Kroemer, O.; Peters, J. (2017). A Comparison of Autoregressive Hidden Markov Models for Multi-Modal Manipulations with Variable Masses, Proceedings of the International Conference of Robotics and Automation, and IEEE Robotics and Automation Letters (RA-L), 2, 2, pp.1101 - 1108.
See Details Download Article BibTeX Reference
van Hoof, H.; Neumann, G.; Peters, J. (2017). Non-parametric Policy Search with Limited Information Loss, Journal of Machine Learning Research (JMLR), 18, 73, pp.1-46.
See Details Download Article BibTeX Reference
Rueckert, E.; Camernik, J.; Peters, J.; Babic, J. (2016). Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control, Nature PG: Scientific Reports, 6, 28455.
See Details Download Article BibTeX Reference
Kohlschuetter, J.; Peters, J.; Rueckert, E. (2016). Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities, Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON).
See Details Download Article BibTeX Reference
van Hoof, H.; Chen, N.; Karl, M.; van der Smagt, P.; Peters, J. (2016). Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
See Details Download Article BibTeX Reference
Yi, Z.; Calandra, R.; Veiga, F.; van Hoof, H.; Hermans, T.; Zhang, Y.; Peters, J. (2016). Active Tactile Object Exploration with Gaussian Processes, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
See Details Download Article BibTeX Reference
Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
See Details Download Article BibTeX Reference
van Hoof, H.; Peters, J.; Neumann, G. (2015). Learning of Non-Parametric Control Policies with High-Dimensional State Features, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
See Details Download Article BibTeX Reference
Veiga, F.F.; van Hoof, H.; Peters, J.; Hermans, T. (2015). Stabilizing Novel Objects by Learning to Predict Tactile Slip, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
See Details Download Article BibTeX Reference
Hoelscher, J.; Peters, J.; Hermans, T. (2015). Evaluation of Interactive Object Recognition with Tactile Sensing, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
See Details Download Article BibTeX Reference
van Hoof, H.; Hermans, T.; Neumann, G.; Peters, J. (2015). Learning Robot In-Hand Manipulation with Tactile Features, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
See Details Download Article BibTeX Reference
Leischnig, S.; Luettgen, S.; Kroemer, O.; Peters, J. (2015). A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
See Details Download Article BibTeX Reference
Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
See Details Download Article BibTeX Reference
Kroemer, O.; Peters, J. (2014). Predicting Object Interactions from Contact Distributions, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
See Details Download Article BibTeX Reference
Chebotar, Y.; Kroemer, O.; Peters, J. (2014). Learning Robot Tactile Sensing for Object Manipulation, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
See Details Download Article BibTeX Reference
Hermans, T.; Veiga, F.; Hölscher, J.; van Hoof, H.; Peters, J. (2014). Demonstration: Learning for Tactile Manipulation, Advances in Neural Information Processing Systems (NIPS/NeurIPS), Demonstration Track., MIT Press.
See Details Download Article BibTeX Reference