tend to perform poorly under drastic changes to
the backdrop, or when the distractors are adjacent to or occlud-
ing the manipulated objects, as shown in the supplementary
videos. In future work, this could be mitigated by varying the
scene at training time, or by artificially augmenting the image
samples in the training set with synthetic transformations.

coat hanger training (18) spatial test (24) visual test (18)
end-to-end training 100% 100% 100%
pose features 88.9% 87.5% 83.3%
pose prediction 55.6% 58.3% 66.7%
shape sorting cube training (27) spatial test (36) visual test (40)
end-to-end training 96.3% 91.7% 87.5%
pose features 70.4% 83.3% 40%
pose prediction 0% 0% n/a
toy claw hammer training (45) spatial test (60) visual test (60)
end-to-end training 91.1% 86.7% 78.3%
pose features 62.2% 75.0% 53.3%
pose prediction 8.9% 18.3% n/a
bottle cap training (27) spatial test (12) visual test (40)
end-to-end training 88.9% 83.3% 62.5%
pose features 55.6% 58.3% 27.5%

TABLE I: Success rates on training positions, on novel test
positions, and in the presence of visual distractors. The number
of trials per test is shown in parentheses.
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