Publications ordered by Year

The majority of the publications can also be obtained using Google Scholar where incomplete lists of citations are also given. The publication list sorted by type can be found using this link. A bibtex file with all our publications is also available.


submitted

  •       Bib
    Klink, P.; Wolf, F.; Ploeger, K.; Peter, J.; Pajarinen, J. (submitted). Tracking Control for a Spherical Pendulum via Curriculum Reinforcement Learning, Submitted to the IEEE Transactions on Robotics (T-Ro).
  •       Bib
    Liu, P.; Bou-Ammar H.; Peters, J.; Tateo D. (submitted). Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications, Submitted to the IEEE Transactions on Robotics (T-Ro).
  •     Bib
    Look, A.; Rakitsch, B.; Kandemir, M.; Peters, J. (submitted). Sampling-Free Probabilistic Deep State-Space Models, Submitted to Transactions on Pattern Analysis and Machine Intelligence (PAMI).
  •   Bib
    Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (submitted). A Differentiable Newton-Euler Algorithm for Real-World Robotics, Submitted to the IEEE Transaction of Robotics (T-Ro).
  •     Bib
    Prasad, V.; Heitlinger, L; Koert, D.; Stock-Homburg, R.; Peters, J.; Chalvatzaki, G. (submitted). Learning Multimodal Latent Dynamics for Human-Robot Interaction, Submitted to the IEEE Transaction of Robotics (T-RO).

in press

  •     Bib
    Dam, T.; D'Eramo, C.; Peters, J.; Pajarinen, J. (in press). A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search, Journal of Artificial Intelligence Research (JAIR).
  •   Bib
    Gu, S.; Liu, P.; Kshirsagar, A.; Chen, G.; Peters, J.; Knoll, A. (in press). ROSCOM: Robust Safe Reinforcement Learning on Stochastic Constraint Manifold, IEEE Transactions on Automation Science and Engineering.
  •     Bib
    Klink, P.; D'Eramo, C.; Peters, J.; Pajarinen, J. (in press). On the Benefit of Optimal Transport for Curriculum Reinforcement Learning, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI).

2024

  •     Bib
    Abdulsamad, H.; Nickl, P.; Klink, P.; Peters, J. (2024). Variational Hierarchical Mixtures for Probabilistic Learning of Inverse Dynamics, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 46, 4, pp.1950-1963.
  •     Bib
    Al-Hafez, F.; Zhao, G.; Peters, J.; Tateo, D. (2024). Time-Efficient Reinforcement Learning with Stochastic Stateful Policies, International Conference on Learning Representations (ICLR).
  •       Bib
    Becker, N.; Gattung, E.; Hansel, K.; Schneider, T.; Zhu, Y.; Hasegawa, Y.; Peters, J. (2024). Integrating Visuo-tactile Sensing with Haptic Feedback for Teleoperated Robot Manipulation, IEEE ICRA 2024 Workshop on Robot Embodiment through Visuo-Tactile Perception.
  •     Bib
    Bhatt, A.; Palenicek, D.; Belousov, B.; Argus, M.; Amiranashvili, A.; Brox, T.; Peters, J. (2024). CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity, International Conference on Learning Representations (ICLR), Spotlight.
  •     Bib
    Boehm, A.; Schneider, T.; Belousov, B.; Kshirsagar, A.; Lin, L.; Doerschner, K.; Drewing, K.; Rothkopf, C.A.; Peters, J. (2024). What Matters for Active Texture Recognition With Vision-Based Tactile Sensors, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Bohlinger, N.; Czechmanowski, G.; Krupka, M.; Kicki, P.; Walas, K.; Peters, J.; Tateo, D. (2024). One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion, Conference on Robot Learning (CoRL).
  •     Bib
    Derstroff, C.; Brugger, J.; Cerrato, M.; Peters, J.; Kramer, S. (2024). Peer Learning: Learning Complex Policies in Groups from Scratch via Action Recommendations, Proceedings of the National Conference on Artificial Intelligence (AAAI).
  •       Bib
    Drolet, M.; Stepputtis, S.; Kailas, S.; Jain, A.; Schaal, S.; Peters, J.; Ben Amor, H. (2024). A Comparison of Imitation Learning Algorithms for Bimanual Manipulation, IEEE Robotics and Automation Letters (RA-L).
  •       Bib
    Funk, N.; Helmut, E.; Chalvatzaki, G.; Calandra, R.; Peters, J. (2024). Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation, IEEE Transactions on Robotics (T-RO), 40, pp.3812-3832.
  •     Bib
    Geiss, H.J.; Al-Hafez, F.; Seyfarth, A.; Peters, J.; Tateo, D. (2024). Exciting Action: Investigating Efficient Exploration for Learning Musculoskeletal Humanoid Locomotion, IEEE-RAS International Conference on Humanoid Robots (Humanoids).
  •     Bib
    Goeksu, Y.; Almeida-Correia, A.; Prasad, V.; Kshirsagar, A.; Koert, D.; Peters, J.; Chalvatzaki, G. (2024). Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers, ACM/IEEE International Conference on Human Robot Interaction (HRI), Late Breaking Report.
  •     Bib
    Hahne, F.; Prasad V.; Kshirsagar A.; Koert D.; Stock-Homburg R. M.; Peters J.; Chalvatzaki G. (2024). Transition State Clustering for Interaction Segmentation and Learning, ACM/IEEE International Conference on Human Robot Interaction (HRI), Late Breaking Report.
  •       Bib
    Hendawy, A.; Peters, J.; D'Eramo, C. (2024). Multi-Task Reinforcement Learning with Mixture of Orthogonal Experts, International Conference on Learning Representations (ICLR).
  •     Bib
    Herrmann, F.; Zach, S.B.; Banfi, J.; Peters, J.; Chalvatzaki, G.; Tateo, D. (2024). Safe and Efficient Path Planning under Uncertainty via Deep Collision Probability Fields, IEEE Robotics and Automation Letters (RA-L).
  •     Bib
    Holzmann, P.; Maik Pfefferkorn, M.; Peters, J.; Findeisen, R. (2024). Learning Energy-Efficient Trajectory Planning for Robotic Manipulators using Bayesian Optimization, Proceedings of the European Control Conference (ECC).
  •   Bib
    Jansonnie, P.; Wu, B.; Perez, J.; Peters J. (2024). Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation, IEEE-RAS International Conference on Humanoid Robots (Humanoids).
  •     Bib
    Kicki, P.; Liu, P.; Tateo, D.; Bou Ammar, H.; Walas, K.; Skrzypczynski, P.; Peters, J. (2024). Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural Networks, IEEE Transactions on Robotics (T-Ro), and Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 40, pp.277-297.
  •   Bib
    Lin, L.; Boehm, A.; Belousov, B.; Kshirsagar, A.; Schneider, T.; Peters, J.; Doerschner, K.; Drewing, K. (2024). Task-Adapted Single-Finger Explorations of Complex Objects, Eurohaptics.
  •     Bib
    Nguyen, D.H.M.*; Le, A.T.*; Nguyen, T.Q.; Nghiem, T.D.; Duong-Tran, D. ; Peters, J.; Li, S.; Niepert, M.; Sonntag, D. (2024). Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model, Asian Conference on Machine Learning (ACML).
  •     Bib
    Nguyen, D.M.H.; Lukashina, N.; Nguyen, N.; Le, A.T.; Nguyen, T.T.; Ho, N.; Peters, J.; Sonntag, D.; Zaverkin, V.; Niepert, M. (2024). Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, IEEE ICRA 2024 Workshop on Robot Embodiment through Visuo-Tactile Perception.
  •     Bib
    Prasad, V.; Kshirsagar, A; Koert, D.; Stock-Homburg, R.; Peters, J.; Chalvatzaki, G. (2024). MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations, IEEE Robotics and Automation Letters (RA-L), 9, 7, pp.6043--6050.
  •       Bib
    Reddi, A.; Toelle, M.; Peters, J.; Chalvatzaki, G.; D'Eramo, C. (2024). Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula, International Conference on Learning Representations (ICLR), Spotlight.
  •     Bib
    Scherf, L.; Gasche, L. A.; Chemangui, E.; Koert, D. (2024). Are You Sure? - Multi-Modal Human Decision Uncertainty Detection in Human-Robot Interaction, 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’24).
  •   Bib
    Spartakov, R.; Kshirsagar, A.; Mühl, D.; Schween, R.; Endres, D.M.; Bremmer, F.; Melzig, C.; Peters, J. (2024). Balancing on the Edge: Review and Computational Framework on the Dynamics of Fear of Falling and Fear of Heights in Postural Control, Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci).
  •     Bib
    Tiboni, G.; Klink, P.; Peters, J.; Tommasi, T.; D'Eramo, C.; Chalvatzaki, G. (2024). Domain Randomization via Entropy Maximization, International Conference on Learning Representations (ICLR).
  •     Bib
    Vincent, T.; Metelli, A.; Belousov, B.; Peters, J.; Restelli, M.; D'Eramo, C. (2024). Parameterized Projected Bellman Operator, Proceedings of the National Conference on Artificial Intelligence (AAAI).
  •     Bib
    Vincent, T.; Wahren, F.; Peters, J.; Belousov, B.; D'Eramo, C.; (2024). Adaptive Q-Network: On-the-fly Target Selection for Deep Reinforcement Learning, European Workshop on Reinforcement Learning (EWRL).
  •     Bib
    Vincent, T.; Wahren, F.; Peters, J.; Belousov, B.; D'Eramo, C.; (2024). Adaptive Q-Network: On-the-fly Target Selection for Deep Reinforcement Learning, ICML Workshop on Automated Reinforcement Learning.
  •     Bib
    Weng, Y.; Chun, S.; Ohashi, M.; Matsuda, T.; Sekimoria, Y.; Pajarinen, J.; Peters, J.; Maki, T. (2024). Autonomous Underwater Vehicle Link Alignment Control in Unknown Environments Using Reinforcement Learning, Journal of Field Robotics, 41, 6, pp.1724--1743.
  •     Bib
    Wiebe, F.; Turcato, N.; Dalla Libera, A.; Zhang, C.; Vincent, T.; Vyas, S.; Giacomuzzo, G.; Carli, R.; Romeres, D.; Sathuluri, A.; Zimmermann, M.; Belousov, B.; Peters, J.; Kirchner, F.; Kumar, S. (2024). Reinforcement Learning for Athletic Intelligence: Lessons from the 1st “AI Olympics with RealAIGym” Competition, The 33rd International Joint Conference on Artificial Intelligence.

2023

  •     Bib
    Abdulsamad, H.; Peters, J. (2023). Model-Based Reinforcement Learning via Stochastic Hybrid Models, IEEE Open Journal of Control Systems, Special Section: Intersection of Machine Learning with Control, 2, pp.155 - 170, IEEE.
  •     Bib
    Al-Hafez, F.; Zhao, G.; Peters, J.; Tateo, D. (2023). LocoMuJoCo: A Comprehensive Imitation Learning Benchmark for Locomotion, Robot Learning Workshop, Conference on Neural Information Processing Systems (NeurIPS).
  •       Bib
    Al-Hafez, F.; Tateo, D.; Arenz, O.; Zhao, G.; Peters, J. (2023). LS-IQ: Implicit Reward Regularization for Inverse Reinforcement Learning, International Conference on Learning Representations (ICLR).
  •       Bib
    Al-Hafez, F.; Tateo, D.; Arenz, O.; Zhao, G.; Peters, J. (2023). Least Squares Inverse Q-Learning, European Workshop on Reinforcement Learning (EWRL).
  •     Bib
    Arenz, O.; Dahlinger, P.; Ye, Z.; Volpp, M.; Neumann, G. (2023). A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models, Transactions on Machine Learning Research (TMLR).
  •     Bib
    Bethge, J.; Pfefferkorn, M.; Rose, A.; Peters, J.; Findeisen, R. (2023). Model predictive control with Gaussian-process-supported dynamical constraints for autonomous vehicles, Proceedings of the 22nd World Congress of the International Federation of Automatic Control.
  •     Bib
    Bjelonic, F.; Lee, J.; Arm, P.; Sako, D.; Tateo, D.; Peters, J.; Hutter, M. (2023). Learning-Based Design and Control for Quadrupedal Robots With Parallel-Elastic Actuators, IEEE Robotics and Automation Letters (R-AL), 8, 3, pp.1611-1618.
  •     Bib
    Boehm, A.; Schneider, T.; Belousov, B.; Kshirsagar, A.; Lin, L.; Doerschner, K.; Drewing, K.; Rothkopf, C.A.; Peters, J. (2023). Tactile Active Texture Recognition With Vision-Based Tactile Sensors, NeurIPS Workshop on Touch Processing: a new Sensing Modality for AI.
  •     Bib
    Buechler, D.; Calandra, R.; Peters, J. (2023). Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots, Robotics and Autonomous Systems, 159, 104230.
  •     Bib
    Buechler, D.; Guist, S.; Calandra, R.; Berenz, V.; Schoelkopf, B.; Peters, J. (2023). Learning to Play Table Tennis From Scratch using Muscular Robots, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE T-TRo Track.
  •       Bib
    Carvalho, J.; Le, A. T.; Baierl, M.; Koert, D.; Peters, J. (2023). Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Chen, Q.; Zhu, Y.; Hansel, Kay.; Aoyama, T.; Hasegawa, Y. (2023). Human Preferences and Robot Constraints Aware Shared Control for Smooth Follower Motion Execution, IEEE International Symposium on Micro-NanoMechatronics and Human Science (MHS), IEEE.
  •     Bib
    Flynn, H.; Reeb, D.; Kandemir, M.; Peters, J. (2023). PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental Comparison, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 45, 12, pp.15308-15327.
  •     Bib
    Flynn, H.; Reeb, D.; Kandemir, M.; Peters, J. (2023). Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •       Bib
    Funk, N.; Mueller, P.-O.; Belousov, B.; Savchenko, A.; Findeisen, R.; Peters, J. (2023). High-Resolution Pixelwise Contact Area and Normal Force Estimation for the GelSight Mini Visuotactile Sensor Using Neural Networks, Embracing Contacts-Workshop at ICRA 2023.
  •     Bib
    Gruner, T.; Belousov, B.; Muratore, F.; Palenicek, D.; Peters, J. (2023). Pseudo-Likelihood Inference, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •       Bib
    Gu, S.; Kshirsagar, A.; Du Y.; Chen G.; Peters J.; Knoll A. (2023). A Human-Centered Safe Robot Reinforcement Learning Framework with Interactive Behaviors, Frontiers in Neurorobotics, 17, 1280341.
  •       Bib
    Hansel, K.; Urain, J.; Peters, J.; Chalvatzaki, G. (2023). Hierarchical Policy Blending as Inference for Reactive Robot Control, 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE.
  •     Bib
    Ju, S.; van Vliet, P.; Arenz, O.; Peters, J. (2023). Digital Twin of a Driver-in-the-Loop Race Car Simulation with Contextual Reinforcement Learning, IEEE Robotics and Automation Letters (RA-L), 8, 7, pp.4107-4114.
  •     Bib
    Lach, L.; Haschke, R.; Tateo, D.; Peters, J.; Ritter, H.; Sol, J.; Torras, C. (2023). Towards Transferring Tactile-based Continuous Force Control Policies from Simulation to Robot, NeurIPS 2023 Workshop on Touch Processing.
  •       Bib
    Le, A. T.; Chalvatzaki, G.; Biess, A.; Peters, J. (2023). Accelerating Motion Planning via Optimal Transport, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •     Bib
    Le, A. T.; Chalvatzaki, G.; Biess, A.; Peters, J. (2023). Accelerating Motion Planning via Optimal Transport, IROS 2023 Workshop on Differentiable Probabilistic Robotics: Emerging Perspectives on Robot Learning, [Oral].
  •     Bib
    Le, A. T.; Chalvatzaki, G.; Biess, A.; Peters, J. (2023). Accelerating Motion Planning via Optimal Transport, NeurIPS 2023 Workshop Optimal Transport and Machine Learning, [Oral].
  •       Bib
    Le, A. T.; Hansel, K.; Peters, J.; Chalvatzaki, G. (2023). Hierarchical Policy Blending As Optimal Transport, 5th Annual Learning for Dynamics & Control Conference (L4DC), PMLR.
  •       Bib
    Liu, P.; Zhang, K.; Tateo, D.; Jauhri, S.; Hu, Z.; Peters, J. Chalvatzaki, G. (2023). Safe Reinforcement Learning of Dynamic High-Dimensional Robotic Tasks: Navigation, Manipulation, Interaction, 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE.
  •     Bib
    Liu, Y.; Belousov, B.; Funk, N.; Chalvatzaki, G.; Peters, J.; Tessman, O. (2023). Auto(mated)nomous Assembly, International Conference on Trends on Construction in the Post-Digital Era, pp.167-181, Springer, Cham.
  •     Bib
    Loeckel, S.; Ju, S.; Schaller, M.; van Vliet, P..; Peters, J. (2023). An Adaptive Human Driver Model for Realistic Race Car Simulations, IEEE Transactions on Systems, Man and Cybernetics: Systems (TSMC), 53, 11, pp.6718-6730.
  •     Bib
    Look, A.; Kandemir, M.; Rakitsch, B.; Peters, J. (2023). A Deterministic Approximation to Neural SDEs, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 45, 4, pp.4023-4037.
  •     Bib
    Look, A.; Kandemir, M.; Rakitsch, B.; Peters, J. (2023). Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems, Transactions on Machine Learning Research (TMLR).
  •     Bib
    Luis, C.; Bottero, A.G.; Vinogradska, J.; Berkenkamp, F.; Peters, J. (2023). Model-Based Uncertainty in Value Functions, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
  •       Bib
    Lutter, M.; Belousov, B.; Mannor, S.; Fox, D.; Garg, A.; Peters, J. (2023). Continuous-Time Fitted Value Iteration for Robust Policies, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI).
  •     Bib
    Lutter, M.; Peters, J. (2023). Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models, International Journal of Robotics Research (IJRR), 42, 3.
  •   Bib
    Metternich, H.; Hendawy, A.; Klink, P.; Peters, J.; D'Eramo, C. (2023). Using Proto-Value Functions for Curriculum Generation in Goal-Conditioned RL, NeurIPS 2023 Workshop on Goal-Conditioned Reinforcement Learning.
  •   Bib
    Mittenbuehler, M.; Hendawy, A.; D'Eramo, C.; Chalvatzaki, G. (2023). Parameter-efficient Tuning of Pretrained Visual-Language Models in Multitask Robot Learning, CoRL 2023 Workshop on Learning Effective Abstractions for Planning (LEAP).
  •     Bib
    Palenicek, D.; Lutter, M.; Carvalho, J.; Peters, J. (2023). Diminishing Return of Value Expansion Methods in Model-Based Reinforcement Learning, International Conference on Learning Representations (ICLR).
  •     Bib
    Peters, S.; Peters, J.; Findeisen, R. (2023). Quantifying Uncertainties along the Automated Driving Stack, ATZ worldwide volume, 125, pp.62-65.
  •     Bib
    Rother, D. (2023). Implicitly Cooperative Agents through Impact-Aware Learning, European Conference on Artificial Intelligence (ECAI).
  •     Bib
    Rother, D.; Weisswange, T.H.; Peters, J. (2023). Disentangling Interaction using Maximum Entropy Reinforcement Learning in Multi-Agent Systems, European Conference on Artificial Intelligence (ECAI).
  •     Bib
    Scherf, L.; Schmidt, A.; Pal, S.; Koert, D. (2023). Interactively learning behavior trees from imperfect human demonstrations, Frontiers in Robotics and AI, 10.
  •     Bib
    Toelle, M.; Belousov, B.; Peters, J. (2023). A Unifying Perspective on Language-Based Task Representations for Robot Control, CoRL Workshop on Language and Robot Learning: Language as Grounding.
  •       Bib
    Urain, J.; Funk, N.; Peters, J.; Chalvatzaki G (2023). SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion, International Conference on Robotics and Automation (ICRA).
  •     Bib
    Urain, J.; Li, A.; Liu, P.; D'Eramo, C.; Peters, J. (2023). Composable energy policies for reactive motion generation and reinforcement learning, International Journal of Robotics Research (IJRR).
  •     Bib
    Urain, J.; Tateo, D.; Peters, J. (2023). Learning Stable Vector Fields on Lie Groups, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE R-AL Track.
  •     Bib
    Vincent, T.; Belousov, B.; D'Eramo, C.; Peters, J. (2023). Iterated Deep Q-Network: Efficient Learning of Bellman Iterations for Deep Reinforcement Learning, European Workshop on Reinforcement Learning (EWRL).
  •     Bib
    Vincent, T.; Metelli, A.; Peters, J.; Restelli, M.; D'Eramo, C. (2023). Parameterized projected Bellman operator, ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems.
  •     Bib
    Watson, J.; Peters, J.; (2023). Sample-Efficient Online Imitation Learning using Pretrained Behavioural Cloning Policies, NeurIPS 6th Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with Large Scale Models.
  •     Bib
    Zelch, C.; Peters, J.; von Stryk, C. (2023). Start State Selection for Control Policy Learning from Optimal Trajectories, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Zelch, C.; Peters, J.; von Stryk, O. (2023). Clustering of Motion Trajectories by a Distance Measure Based on Semantic Features, Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids).
  •     Bib
    Zhu, Y.; Nazirjonov, S.; Jiang, B.; Colan, J.; Aoyama, T.; Hasegawa, Y.; Belousov, B.; Hansel, K.; Peters, J. (2023). Visual Tactile Sensor Based Force Estimation for Position-Force Teleoperation, IEEE International Conference on Cyborg and Bionic Systems (CBS), pp.49-52.

2022

  •     Bib
    Akrour, R.; Tateo, D.; Peters, J. (2022). Continuous Action Reinforcement Learning from a Mixture of Interpretable Experts, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 44, 10, pp.6795-6806.
  •       Bib
    Belousov, B.; Wibranek, B.; Schneider, J.; Schneider, T.; Chalvatzaki, G.; Peters, J.; Tessmann, O. (2022). Robotic Architectural Assembly with Tactile Skills: Simulation and Optimization, Automation in Construction, 133, pp.104006.
  •     Bib
    Bottero, A.G.; Luis, C.E.; Vinogradska, J.; Berkenkamp, F.; Peters, J. (2022). Information-Theoretic Safe Exploration with Gaussian Processes, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •     Bib
    Buechler, D.; Guist, S.; Calandra, R.; Berenz, V.; Schoelkopf, B.; Peters, J. (2022). Learning to Play Table Tennis From Scratch using Muscular Robots, IEEE Transactions on Robotics (T-Ro), 38, 6, pp.3850-3860.
  •     Bib
    Carvalho, J.; Baierl, M; Urain, J; Peters, J. (2022). Conditioned Score-Based Models for Learning Collision-Free Trajectory Generation, NeurIPS 2022 Workshop on Score-Based Methods.
  •     Bib
    Carvalho, J.; Koert, D.; Daniv, M.; Peters, J. (2022). Adapting Object-Centric Probabilistic Movement Primitives with Residual Reinforcement Learning, 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).
  •     Bib
    Carvalho, J.; Peters, J. (2022). An Analysis of Measure-Valued Derivatives for Policy Gradients, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Cowen-Rivers, A.; Lyu, W.; Tutunov, R.; Wang, Z.; Grosnit, A.; Griffiths, R.R.; Maraval, A.; Jianye, H.; Wang, J.; Peters, J.; Bou Ammar, H. (2022). HEBO: An Empirical Study of Assumptions in Bayesian Optimisation, Journal of Artificial Intelligence Research, 74, pp.1269-1349.
  •     Bib
    Cowen-Rivers, A.I.; Palenicek, D.; Moens, V.; Abdullah, M.A.; Sootla, A.; Wang, J.; Bou-Ammar, H. (2022). SAMBA: safe model-based & active reinforcement learning, Machine Learning.
  •     Bib
    Dam, T.; Chalvatzaki, G.; Peters, J.; Pajarinen, J. (2022). Monte-carlo robot path planning, IEEE Robotics and Automation Letters (RA-L), 7, 4, pp.11213-11220.
  •     Bib
    Flynn, H.; Reeb, D.; Kandemir, M.; Peters, J. (2022). PAC-Bayesian Lifelong Learning For Multi-Armed Bandits, Data Mining and Knowledge Discovery, 36, 2, pp.841-876.
  •       Bib
    Funk, N.; Menzenbach, S.; Chalvatzaki, G.; Peters, J. (2022). Graph-based Reinforcement Learning meets Mixed Integer Programs: An application to 3D robot assembly discovery, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Funk, N.; Schaff, C.; Madan, R.; Yoneda, T.; Urain, J.; Watson, J.; Gordon, E.; Widmaier, F; Bauer, S.; Srinivasa, S.; Bhattacharjee, T.; Walter, M.; Peters, J. (2022). Benchmarking Structured Policies and Policy Optimization for Real-World Dexterous Object Manipulation, IEEE Robotics and Automation Letters (R-AL).
  •     Bib
    Galljamov, R.; Zhao, G.; Belousov, B.; Seyfarth, A.; Peters, J. (2022). Improving Sample Efficiency of Example-Guided Deep Reinforcement Learning for Bipedal Walking, 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).
  •       Bib
    Hansel, K.; Moos, J.; Abdulsamad, H.; Stark, S.; Clever, D.; Peters, J. (2022). Robust Reinforcement Learning: A Review of Foundations and Recent Advances, Machine Learning and Knowledge Extraction (MAKE), 4, 1, pp.276--315, MDPI.
  •     Bib
    Klink, P.; D`Eramo, C.; Peters, J.; Pajarinen, J. (2022). Boosted Curriculum Reinforcement Learning, International Conference on Learning Representations (ICLR).
  •     Bib
    Klink, P.; Yang, H.; D'Eramo, C.; Peters, J.; Pajarinen, J. (2022). Curriculum Reinforcement Learning via Constrained Optimal Transport, International Conference on Machine Learning (ICML).
  •   Bib
    Le, A. T.; Urain, J.; Lambert, A.; Chalvatzaki, G.; Boots, B.; Peters, J. (2022). Learning Implicit Priors for Motion Optimization, RSS 2022 Workshop on Implicit Representations for Robotic Manipulation.
  •     Bib
    Liu, P.; Zhang, K.; Tateo, D.; Jauhri, S.; Peters, J.; Chalvatzaki, G.; (2022). Regularized Deep Signed Distance Fields for Reactive Motion Generation, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Loeckel, S.; Kretschi, A.; van Vliet, P.; Peters, J. (2022). Identification and modelling of race driving styles, Vehicle System Dynamics, 60, 8, pp.2890--2918.
  •     Bib
    Memmel, M.; Liu, P.; Tateo, D.; Peters, J. (2022). Dimensionality Reduction and Prioritized Exploration for Policy Search, 25th International Conference on Artificial Intelligence and Statistics (AISTATS).
  •       Bib
    Muratore, F.; Ramos, F.; Turk, G.; Yu, W.; Gienger, M.; Peters, J. (2022). Robot Learning from Randomized Simulations: A Review, Frontiers in Robotics and AI, 9.
  •     Bib
    Palenicek, D.; Lutter, M., Peters, J. (2022). Revisiting Model-based Value Expansion, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Parisi, S.; Tateo, D.; Hensel, M.; D'Eramo, C.; Peters, J.; Pajarinen, J. (2022). Long-Term Visitation Value for Deep Exploration in Sparse-Reward Reinforcement Learning, Algorithms, 15, 3, pp.81.
  •     Bib
    Ploeger, K.; Peters, J. (2022). Controlling the Cascade: Kinematic Planning for N-ball Toss Juggling, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Prasad, V.; Koert, D.; Stock-Homburg, R.; Peters, J.; Chalvatzaki, G. (2022). MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot Interaction, IEEE-RAS International Conference on Humanoid Robots (Humanoids).
  •       Bib
    Prasad, V.; Stock-Homburg, R.; Peters, J. (2022). Human-Robot Handshaking: A Review, International Journal of Social Robotics (IJSR), 14, 1, pp.277-293.
  •     Bib
    Scherf, L.; Turan, C.; Koert, D. (2022). Learning from Unreliable Human Action Advice in Interactive Reinforcement Learning, 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).
  •       Bib
    Schneider, T.; Belousov, B.; Abdulsamad, H.; Peters, J. (2022). Active Inference for Robotic Manipulation, 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •       Bib
    Schneider, T.; Belousov, B.; Chalvatzaki, G.; Romeres, D.; Jha, D.K.; Peters, J. (2022). Active Exploration for Robotic Manipulation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Siebenborn, M.; Belousov, B.; Huang, J.; Peters, J. (2022). How Crucial is Transformer in Decision Transformer?, Foundation Models for Decision Making Workshop at Neural Information Processing Systems.
  •     Bib
    Tosatto, S.; Carvalho, J.; Peters, J. (2022). Batch Reinforcement Learning with a Nonparametric Off-Policy Policy Gradient, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 44, 10, pp.5996--6010.
  •       Bib
    Urain, J.*; Le, A.T.*; Lambert, A.*; Chalvatzaki, G.; Boots, B.; Peters, J. (2022). Learning Implicit Priors for Motion Optimization, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Urain, J.; Tateo, D; Peters, J. (2022). Learning Stable Vector Fields on Lie Groups, Robotics and Automation Letters (RA-L).
  •     Bib
    Vorndamme, J.; Carvalho, J.; Laha, R.; Koert, D.; Figueredo, L.; Peters, J.; Haddadin, S. (2022). Integrated Bi-Manual Motion Generation and Control shaped for Probabilistic Movement Primitives, 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids).
  •   Bib
    Watson, J.; Hanher, B.; Peters, J. (2022). Differentiable Simulators as Gaussian Processes, R:SS Workshop: Differentiable Simulation for Robotics.
  •     Bib
    Watson, J.; Peters, J. (2022). Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes, Conference on Robot Learning (CoRL).
  •   Bib
    Watson, J.; Peters, J.; (2022). Stationary Posterior Policy Iteration with Variational Inference, The Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Weng, Y.; Matsuda, T.; Sekimoria, Y.; Pajarinen, J.; Peters, J.; Maki, T. (2022). Establishment of Line-of-Sight Optical Links Between Autonomous Underwater Vehicles: Field Experiment and Performance Validation, Applied Ocean Research, 129.
  •     Bib
    Weng, Y.; Matsuda, T.; Sekimuri, Y.; Pajarinen, J.; Peters, J.; Maki, T. (2022). Pointing Error Control of Underwater Wireless Optical Communication on Mobile Platform, IEEE Photonics Technology Letters, 34, 13, pp.699-702.
  •     Bib
    Weng, Y.; Pajarinen, J.; Akrour, R.; Matsuda, T.; Peters, J.; Maki, T. (2022). Reinforcement Learning Based Underwater Wireless Optical Communication Alignment for Multiple Autonomous Underwater Vehicles, IEEE Journal of Oceanic Engineering, 47, 4, pp.1231-1245.
  •       Bib
    You, B.; Arenz, O.; Chen, Y.; Peters, J. (2022). Integrating Contrastive Learning with Dynamic Models for Reinforcement Learning from Images, Neurocomputing.
  •     Bib
    Zheng, Y.; Veiga, F.F.; Peters, J.; Santos, V.J. (2022). Autonomous Learning of Page Flipping Movements via Tactile Feedback, IEEE Transactions on Robotics (T-Ro), 38, 5, pp.2734 - 2749.
  •     Bib
    Zheng, Y.; Veiga, F.F.; Peters, J.; Santos, V.J. (2022). Autonomous Learning of Page Flipping Movements via Tactile Feedback, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2021

  •     Bib
    Abdulsamad, H.; Dorau, T.; Belousov, B.; Zhu, J.-J; Peters, J. (2021). Distributionally Robust Trajectory Optimization Under Uncertain Dynamics via Relative Entropy Trust-Regions, arXiv.
  •     Bib
    Abdulsamad, H.; Nickl, P.; Klink, P.; Peters, J. (2021). A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Abdulsamad, H.; Peters, J. (2021). Model-Based Reinforcement Learning for Stochastic Hybrid Systems, arXiv.
  •     Bib
    Akrour, R.; Atamna, A.; Peters, J. (2021). Convex Optimization with an Interpolation-based Projection and its Application to Deep Learning, Machine Learning (MACH), 110, 8, pp.2267-2289.
  •     Bib
    Bauer, S.; Wüthrich, W.; Widmaier, F.; Buchholz, A.; Stark, S.; Goyal, A.; Steinbrenner, T.; Akpo, J.; Joshi, S.; Berenz, V.; Agrawal, V.; Funk, N.; Urain, J.; Peters, J.; Watson, J.; Et, A.L.l (2021). Real Robot Challenge: A Robotics Competition in the Cloud, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •     Bib
    Belousov, B.; Abdulsamad H.; Klink, P.; Parisi, S.; Peters, J. (2021). Reinforcement Learning Algorithms: Analysis and Applications, Studies in Computational Intelligence, Springer International Publishing.
  •     Bib
    Bustamante, S.; Peters, J.; Schoelkopf, B.; Grosse-Wentrup, M.; Jayaram, V. (2021). ArmSym: a virtual human-robot interaction laboratory for assistive robotics, IEEE Transactions on Human-Machine Systems, 51, 6, pp.568-577.
  •     Bib
    Carvalho, J., Tateo, D., Muratore, F., Peters, J. (2021). An Empirical Analysis of Measure-Valued Derivatives for Policy Gradients, International Joint Conference on Neural Networks (IJCNN).
  •     Bib
    Dam, T.; D'Eramo, C.; Peters, J.; Pajarinen J. (2021). Convex Regularization in Monte-Carlo Tree Search, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    D`Eramo, C.; Cini, A.; Nuara, A.; Pirotta, M.; Alippi, C.; Peters, J.; Restelli, M. (2021). Gaussian Approximation for Bias Reduction in Q-Learning, Journal of Machine Learning Research (JMLR).
  •     Bib
    D`Eramo, C.; Tateo, D; Bonarini, A.; Restelli, M.; Peters, J. (2021). MushroomRL: Simplifying Reinforcement Learning Research, Journal of Machine Learning Research (JMLR), 22, 131, pp.1-5.
  •       Bib
    Funk, N.; Baumann, D.; Berenz, V.; Trimpe, S. (2021). Learning event-triggered control from data through joint optimization, IFAC Journal of Systems and Control, 16, pp.100144.
  •       Bib
    Funk, N.; Chalvatzaki, G.; Belousov, B.; Peters, J. (2021). Learn2Assemble with Structured Representations and Search for Robotic Architectural Construction, Conference on Robot Learning (CoRL).
  •     Bib
    Hansel, K.; Moos, J.; Derstroff, C. (2021). Benchmarking the Natural Gradient in Policy Gradient Methods and Evolution Strategies, Reinforcement Learning Algorithms: Analysis and Applications, pp.69--84, Springer.
  •     Bib
    Hoefer, S.; Bekris, K.; Handa, A.; Gamboa, J.C.; Golemo, F.; Mozifian, M.; Atkeson, C.G., Fox, D.; Goldberg, K.; Leonard, J.; Liu, C.K.; Peters, J.; Song, S.; Welinder, P.; White, M. (2021). Sim2Real in Robotics and Automation: Applications and Challenges, IEEE Transactions on Automation Science (T-ASE), 18, 2, pp.398-400.
  •     Bib
    Klink, P.; Abdulsamad, H.; Belousov, B.; D'Eramo, C.; Peters, J.; Pajarinen, J. (2021). A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning, Journal of Machine Learning Research (JMLR).
  •     Bib
    Knaust, M.; Koert, D. (2021). Guided Robot Skill Learning: A User-Study on Learning Probabilistic Movement Primitives with Non-Experts, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Lampariello, R.; Mishra, H.; Oumer, N.W.; Peters, J. (2021). Robust Motion Prediction of a Free-Tumbling Satellite with On-Ground Experimental Validation, Journal of Guidance, Control, and Dynamics, 44, 10, pp.1777-1793.
  •     Bib
    Li, Q.; Chalvatzaki, G.; Peters, J.; Wang, Y. (2021). Directed Acyclic Graph Neural Network for Human Motion Prediction, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Liu, P.; Tateo, D.; Bou-Ammar, H.; Peters, J. (2021). Efficient and Reactive Planning for High Speed Robot Air Hockey, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Liu, P.; Tateo, D.; Bou-Ammar, H.; Peters, J. (2021). Robot Reinforcement Learning on the Constraint Manifold, Proceedings of the Conference on Robot Learning (CoRL).
  •     Bib
    Lutter, M.; Clever, D.; Kirsten, R.; Listmann, K.; Peters, J. (2021). Building Skill Learning Systems for Robotics, Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE).
  •     Bib
    Lutter, M.; Mannor, S.; Peters, J.; Fox, D.; Garg, A. (2021). Value Iteration in Continuous Actions, States and Time, International Conference on Machine Learning (ICML).
  •     Bib
    Lutter, M.; Mannor, S.; Peters, J.; Fox, D.; Garg, A. (2021). Robust Value Iteration for Continuous Control Tasks, Robotics: Science and Systems (RSS).
  •     Bib
    Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (2021). Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Morgan, A.; Nandha, D.; Chalvatzaki, G.; D'Eramo, C.; Dollar, A.; Peters, J. (2021). Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with Deep Reinforcement Learning, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Muratore, F.; Eilers, C.; Gienger, M.; Peters, J. (2021). Data-efficient Domain Randomization with Bayesian Optimization, IEEE Robotics and Automation Letters (RA-L), with Presentation at the IEEE International Conference on Robotics and Automation (ICRA), IEEE.
  •       Bib
    Muratore, F.; Gienger, M.; Peters, J. (2021). Assessing Transferability from Simulation to Reality for Reinforcement Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 43, 4, pp.1172-1183, IEEE.
  •     Bib
    Muratore, F.; Gruner, T.; Wiese, F.; Belousov, B.; Gienger, M.; Peters, J. (2021). Neural Posterior Domain Randomization, Conference on Robot Learning (CoRL).
  •     Bib
    Palenicek, D. (2021). A Survey on Constraining Policy Updates Using the KL Divergence, Reinforcement Learning Algorithms: Analysis and Applications, pp.49-57.
  •     Bib
    Prasad, V.; Stock-Homburg, R.; Peters, J. (2021). Learning Human-like Hand Reaching for Human-Robot Handshaking, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Rawal, N.; Koert, D.; Turan, C.; Kersting, K.; Peters, J.; Stock-Homburg, R. (2021). ExGenNet: Learning to Generate Robotic Facial Expression Using Facial Expression Recognition, Frontiers in Robotics & AI, 8, 730317.
  •     Bib
    Tanneberg, D.; Ploeger, K.; Rueckert, E.; Peters, J. (2021). SKID RAW: Skill Discovery from Raw Trajectories, IEEE Robotics and Automation Letters (RA-L).
  •       Bib
    Tosatto, S.; Akrour, R.; Peters, J. (2021). An Upper Bound of the Bias of Nadaraya-Watson Kernel Regression under Lipschitz Assumptions, Stats, 4, pp.1--17.
  •     Bib
    Tosatto, S.; Chalvatzaki, G.; Peters, J. (2021). Contextual Latent-Movements Off-Policy Optimization for Robotic Manipulation Skills, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Urain, J.; Li, A.; Liu, P.; D'Eramo, C.; Peters, J. (2021). Composable Energy Policies for Reactive Motion Generation and Reinforcement Learning, Robotics: Science and Systems (RSS).
  •     Bib
    Watson, J.; Lin J. A.; Klink, P.; Pajarinen, J.; Peters, J. (2021). Latent Derivative Bayesian Last Layer Networks, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
  •     Bib
    Watson, J.; Lin, J. A.; Klink, P.; Peters, J. (2021). Neural Linear Models with Functional Gaussian Process Priors, 3rd Symposium on Advances in Approximate Bayesian Inference (AABI).
  •     Bib
    Watson, J.; Peters, J. (2021). Advancing Trajectory Optimization with Approximate Inference: Exploration, Covariance Control and Adaptive Risk, American Control Conference (ACC).
  •     Bib
    Wibranek, B.; Liu, Y.; Funk, N.; Belousov, B.; Peters, J.; Tessmann, O. (2021). Reinforcement Learning for Sequential Assembly of SL-Blocks: Self-Interlocking Combinatorial Design Based on Machine Learning, Proceedings of the 39th eCAADe Conference.

2020

  •     Bib
    Abdulsamad, H.; Peters, J. (2020). Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation, 2nd Annual Conference on Learning for Dynamics and Control.
  •   Bib
    Abdulsamad, H.; Peters, J. (2020). Learning Hybrid Dynamics and Control, ECML/PKDD Workshop on Deep Continuous-Discrete Machine Learning.
  •     Bib
    Abi-Farraj, F.; Pacchierotti, C.; Arenz, O.; Neumann, G.; Giordano, P. (2020). Haptic-based Guided Grasping in a Cluttered Environment, IEEE Haptics Symposium.
  •     Bib
    Agudelo-Espana, D.; Gomez-Gonzalez, S.; Bauer, S.; Schoelkopf, B.; Peters, J. (2020). Bayesian Online Prediction of Change Points, Conference on Uncertainty in Artificial Intelligence (UAI).
  •     Bib
    Almeida Santos, A.; Gil, C.E.M.; Peters, J.; Steinke, F. (2020). Decentralized Data-Driven Tuning of Droop Frequency Controllers, 2020 IEEE PES Innovative Smart Grid Technologies Europe.
  •     Bib
    Arenz, O.; Neumann, G. (2020). Non-Adversarial Imitation Learning and its Connections to Adversarial Methods, arXiv.
  •     Bib
    Arenz, O.; Zhong, M.; Neumann G. (2020). Trust-Region Variational Inference with Gaussian Mixture Models, Journal of Machine Learning Research (JMLR).
  •     Bib
    Becker, P.; Arenz, O.; Neumann, G. (2020). Expected Information Maximization: Using the I-Projection for Mixture Density Estimation, International Conference on Learning Representations (ICLR).
  •       Bib
    Dam, T.; Klink, P.; D'Eramo, C.; Peters, J.; Pajarinen, J. (2020). Generalized Mean Estimation in Monte-Carlo Tree Search, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
  •     Bib
    D`Eramo, C.; Tateo, D.; Bonarini, A.; Restelli, M.; Peters, J. (2020). Sharing Knowledge in Multi-Task Deep Reinforcement Learning, International Conference in Learning Representations (ICLR).
  •     Bib
    Eilers, C.; Eschmann, J.; Menzenbach, R.; Belousov, B.; Muratore, F.; Peters, J. (2020). Underactuated Waypoint Trajectory Optimization for Light Painting Photography, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Ewerton, M.; Arenz, O.; Peters, J. (2020). Assisted Teleoperation in Changing Environments with a Mixture of Virtual Guides, Advanced Robotics, 34.
  •     Bib
    Gomez-Gonzalez, S.; Neumann, G.; Schoelkopf, B.; Peters, J. (2020). Adaptation and Robust Learning of Probabilistic Movement Primitives, IEEE Transactions on Robotics (T-Ro), 36, 2, pp.366-379.
  •     Bib
    Gomez-Gonzalez, S.; Prokudin, S.; Schoelkopf, B.; Peters, J. (2020). Real Time Trajectory Prediction Using Deep Conditional Generative Models, IEEE Robotics and Automation Letters (ICRA/RA-L), with Presentation at the IEEE International Conference on Robotics and Automation (ICRA), 5, 2, pp.970-976.
  •     Bib
    Keller, L.; Tanneberg, D.; Stark, S.; Peters, J. (2020). Model-Based Quality-Diversity Search for Efficient Robot Learning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Klink, P.; D'Eramo, C.; Peters, J.; Pajarinen, J. (2020). Self-Paced Deep Reinforcement Learning, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •       Bib
    Koert, D.; Kircher, M.; Salikutluk, V.; D'Eramo, C.; Peters, J. (2020). Multi-Channel Interactive Reinforcement Learning for Sequential Tasks, Frontiers in Robotics and AI Human-Robot Interaction.
  •     Bib
    Koert, D.; Trick, S.; Ewerton, M.; Lutter, M.; Peters, J. (2020). Incremental Learning of an Open-Ended Collaborative Skill Library, International Journal of Humanoid Robotics (IJHR), 17, 1.
  •     Bib
    Lauri, M.; Pajarinen, J.; Peters, J.; Frintrop, S. (2020). Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization, IEEE Robotics and Automation Letters (RA-L), 5, 4, pp.5323-5330.
  •     Bib
    Laux, M.; Arenz, O.; Pajarinen, J.; Peters, J. (2020). Deep Adversarial Reinforcement Learning for Object Disentangling, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020).
  •   Bib
    Lioutikov, R.; Maeda, G.; Veiga, F.F.; Kersting, K.; Peters, J. (2020). Learning Attribute Grammars for Movement Primitive Sequencing, International Journal of Robotics Research (IJRR), 39, 1, pp.21-38.
  •     Bib
    Loeckel, S.; Peters, J.; van Vliet, P. (2020). A Probabilistic Framework for Imitating Human Race Driver Behavior, IEEE Robotics and Automation Letters (RA-L), with Presentation at the IEEE International Conference on Robotics and Automation (ICRA), 5, 2.
  •   Bib
    Lutter, M.; Clever, D.; Belousov, B.; Listmann, K.; Peters, J. (2020). Evaluating the Robustness of HJB Optimal Feedback Control, International Symposium on Robotics.
  •   Bib
    Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (2020). A Differentiable Newton Euler Algorithm for Multi-body Model Learning, R:SS Structured Approaches to Robot Learning Workshop.
  •     Bib
    Motokura, K.; Takahashi, M.; Ewerton, M.; Peters, J. (2020). Plucking Motions for Tea Harvesting Robots Using Probabilistic Movement Primitives, IEEE Robotics and Automation Letters (ICRA/RA-L), with Presentation at the IEEE International Conference on Robotics and Automation (ICRA), 5, 2, pp.2377-3766.
  •     Bib
    Ploeger, K.; Lutter, M.; Peters, J. (2020). High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards, Conference on Robot Learning (CoRL).
  •     Bib
    Prasad, V.; Stock-Homburg, R.; Peters, J. (2020). Advances in Human-Robot Handshaking, International Conference on Social Robotics, Springer.
  •     Bib
    Rother, D., Haider, T., & Eger, S (2020). CMCE at SemEval-2020 Task 1: Clustering on Manifolds of Contextualized Embeddings to Detect Historical Meaning Shifts, 14th International Workshop on Semantic Evaluation (SemEval), pp.187-193.
  •     Bib
    Stock-Homburg, R.; Peters, J.; Schneider, K.; Prasad, V.; Nukovic, L. (2020). Evaluation of the Handshake Turing Test for anthropomorphic Robots, Proceedings of the ACM/IEEE International Conference on Human Robot Interaction (HRI), Late Breaking Report.
  •       Bib
    Tanneberg, D.; Rueckert, E.; Peters, J. (2020). Evolutionary Training and Abstraction Yields Algorithmic Generalization of Neural Computers, Nature Machine Intelligence, 2, 12, pp.753-763.
  •     Bib
    Tosatto, S.; Carvalho, J.; Abdulsamad, H.; Peters, J. (2020). A Nonparametric Off-Policy Policy Gradient, Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS).
  •     Bib
    Tosatto, S.; Stadtmueller, J.; Peters, J. (2020). Dimensionality Reduction of Movement Primitives in Parameter Space, arXiv.
  •     Bib
    Urain, J.; Ginesi, M.; Tateo, D.; Peters, J. (2020). ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by Normalizing Flows, IEEE/RSJ International Conference on Intelligent Robots and Systems.
  •     Bib
    Urain, J.; Tateo, D.; Ren, T.; Peters, J. (2020). Structured policy representation: Imposing stability in arbitrarily conditioned dynamic systems, NeurIPS 2020, 3rd Robot Learning Workshop, pp.7.
  •     Bib
    Veiga, F. F.; Akrour, R.; Peters, J. (2020). Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks, Frontiers in Robotics and AI.
  •     Bib
    Veiga, F. F.; Edin B.B; Peters, J. (2020). Grip Stabilization through Independent Finger Tactile Feedback Control, Sensors (Special Issue on Sensors and Robot Control), 20.
  •     Bib
    Vinogradska, J.; Bischoff, B.; Koller, T.; Achterhold, J.; Peters, J. (2020). Numerical Quadrature for Probabilistic Policy Search, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 42, 1, pp.164-175.
  •   Bib
    Watson, J.; Imohiosen A.; Peters, J. (2020). Active Inference or Control as Inference? A Unifying View, International Workshop on Active Inference.
  •     Bib
    Zelch, C.; Peters, J.; von Stryk, O. (2020). Learning Control Policies from Optimal Trajectories, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

2019

  •   Bib
    Abdulsamad, H.; Naveh, K.; Peters, J. (2019). Model-Based Relative Entropy Policy Search for Stochastic Hybrid Systems, 4th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •       Bib
    Abi Farraj, F.; Pacchierotti, C.; Arenz, O.; Neumann, G.; Giordano, P. (2019). A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping, IEEE Transactions on Haptics.
  •     Bib
    Akrour, R.; Pajarinen, J.; Neumann, G.; Peters, J. (2019). Projections for Approximate Policy Iteration Algorithms, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Becker-Ehmck, P.; Peters, J.; van der Smagt, P. (2019). Switching Linear Dynamics for Variational Bayes Filtering, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Belousov, B.; Abdulsamad, H.; Schultheis, M.; Peters, J. (2019). Belief Space Model Predictive Control for Approximately Optimal System Identification, 4th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •       Bib
    Belousov, B.; Peters, J. (2019). Entropic Regularization of Markov Decision Processes, Entropy, 21, 7, MDPI.
  •     Bib
    Belousov, B.; Sadybakasov, A.; Wibranek, B.; Veiga, F.; Tessmann, O.; Peters, J. (2019). Building a Library of Tactile Skills Based on FingerVision, Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids).
  •     Bib
    Brandherm, F.; Peters, J.; Neumann, G.; Akrour, R. (2019). Learning Replanning Policies with Direct Policy Search, IEEE Robotics and Automation Letters (RA-L).
  •     Bib
    Celemin, C.; Maeda, G.; Peters, J.; Ruiz-del-Solar, J.; Kober, J. (2019). Reinforcement Learning of Motor Skills using Policy Search and Human Corrective Advice, International Journal of Robotics Research (IJRR), 38, 14.
  •     Bib
    Celik, O.; Abdulsamad, H.; Peters, J. (2019). Chance-Constrained Trajectory Optimization for Nonlinear Systems with Unknown Stochastic Dynamics, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Delfosse, Q.; Stark, S.; Tanneberg, D.; Santucci, V. G.; Peters, J. (2019). Open-Ended Learning of Grasp Strategies using Intrinsically Motivated Self-Supervision, Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Ewerton, M.; Arenz, O.; Maeda, G.; Koert, D.; Kolev, Z.; Takahashi, M.; Peters, J. (2019). Learning Trajectory Distributions for Assisted Teleoperation and Path Planning, Frontiers in Robotics and AI.
  •     Bib
    Ewerton, M.; Maeda, G.; Koert, D.; Kolev, Z.; Takahashi, M.; Peters, J. (2019). Reinforcement Learning of Trajectory Distributions: Applications in Assisted Teleoperation and Motion Planning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.4294--4300.
  •     Bib
    Gebhardt, G.H.W.; Kupcsik, A.; Neumann, G. (2019). The Kernel Kalman Rule, Machine Learning Journal (MLJ), 108, 12, pp.2113–2157, Springer US.
  •     Bib
    Gomez Gonzalez, S.; Nemmour, Y.; Schoelkopf, B.; Peters, J. (2019). Reliable Real Time Ball Tracking for Robot Table Tennis, Robotics, 8, 4.
  •     Bib
    Klink, P.; Abdulsamad, H.; Belousov, B.; Peters, J. (2019). Self-Paced Contextual Reinforcement Learning, Proceedings of the 3rd Conference on Robot Learning (CoRL).
  •   Bib
    Klink, P.; Peters, J. (2019). Measuring Similarities between Markov Decision Processes, 4th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Koc, O.; Maeda, G.; Peters, J. (2019). Optimizing the Execution of Dynamic Robot Movements with Learning Control, IEEE Transactions on Robotics, 35, 4, pp.1552-3098.
  •     Bib
    Koc, O.; Peters, J. (2019). Learning to serve: an experimental study for a new learning from demonstrations framework, IEEE Robotics and Automation Letters (ICRA/RA-L), with Presentation at the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Koert, D.; Pajarinen, J.; Schotschneider, A.; Trick, S., Rothkopf, C.; Peters, J. (2019). Learning Intention Aware Online Adaptation of Movement Primitives, IEEE Robotics and Automation Letters (RA-L), with presentation at the IEEE International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Lauri, M.; Pajarinen, J.; Peters, J. (2019). Information gathering in decentralized POMDPs by policy graph improvement, Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
  •     Bib
    Liu, Z.; Hitzmann, A.; Ikemoto, S.; Stark, S.; Peters, J.; Hosoda, K. (2019). Local Online Motor Babbling: Learning Motor Abundance of a Musculoskeletal Robot Arm, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •   Bib
    Look, A.; Kandemir, M. (2019). Differential Bayesian Neural Nets, NeurIPS Bayesian Workshop.
  •     Bib
    Lutter, M.; Belousov, B.; Listmann, K.; Clever, D.; Peters, J. (2019). HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints, Conference on Robot Learning (CoRL).
  •     Bib
    Lutter, M.; Peters, J. (2019). Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems, International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Lutter, M.; Peters, J. (2019). Deep Optimal Control: Using the Euler-Lagrange Equation to learn an Optimal Feedback Control Law, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Lutter, M.; Ritter, C.; Peters, J. (2019). Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning, International Conference on Learning Representations (ICLR).
  •     Bib
    Muratore, F.; Gienger, M.; Peters, J. (2019). Assessing Transferability in Reinforcement Learning from Randomized Simulations, Reinforcement Learning and Decision Making (RLDM).
  •     Bib
    Nass, D.; Belousov, B.; Peters, J. (2019). Entropic Risk Measure in Policy Search, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Ozdenizci, O.; Meyer, T.; Wichmann, F.; Peters, J.; Schoelkopf B.; Cetin, M.; Grosse-Wentrup, M. (2019). Neural Signatures of Motor Skill in the Resting Brain, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC).
  •     Bib
    Pajarinen, J.; Thai, H.L.; Akrour, R.; Peters, J.; Neumann, G. (2019). Compatible natural gradient policy search, Machine Learning (MLJ), 108, 8, pp.1443--1466, Springer.
  •     Bib
    Parisi, S.; Tangkaratt, V.; Peters, J.; Khan, M. E. (2019). TD-Regularized Actor-Critic Methods, Machine Learning (MLJ), 108, 8, pp.1467-1501.
  •   Bib
    Schuermann, T.; Mohler, B.J.; Peters, J.; Beckerle, P. (2019). How Cognitive Models of Human Body Experience Might Push Robotics, Frontiers in Neurorobotics.
  •     Bib
    Schultheis, M.; Belousov, B.; Abdulsamad, H.; Peters, J. (2019). Receding Horizon Curiosity, Proceedings of the 3rd Conference on Robot Learning (CoRL).
  •     Bib
    Stark, S.; Peters, J.; Rueckert, E. (2019). Experience Reuse with Probabilistic Movement Primitives, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Tanneberg, D.; Peters, J.; Rueckert, E. (2019). Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks, Neural Networks, 109, pp.67-80.
  •     Bib
    Tanneberg, D.; Rueckert, E.; Peters, J. (2019). Learning Algorithmic Solutions to Symbolic Planning Tasks with a Neural Computer Architecture, arXiv.
  •     Bib
    Tosatto, S.; D'Eramo, C.; Pajarinen, J.; Restelli, M.; Peters, J. (2019). Exploration Driven By an Optimistic Bellman Equation, Proceedings of the International Joint Conference on Neural Networks (IJCNN).
  •     Bib
    Trick, S.; Koert, D.; Peters, J.; Rothkopf, C. (2019). Multimodal Uncertainty Reduction for Intention Recognition in Human-Robot Interaction, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Urain, J.; Peters, J. (2019). Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Watson, J.; Abdulsamad, H.; Peters, J. (2019). Stochastic Optimal Control as Approximate Input Inference, Conference on Robot Learning (CoRL).
  •     Bib
    Wibranek, B.; Belousov, B.; Sadybakasov, A.; Peters, J.; Tessmann, O. (2019). Interactive Structure: Robotic Repositioning of Vertical Elements in Man-Machine Collaborative Assembly through Vision-Based Tactile Sensing, Proceedings of the 37th eCAADe and 23rd SIGraDi Conference.
  •     Bib
    Wibranek, B.; Belousov, B.; Sadybakasov, A.; Tessmann, O. (2019). Interactive Assemblies: Man-Machine Collaboration through Building Components for As-Built Digital Models, Computer-Aided Architectural Design Futures (CAAD Futures).

2018

  •     Bib
    Akrour, R.; Peters, J.; Neumann, G. (2018). Constraint-Space Projection Direct Policy Search, European Workshops on Reinforcement Learning (EWRL).
  •     Bib
    Akrour, R.; Veiga, F.; Peters, J.; Neumann, G. (2018). Regularizing Reinforcement Learning with State Abstraction, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Arenz, O.; Zhong, M.; Neumann, G. (2018). Efficient Gradient-Free Variational Inference using Policy Search, in: Dy, Jennifer and Krause, Andreas (eds.), Proceedings of the International Conference on Machine Learning (ICML), 80, pp.234--243, PMLR.
  •     Bib
    Belousov, B.; Peters, J. (2018). Entropic Regularization of Markov Decision Processes, 38th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering.
  •     Bib
    Belousov, B.; Peters, J. (2018). Mean Squared Advantage Minimization as a Consequence of Entropic Policy Improvement Regularization, European Workshops on Reinforcement Learning (EWRL).
  •     Bib
    Buechler, D.; Calandra, R.; Schoelkopf, B.; Peters, J. (2018). Control of Musculoskeletal Systems using Learned Dynamics Models, IEEE Robotics and Automation Letters, and IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Ewerton, M.; Rother, D.; Weimar, J.; Kollegger, G.; Wiemeyer, J.; Peters, J.; Maeda, G. (2018). Assisting Movement Training and Execution with Visual and Haptic Feedback, Frontiers in Neurorobotics.
  •     Bib
    Gebhardt, G.H.W.; Daun, K.; Schnaubelt, M.; Neumann, G. (2018). Learning Robust Policies for Object Manipulation with Robot Swarms, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Gondaliya, K.D.; Peters, J.; Rueckert, E. (2018). Learning to Categorize Bug Reports with LSTM Networks, Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle.
  •     Bib
    Hoelscher, J.; Koert, D.; Peters, J.; Pajarinen, J. (2018). Utilizing Human Feedback in POMDP Execution and Specification, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Koc, O.; Maeda, G.; Peters, J. (2018). Online optimal trajectory generation for robot table tennis, Robotics and Autonomous Systems (RAS).
  •     Bib
    Koert, D.; Maeda, G.; Neumann, G.; Peters, J. (2018). Learning Coupled Forward-Inverse Models with Combined Prediction Errors, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Koert, D.; Trick, S.; Ewerton, M.; Lutter, M.; Peters, J. (2018). Online Learning of an Open-Ended Skill Library for Collaborative Tasks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Kroemer, O.; Leischnig, S.; Luettgen, S.; Peters, J. (2018). A Kernel-based Approach to Learning Contact Distributions for Robot Manipulation Tasks, Autonomous Robots (AURO), 42, 3, pp.581-600.
  •     Bib
    Lioutikov, R.; Maeda, G.; Veiga, F.F.; Kersting, K.; Peters, J. (2018). Inducing Probabilistic Context-Free Grammars for the Sequencing of Robot Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Manschitz, S.; Gienger, M.; Kober, J.; Peters, J. (2018). Mixture of Attractors: A novel Movement Primitive Representation for Learning Motor Skills from Demonstrations, IEEE Robotics and Automation Letters (RA-L), 3, 2, pp.926-933.
  •       Bib
    Muratore, F.; Treede, F.; Gienger, M.; Peters, J. (2018). Domain Randomization for Simulation-Based Policy Optimization with Transferability Assessment, Conference on Robot Learning (CoRL).
  •     Bib
    Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J.A.; Abbeel, P.; Peters, J. (2018). An Algorithmic Perspective on Imitation Learning, Foundations and Trends in Robotics.
  •     Bib
    Osa, T.; Peters, J.; Neumann, G. (2018). Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions, Advanced Robotics, 32, 18, pp.955-968.
  •     Bib
    Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. (2018). Using Probabilistic Movement Primitives in Robotics, Autonomous Robots (AURO), 42, 3, pp.529-551.
  •     Bib
    Paraschos, A.; Rueckert, E.; Peters, J.; Neumann, G. (2018). Probabilistic Movement Primitives under Unknown System Dynamics, Advanced Robotics (ARJ), 32, 6, pp.297-310.
  •   Bib
    Parmas, P.; Doya, K.; Rasmussen, C.; Peters, J. (2018). PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Pinsler, R.; Akrour, R.; Osa, T.; Peters, J.; Neumann, G. (2018). Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Pinsler, R.; Maag, M.; Arenz, O.; Neumann, G. (2018). Inverse Reinforcement Learning of Bird Flocking Behavior, Swarms: From Biology to Robotics and Back (ICRA Workshop).
  •   Bib
    Sosic, A.; Rueckert, E.; Peters, J.; Zoubir, A.M.; Koeppl, H (2018). Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling, Journal of Machine Learning Research (JMLR), 19, 69, pp.1--45.
  •     Bib
    Veiga, F.; Peters, J.; Hermans, T. (2018). Grip Stabilization of Novel Objects using Slip Prediction, IEEE Transactions on Haptics, 11, 4, pp.531--542.
  •     Bib
    Vinogradska, J.; Bischoff, B.; Peters, J. (2018). Approximate Value Iteration based on Numerical Quadrature, Proceedings of the International Conference on Robotics and Automation, and IEEE Robotics and Automation Letters (RA-L), 3, pp.1330-1337.
  •     Bib
    Yi, Z.; Zhang, Y.; Peters, J. (2018). Biomimetic Tactile Sensors and Signal Processing with Spike Trains: A Review, Sensors & Actuators: A. Physical, 269, pp.41-52.

2017

  •     Bib
    Abdulsamad, H.; Arenz, O.; Peters, J.; Neumann, G. (2017). State-Regularized Policy Search for Linearized Dynamical Systems, Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS).
  •     Bib
    Akrour, R.; Sorokin, D.; Peters, J.; Neumann, G. (2017). Local Bayesian Optimization of Motor Skills, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Belousov, B.; Neumann, G.; Rothkopf, C.A.; Peters, J. (2017). Catching Heuristics Are Optimal Control Policies, Proceedings of the Karniel Thirteenth Computational Motor Control Workshop.
  •     Bib
    Belousov, B.; Peters, J. (2017). f-Divergence Constrained Policy Improvement, arXiv.
  •   Bib
    Busch, B.; Maeda, G.; Mollard, Y.; Demangeat, M.; Lopes, M. (2017). Postural Optimization for an Ergonomic Human-Robot Interaction, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Dermy, O.; Paraschos, A.; Ewerton, M.; Charpillet, F.; Peters, J.; Ivaldi, S (2017). Prediction of intention during interaction with iCub with Probabilistic Movement Primitives, Frontiers in Robotics and AI, 4, pp.45.
  •     Bib
    End, F.; Akrour, R.; Peters, J.; Neumann, G. (2017). Layered Direct Policy Search for Learning Hierarchical Skills, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Ewerton, M.; Kollegger, G.; Maeda, G.; Wiemeyer, J.; Peters, J. (2017). Iterative Feedback-basierte Korrekturstrategien beim Bewegungslernen von Mensch-Roboter-Dyaden, DVS Sportmotorik 2017.
  •     Bib
    Ewerton, M.; Maeda, G.; Rother, D.; Weimar, J.; Lotter, L.; Kollegger, G.; Wiemeyer, J.; Peters, J. (2017). Assisting the practice of motor skills by humans with a probability distribution over trajectories, Workshop Human-in-the-loop robotic manipulation: on the influence of the human role at IROS 2017, Vancouver, Canada.
  •     Bib
    Farraj, F. B.; Osa, T.; Pedemonte, N.; Peters, J.; Neumann, G.; Giordano, P.R. (2017). A Learning-based Shared Control Architecture for Interactive Task Execution, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •   Bib
    Fiebig, K.H.; Jayaram, V.; Hesse, T.; Blank, A.; Peters, J.; Grosse-Wentrup, M. (2017). Bayesian Regression for Artifact Correction in Electroencephalography, Proceedings of the 7th Graz Brain-Computer Interface Conference.
  •     Bib
    Gabriel, A.; Akrour, R.; Peters, J.; Neumann, G. (2017). Empowered Skills, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    Gebhardt, G.H.W.; Daun, K.; Schnaubelt, M.; Hendrich, A.; Kauth, D.; Neumann, G. (2017). Learning to Assemble Objects with a Robot Swarm, Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.1547--1549, International Foundation for Autonomous Agents and Multiagent Systems.
  •     Bib
    Gebhardt, G.H.W.; Kupcsik, A.G.; Neumann, G. (2017). The Kernel Kalman Rule - Efficient Nonparametric Inference with Recursive Least Squares, Proceedings of the National Conference on Artificial Intelligence (AAAI).
  •   Bib
    Grossberger, L.; Hohmann, M.R.; Peters J.; Grosse-Wentrup, M. (2017). Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces, Proceedings of the 7th Graz Brain-Computer Interface Conference.
  •     Bib
    Ivaldi, S.; Lefort, S.; Peters, J.; Chetouani, M.; Provasi, J.; Zibetti, E. (2017). Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task, International Journal of Social Robotics, 9, pp.63-86.
  •   Bib
    Kollegger, G., Wiemeyer, J., Ewerton, M. & Peters, J. (2017). BIMROB - Bidirectional Interaction between human and robot for the learning of movements - Robot trains human - Human trains robot, in: A. Schwirtz, F. Mess, Y. Demetriou & V. Senner (eds.), Inovation & Technologie im Sport - 23. Sportwissenschaftlicher Hochschultag der deutschen Vereinigung für Sportwissenschaft, pp.179, Czwalina-Feldhaus.
  •     Bib
    Kollegger, G.; Ewerton, M.; Wiemeyer, J.; Peters, J. (2017). BIMROB – Bidirectional Interaction between human and robot for the learning of movements – Robot trains human – Human trains robot, 23. Sport­wissenschaft­licher Hochschultag der dvs.
  •     Bib
    Kollegger, G.; Ewerton, M.; Wiemeyer, J.; Peters, J. (2017). BIMROB -- Bidirectional Interaction Between Human and Robot for the Learning of Movements, in: Lames, M.; Saupe, D.; Wiemeyer, J. (eds.), Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017), pp.151--163, Springer International Publishing.
  •     Bib
    Kollegger, G.; Reinhardt, N.; Ewerton, M.; Peters, J.; Wiemeyer, J. (2017). Die Bedeutung der Beobachtungsperspektive beim Bewegungslernen von Mensch-Roboter-Dyaden, DVS Sportmotorik 2017.
  •     Bib
    Kroemer, O.; Peters, J. (2017). A Comparison of Autoregressive Hidden Markov Models for Multi-Modal Manipulations with Variable Masses, Proceedings of the International Conference of Robotics and Automation, and IEEE Robotics and Automation Letters (RA-L), 2, 2, pp.1101 - 1108.
  •     Bib
    Kupcsik, A.G.; Deisenroth, M.P.; Peters, J.; Ai Poh, L.; Vadakkepat, V.; Neumann, G. (2017). Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills, Artificial Intelligence, 247, pp.415-439.
  •     Bib
    Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. (2017). Learning Movement Primitive Libraries through Probabilistic Segmentation, International Journal of Robotics Research (IJRR), 36, 8, pp.879-894.
  •     Bib
    Maeda, G.; Ewerton, M.; Neumann, G.; Lioutikov, R.; Peters, J. (2017). Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration, International Journal of Robotics Research (IJRR), 36, 13-14, pp.1579-1594.
  •     Bib
    Maeda, G.; Ewerton, M.; Osa, T.; Busch, B.; Peters, J. (2017). Active Incremental Learning of Robot Movement Primitives, Proceedings of the Conference on Robot Learning (CoRL).
  •     Bib
    Maeda, G.; Neumann, G.; Ewerton, M.; Lioutikov, R.; Kroemer, O.; Peters, J. (2017). Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks, Autonomous Robots (AURO), 41, 3, pp.593-612.
  •     Bib
    Osa, T.; Ghalamzan, E. A. M.; Stolkin, R.; Lioutikov, R.; Peters, J.; Neumann, G. (2017). Guiding Trajectory Optimization by Demonstrated Distributions, IEEE Robotics and Automation Letters (RA-L), 2, 2, pp.819-826, IEEE.
  •     Bib
    Padois, V.; Ivaldib, S.; Babič, J.; Mistry, M.; Peters, J.; Nori, F. (2017). Whole-body multi-contact motion in humans and humanoids, Robotics and Autonomous Systems, 90, pp.97-117.
  •     Bib
    Pajarinen, J.; Kyrki, V.; Koval, M.; Srinivasa, S; Peters, J.; Neumann, G. (2017). Hybrid Control Trajectory Optimization under Uncertainty, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Paraschos, A.; Lioutikov, R.; Peters, J.; Neumann, G. (2017). Probabilistic Prioritization of Movement Primitives, Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L).
  •     Bib
    Parisi, S.; Pirotta, M.; Peters, J. (2017). Manifold-based Multi-objective Policy Search with Sample Reuse, Neurocomputing, 263, pp.3-14.
  •     Bib
    Parisi, S.; Ramstedt, S.; Peters, J. (2017). Goal-Driven Dimensionality Reduction for Reinforcement Learning, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •   Bib
    Peters, J.; Lee, D.; Kober, J.; Nguyen-Tuong, D.; Bagnell, J.; Schaal, S. (2017). Chapter 15: Robot Learning, Springer Handbook of Robotics, 2nd Edition, pp.357-394, Springer International Publishing.
  •     Bib
    Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. (2017). Learning Inverse Dynamics Models in O(n) time with LSTM networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Stark, S.; Peters, J.; Rueckert, E. (2017). A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Tangkaratt, V.; van Hoof, H.; Parisi, S.; Neumann, G.; Peters, J.; Sugiyama, M. (2017). Policy Search with High-Dimensional Context Variables, Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
  •     Bib
    Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL).
  •     Bib
    Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with Stochastic Recurrent Neural Networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Thiem, S.; Stark, S.; Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Simulation of the underactuated Sake Robotics Gripper in V-REP, Workshop at the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Tosatto, S.; Pirotta, M.; D'Eramo, C; Restelli, M. (2017). Boosted Fitted Q-Iteration, Proceedings of the International Conference of Machine Learning (ICML).
  •     Bib
    van Hoof, H.; Neumann, G.; Peters, J. (2017). Non-parametric Policy Search with Limited Information Loss, Journal of Machine Learning Research (JMLR), 18, 73, pp.1-46.
  •     Bib
    van Hoof, H.; Tanneberg, D.; Peters, J. (2017). Generalized Exploration in Policy Search, Machine Learning (MLJ), 106, 9-10, pp.1705-1724.
  •     Bib
    Vinogradska, J.; Bischoff, B.; Nguyen-Tuong, D.; Peters, J. (2017). Stability of Controllers for Gaussian Process Forward Models, Journal of Machine Learning Research (JMLR), 18, 100, pp.1-37.
  •     Bib
    Wang, Z.; Boularias, A.; Muelling, K.; Schoelkopf, B.; Peters, J. (2017). Anticipatory Action Selection for Human-Robot Table Tennis, Artificial Intelligence, 247, pp.399-414.
  •     Bib
    Wiemeyer, J.; Peters, J.; Kollegger, G.; Ewerton, M. (2017). BIMROB – Bidirektionale Interaktion von Mensch und Roboter beim Bewegungslernen, DVS Sportmotorik 2017.
  •     Bib
    Wilbers, D.; Lioutikov, R.; Peters, J. (2017). Context-Driven Movement Primitive Adaptation, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Yi, Z.; Zhang, Y.; Peters, J. (2017). Bioinspired Tactile Sensor for Surface Roughness Discrimination, Sensors and Actuators A: Physical, 255, pp.46-53.

2016

  •     Bib
    Abdolmaleki, A.; Lau, N.; Reis, L.; Peters, J.; Neumann, G. (2016). Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller, Journal of Intelligent & Robotic Systems.
  •     Bib
    Akrour, R.; Abdolmaleki, A.; Abdulsamad, H.; Neumann, G. (2016). Model-Free Trajectory Optimization for Reinforcement Learning, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Arenz, O.; Abdulsamad, H.; Neumann, G. (2016). Optimal Control and Inverse Optimal Control by Distribution Matching, Proceedings of the International Conference on Intelligent Robots and Systems (IROS), IEEE.
  •     Bib
    Arenz, O.; Abdulsamad, H.; Neumann, G. (2016). (Inverse) Optimal Control for Matching Higher-Order Moments, DGR Days (Leipzig).
  •       Bib
    Arenz, O.; Neumann, G. (2016). Iterative Cost Learning from Different Types of Human Feedback, IROS 2016 Workshop on Human-Robot Collaboration.
  •     Bib
    Azad, M.; Ortenzi, V.; Lin, H., C.; Rueckert, E.; Mistry, M. (2016). Model Estimation and Control of Complaint Contact Normal Force, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Belousov, B.; Neumann, G.; Rothkopf, C.; Peters, J. (2016). Catching Heuristics Are Optimal Control Policies, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •   Bib
    Buechler, D.; Ott, H.; Peters, J. (2016). A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Calandra, R.; Peters, J.; Rasmussen, C.E.; Deisenroth, M.P. (2016). Manifold Gaussian Processes for Regression, Proceedings of the International Joint Conference on Neural Networks (IJCNN).
  •     Bib
    Daniel, C.; Neumann, G.; Kroemer, O.; Peters, J. (2016). Hierarchical Relative Entropy Policy Search, Journal of Machine Learning Research (JMLR), 17, pp.1-50.
  •     Bib
    Daniel, C.; van Hoof, H.; Peters, J.; Neumann, G. (2016). Probabilistic Inference for Determining Options in Reinforcement Learning, Machine Learning (MLJ), 104, 2-3, pp.337-357.
  •     Bib
    Ewerton, M.; Maeda, G.; Neumann, G.; Kisner, V.; Kollegger, G.; Wiemeyer, J.; Peters, J. (2016). Movement Primitives with Multiple Phase Parameters, Proceedings of the International Conference on Robotics and Automation (ICRA), pp.201--206.
  •     Bib
    Ewerton, M.; Maeda, G.J.; Kollegger, G.; Wiemeyer, J.; Peters, J. (2016). Incremental Imitation Learning of Context-Dependent Motor Skills, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), pp.351--358.
  •     Bib
    Fiebig, K.-H.; Jayaram, V.; Peters, J.; Grosse-Wentrup, M. (2016). Multi-Task Logistic Regression in Brain-Computer Interfaces, IEEE SMC 2016 — 6th Workshop on Brain-Machine Interface Systems.
  •   Bib
    Gomez-Gonzalez, S.; Neumann, G.; Schoelkopf, B.; Peters, J. (2016). Using Probabilistic Movement Primitives for Striking Movements, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •   Bib
    Huang, Y.; Buechler, D.; Koc, O.; Schoelkopf, B.; Peters, J. (2016). Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •   Bib
    Koc, O.; Peters, J.; Maeda, G. (2016). A New Trajectory Generation Framework in Robotic Table Tennis, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Koert, D.; Maeda, G.J.; Lioutikov, R.; Neumann, G.; Peters, J. (2016). Demonstration Based Trajectory Optimization for Generalizable Robot Motions, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Kohlschuetter, J.; Peters, J.; Rueckert, E. (2016). Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities, Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON).
  •     Bib
    Kollegger, G.; Ewerton, M.; Peters, J.; Wiemeyer, J. (2016). Bidirektionale Interaktion zwischen Mensch und Roboter beim Bewegungslernen (BIMROB), 11. Symposium der DVS Sportinformatik.
  •   Bib
    Maeda, G.; Maloo, A.; Ewerton, M.; Lioutikov, R.; Peters, J. (2016). Proactive Human-Robot Collaboration with Interaction Primitives, International Workshop on Human-Friendly Robotics (HFR), Genoa, Italy.
  •     Bib
    Maeda, G.; Ewerton, M.; Koert, D; Peters, J. (2016). Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills, IEEE Robotics and Automation Letters (RA-L), 1, 2, pp.784--791.
  •     Bib
    Maeda, G.; Maloo, A.; Ewerton, M.; Lioutikov, R.; Peters, J. (2016). Anticipative Interaction Primitives for Human-Robot Collaboration, AAAI Fall Symposium Series. Shared Autonomy in Research and Practice, Arlington, VA, USA.
  •     Bib
    Manschitz, S.; Gienger, M.; Kober, J.; Peters, J. (2016). Probabilistic Decomposition of Sequential Force Interaction Tasks into Movement Primitives, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Modugno, V.; Neumann, G.; Rueckert, E.; Oriolo, G.; Peters, J.; Ivaldi, S. (2016). Learning soft task priorities for control of redundant robots, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Osa, T.; Peters, J.; Neumann, G. (2016). Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies, Proceedings of the International Symposium on Experimental Robotics (ISER).
  •     Bib
    Parisi, S; Blank, A; Viernickel T; Peters, J (2016). Local-utopia Policy Selection for Multi-objective Reinforcement Learning, Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).
  •   Bib
    Peters, J.; Bagnell, J.A. (2016). Policy gradient methods, Encyclopedia of Machine Learning, 2nd Edition, Invited Article.
  •   Bib
    Peters, J.; Tedrake, R.; Roy, N.; Morimoto, J. (2016). Robot Learning, Encyclopedia of Machine Learning, 2nd Edition, Invited Article.
  •       Bib
    Rueckert, E.; Camernik, J.; Peters, J.; Babic, J. (2016). Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control, Nature PG: Scientific Reports, 6, 28455.
  •       Bib
    Rueckert, E.; Kappel, D.; Tanneberg, D.; Pecevski, D; Peters, J. (2016). Recurrent Spiking Networks Solve Planning Tasks, Nature PG: Scientific Reports, 6, 21142, Nature Publishing Group.
  •     Bib
    Sharma, D.; Tanneberg, D.; Grosse-Wentrup, M.; Peters, J.; Rueckert, E. (2016). Adaptive Training Strategies for BCIs, Cybathlon Symposium.
  •     Bib
    Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    van Hoof, H.; Chen, N.; Karl, M.; van der Smagt, P.; Peters, J. (2016). Stable Reinforcement Learning with Autoencoders for Tactile and Visual Data, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Veiga, F.F.; Peters, J. (2016). Can Modular Finger Control for In-Hand Object Stabilization be accomplished by Independent Tactile Feedback Control Laws?, arXiv.
  •     Bib
    Vinogradska, J.; Bischoff, B.; Nguyen-Tuong, D.; Romer, A.; Schmidt, H.; Peters, J. (2016). Stability of Controllers for Gaussian Process Forward Models, Proceedings of the International Conference on Machine Learning (ICML).
  •     Bib
    Weber, P.; Rueckert, E.; Calandra, R.; Peters, J.; Beckerle, P. (2016). A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction, Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).
  •     Bib
    Yi, Z.; Calandra, R.; Veiga, F.; van Hoof, H.; Hermans, T.; Zhang, Y.; Peters, J. (2016). Active Tactile Object Exploration with Gaussian Processes, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •   Bib
    Yi, Z.; Zhang, Y.; Peters, J. (2016). Surface Roughness Discrimination Using Bioinspired Tactile Sensors, Proceedings of the 16th International Conference on Biomedical Engineering.

2015

  •     Bib
    Abdolmaleki, A.; Lioutikov, R.; Peters, J; Lau, N.; Reis, L.; Neumann, G. (2015). Model-Based Relative Entropy Stochastic Search, Advances in Neural Information Processing Systems (NIPS / NeurIPS), MIT Press.
  •     Bib
    Calandra, R.; Ivaldi, S.; Deisenroth, M.; Peters, J. (2015). Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Calandra, R.; Ivaldi, S.; Deisenroth, M.;Rueckert, E.; Peters, J. (2015). Learning Inverse Dynamics Models with Contacts, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    Calandra, R.; Seyfarth, A.; Peters, J.; Deisenroth, M. (2015). Bayesian Optimization for Learning Gaits under Uncertainty, Annals of Mathematics and Artificial Intelligence (AMAI).
  •     Bib
    Daniel, C.; Kroemer, O.; Viering, M.; Metz, J.; Peters, J. (2015). Active Reward Learning with a Novel Acquisition Function, Autonomous Robots (AURO), 39, pp.389-405.
  •   Bib
    Dann, C.; Neumann, G.; Peters, J. (2015). Policy Evaluation with Temporal Differences: A Survey and Comparison, Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling (ICAPS), pp.359-360.
  •     Bib
    Ewerton, M.; Maeda, G.J.; Peters, J.; Neumann, G. (2015). Learning Motor Skills from Partially Observed Movements Executed at Different Speeds, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pp.456--463.
  •     Bib
    Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J.; Maeda, G. (2015). Learning Multiple Collaborative Tasks with a Mixture of Interaction Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA), pp.1535--1542.
  •     Bib
    Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J.; Maeda, G. (2015). Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives, Workshop on Machine Learning for Social Robotics, ICRA.
  •     Bib
    Fritsche, L.; Unverzagt, F.; Peters, J.; Calandra, R. (2015). First-Person Tele-Operation of a Humanoid Robot, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Hoelscher, J.; Peters, J.; Hermans, T. (2015). Evaluation of Interactive Object Recognition with Tactile Sensing, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Huang, Y.; Schoelkopf, B.; Peters, J. (2015). Learning Optimal Striking Points for A Ping-Pong Playing Robot, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •   Bib
    Koc, O.; Maeda, G.; Neumann, G.; Peters, J. (2015). Optimizing Robot Striking Movement Primitives with Iterative Learning Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Kroemer, O.; Daniel, C.; Neumann, G; van Hoof, H.; Peters, J. (2015). Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Leischnig, S.; Luettgen, S.; Kroemer, O.; Peters, J. (2015). A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Lioutikov, R.; Neumann, G.; Maeda, G.J.; Peters, J. (2015). Probabilistic Segmentation Applied to an Assembly Task, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Lopes, M.; Peters, J.; Piater, J.; Toussaint, M.; Baisero, A.; Busch, B.; Erkent, O.; Kroemer, O.; Lioutikov, R.; Maeda, G.; Mollard, Y.; Munzer, T.; Shukla, D. (2015). Semi-Autonomous 3rd-Hand Robot, Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, Vienna, Austria.
  •     Bib
    Maeda, G.; Neumann, G.; Ewerton, M.; Lioutikov, R.; Peters, J. (2015). A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation, Proceedings of the International Symposium of Robotics Research (ISRR).
  •     Bib
    Manschitz, S.; Kober, J.; Gienger, M.; Peters, J. (2015). Probabilistic Progress Prediction and Sequencing of Concurrent Movement Primitives, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Manschitz, S.; Kober, J.; Gienger, M.; Peters, J. (2015). Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations, Robotics and Autonomous Systems, 74, pp.97-107.
  •     Bib
    Mariti, C.; Muscolo, G.G.; Peters, J.; Puig, D.; Recchiuto, C.T.; Sighieri, C.; Solanas, A.; von Stryk, O. (2015). Developing biorobotics for veterinary research into cat movements, Journal of Veterinary Behavior: Clinical Applications and Research, 10, pp.248-254.
  •     Bib
    Paraschos, A.; Rueckert, E.; Peters, J; Neumann, G. (2015). Model-Free Probabilistic Movement Primitives for Physical Interaction, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Parisi, S.; Abdulsamad, H.; Paraschos, A.; Daniel, C.; Peters, J. (2015). Reinforcement Learning vs Human Programming in Tetherball Robot Games, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Rueckert, E.; Lioutikov, R.; Calandra, R.; Schmidt, M.; Beckerle, P.; Peters, J. (2015). Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations, ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots.
  •     Bib
    Rueckert, E.; Mundo, J.; Paraschos, A.; Peters, J.; Neumann, G. (2015). Extracting Low-Dimensional Control Variables for Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Traversaro, S.; Del Prete, A.; Ivaldi, S.; Nori, F. (2015). Avoiding to rely on Inertial Parameters in Estimating Joint Torques with proximal F/T sensing, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    van Hoof, H.; Hermans, T.; Neumann, G.; Peters, J. (2015). Learning Robot In-Hand Manipulation with Tactile Features, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    van Hoof, H.; Peters, J.; Neumann, G. (2015). Learning of Non-Parametric Control Policies with High-Dimensional State Features, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
  •     Bib
    Veiga, F.F.; van Hoof, H.; Peters, J.; Hermans, T. (2015). Stabilizing Novel Objects by Learning to Predict Tactile Slip, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Wahrburg, A.; Zeiss, S.; Matthias, B.; Peters, J.; Ding, H. (2015). Combined Pose-Wrench and State Machine Representation for Modeling Robotic Assembly Skills, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

2014

  •     Bib
    Ben Amor, H.; Neumann, G.; Kamthe, S.; Kroemer, O.; Peters, J. (2014). Interaction Primitives for Human-Robot Cooperation Tasks , Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
  •   Bib
    Ben Amor, H.; Saxena, A.; Hudson, N.; Peters, J. (2014). Special issue on autonomous grasping and manipulation, Autonomous Robots (AURO).
  •     Bib
    Bischoff, B.; Nguyen-Tuong, D.; van Hoof, H. McHutchon, A.; Rasmussen, C.E.; Knoll, A.; Peters, J.; Deisenroth, M.P. (2014). Policy Search For Learning Robot Control Using Sparse Data, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Bocsi, B.; Csato, L.; Peters, J. (2014). Indirect Robot Model Learning for Tracking Control, Advanced Robotics.
  •     Bib
    Brandl, S.; Kroemer, O.; Peters, J. (2014). Generalizing Pouring Actions Between Objects using Warped Parameters, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Calandra, R.; Gopalan, N.; Seyfarth, A.; Peters, J.; Deisenroth, M.P. (2014). Bayesian Gait Optimization for Bipedal Locomotion, Proceedings of the 2014 Learning and Intelligent Optimization Conference (LION8).
  •     Bib
    Calandra, R.; Seyfarth, A.; Peters, J.; Deisenroth, M.P. (2014). An Experimental Comparison of Bayesian Optimization for Bipedal Locomotion, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Chebotar, Y.; Kroemer, O.; Peters, J. (2014). Learning Robot Tactile Sensing for Object Manipulation, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Colome, A.; Neumann, G.; Peters, J.; Torras, C. (2014). Dimensionality Reduction for Probabilistic Movement Primitives, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Daniel, C.; Viering, M.; Metz, J.; Kroemer, O.; Peters, J. (2014). Active Reward Learning, Proceedings of Robotics: Science & Systems (R:SS).
  •     Bib
    Dann, C.; Neumann, G.; Peters, J. (2014). Policy Evaluation with Temporal Differences: A Survey and Comparison, Journal of Machine Learning Research (JMLR), 15, March, pp.809-883.
  •     Bib
    Deisenroth, M.P.; Englert, P.; Peters, J.; Fox, D. (2014). Multi-Task Policy Search for Robotics, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Deisenroth, M.P.; Fox, D.; Rasmussen, C.E. (2014). Gaussian Processes for Data-Efficient Learning in Robotics and Control, IEEE Transactions on Pattern Analysis and Machine Intelligence.
  •     Bib
    Droniou, A.; Ivaldi, S.; Sigaud, O. (2014). Deep unsupervised network for multimodal perception, representation and classification, Robotics and Autonomous Systems.
  •     Bib
    Gomez, V.; Kappen, B; Peters, J.; Neumann, G (2014). Policy Search for Path Integral Control, Proceedings of the European Conference on Machine Learning (ECML).
  •     Bib
    Haji Ghassemi, N.; Deisenroth, M.P. (2014). Approximate Inference for Long-Term Forecasting with Periodic Gaussian Processes, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
  •     Bib
    Hermans, T.; Veiga, F.; Hoelscher, J.; van Hoof, H.; Peters, J. (2014). Demonstration: Learning for Tactile Manipulation, Advances in Neural Information Processing Systems (NIPS/NeurIPS), Demonstration Track., MIT Press.
  •     Bib
    Ivaldi, S.; Peters, J.; Padois, V.; Nori, F. (2014). Tools for simulating humanoid robot dynamics: a survey based on user feedback, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Kamthe, S.; Peters, J.; Deisenroth, M. (2014). Multi-modal filtering for non-linear estimation, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
  •   Bib
    Kober, J.; Peters, J. (2014). Learning Motor Skills - From Algorithms to Robot Experiments, Springer Tracts in Advanced Robotics 97 (STAR Series), Springer .
  •     Bib
    Kroemer, O.; Peters, J. (2014). Predicting Object Interactions from Contact Distributions, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Lioutikov, R.; Kroemer, O.; Peters, J.; Maeda, G. (2014). Learning Manipulation by Sequencing Motor Primitives with a Two-Armed Robot, Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS).
  •     Bib
    Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, Journal of Aerospace Information Systems, 11, 9, pp.579-595.
  •     Bib
    Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Sample-Based Information-Theoretic Stochastic Optimal Control, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Luck, K.S.; Neumann, G.; Berger, E.; Peters, J.; Ben Amor, H. (2014). Latent Space Policy Search for Robotics, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Maeda, G.J.; Ewerton, M.; Lioutikov, R.; Amor, H.B.; Peters, J.; Neumann, G. (2014). Learning Interaction for Collaborative Tasks with Probabilistic Movement Primitives, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), pp.527--534.
  •   Bib
    Manschitz, S.; Kober, J.; Gienger, M.; Peters, J. (2014). Learning to Unscrew a Light Bulb from Demonstrations, Proceedings of ISR/ROBOTIK 2014.
  •     Bib
    Manschitz, S.; Kober, J.; Gienger, M.; Peters, J. (2014). Learning to Sequence Movement Primitives from Demonstrations, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Meyer, T.; Peters, J.; Zander, T.O.; Schoelkopf, B.; Grosse-Wentrup, M. (2014). Predicting Motor Learning Performance from Electroencephalographic Data, Journal of Neuroengineering and Rehabilitation, 11, 1.
  •     Bib
    Muelling, K.; Boularias, A.; Schoelkopf, B.; Peters, J. (2014). Learning Strategies in Table Tennis using Inverse Reinforcement Learning, Biological Cybernetics, 108, 5, pp.603-619.
  •     Bib
    Neumann, G.; Daniel, C.; Paraschos, A.; Kupcsik, A.; Peters, J. (2014). Learning Modular Policies for Robotics, Frontiers in Computational Neuroscience.
  •     Bib
    Nori, F.; Peters, J.; Padois, V.; Babic, J.; Mistry, M.; Ivaldi, S. (2014). Whole-body motion in humans and humanoids, Proceedings of the Workshop on New Research Frontiers for Intelligent Autonomous Systems (NRF-IAS), pp.81-92.
  •     Bib
    Rueckert, E.; Mindt, M.; Peters, J.; Neumann, G. (2014). Robust Policy Updates for Stochastic Optimal Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Saut, J.-P.; Ivaldi, S.; Sahbani, A.; Bidaud, P. (2014). Grasping objects localized from uncertain point cloud data, Robotics and Autonomous Systems.
  •       Bib
    van Hoof, H.; Kroemer, O; Peters, J. (2014). Probabilistic Segmentation and Targeted Exploration of Objects in Cluttered Environments, IEEE Transactions on Robotics (TRo), 30, 5, pp.1198-1209.
  •     Bib
    Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters, J.; Schmidhuber, J. (2014). Natural Evolution Strategies, Journal of Machine Learning Research (JMLR), 15, March, pp.949-980.

2013

  •     Bib
    Ben Amor, H.; Vogt, D.; Ewerton, M.; Berger, E.; Jung, B.; Peters, J. (2013). Learning Responsive Robot Behavior by Imitation, Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Berger, E.; Vogt, D.; Haji-Ghassemi, N.; Jung, B.; Ben Amor, H. (2013). Inferring Guidance Information in Cooperative Human-Robot Tasks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •       Bib
    Bocsi, B.; Csato, L.; Peters, J. (2013). Alignment-based Transfer Learning for Robot Models, Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN) .
  •       Bib
    Daniel, C.; Neumann, G.; Kroemer, O.; Peters, J. (2013). Learning Sequential Motor Tasks, Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA).
  •   Bib
    Daniel, C.; Neumann, G.; Peters, J. (2013). Autonomous Reinforcement Learning with Hierarchical REPS, Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN) .
  •       Bib
    Deisenroth, M. P.; Neumann, G.; Peters, J. (2013). A Survey on Policy Search for Robotics, Foundations and Trends in Robotics, 21, pp.388-403.
  •       Bib
    Englert, P.; Paraschos, A.; Peters, J.; Deisenroth, M. P. (2013). Model-based Imitation Learning by Probabilistic Trajectory Matching, Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Englert, P.; Paraschos, A.; Peters, J.;Deisenroth, M.P. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior Journal, 21, pp.388-403.
  •       Bib
    Gopalan, N.; Deisenroth, M. P.; Peters, J. (2013). Feedback Error Learning for Rhythmic Motor Primitives, Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Kober, J.; Bagnell, D.; Peters, J. (2013). Reinforcement Learning in Robotics: A Survey, International Journal of Robotics Research (IJRR), 32, 11, pp.1238-1274.
  •       Bib
    Kupcsik, A.G.; Deisenroth, M.P.; Peters, J.; Neumann, G. (2013). Data-Efficient Generalization of Robot Skills with Contextual Policy Search, Proceedings of the National Conference on Artificial Intelligence (AAAI) .
  •       Bib
    Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis, International Journal of Robotics Research (IJRR), 32, 3, pp.263-279.
  •   Bib
    Neumann, G.; Kupcsik, A.G.; Deisenroth, M.P.; Peters, J. (2013). Information-Theoretic Motor Skill Learning, Proceedings of the AAAI 2013 Workshop on Intelligent Robotic Systems.
  •     Bib
    Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G (2013). Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS / NeurIPS), MIT Press.
  •     Bib
    Paraschos, A.; Neumann, G; Peters, J. (2013). A Probabilistic Approach to Robot Trajectory Generation, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •       Bib
    Peters, J.; Kober, J.; Muelling, K.; Kroemer, O.; Neumann, G. (2013). Towards Robot Skill Learning: From Simple Skills to Table Tennis, Proceedings of the European Conference on Machine Learning (ECML), Nectar Track.
  •   Bib
    Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O. (2013). Learning Skills with Motor Primitives, Proceedings of the 16th Yale Learning Workshop.
  •     Bib
    van Hoof, H.; Kroemer, O; Peters, J. (2013). Probabilistic Interactive Segmentation for Anthropomorphic Robots in Cluttered Environments , Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •       Bib
    Wang, Z.; Muelling, K.; Deisenroth, M. P.; Ben Amor, H.; Vogt, D.; Schoelkopf, B.; Peters, J. (2013). Probabilistic Movement Modeling for Intention Inference in Human-Robot Interaction, International Journal of Robotics Research (IJRR), 32, 7, pp.841-858.

2012

  •       Bib
    Ben Amor, H.; Kroemer, O.; Hillenbrand, U.; Neumann, G.; Peters, J. (2012). Generalization of Human Grasping for Multi-Fingered Robot Hands, Proceedings of the International Conference on Robot Systems (IROS).
  •       Bib
    Bocsi, B.; Hennig, P.; Csato, L.; Peters, J. (2012). Learning Tracking Control with Forward Models, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    Boularias, A.; Kroemer, O.; Peters, J. (2012). Structured Apprenticeship Learning, Proceedings of the European Conference on Machine Learning (ECML).
  •       Bib
    Boularias, A.; Kroemer, O.; Peters, J. (2012). Algorithms for Learning Markov Field Policies, Advances in Neural Information Processing Systems 26 (NIPS/NeurIPS), Cambridge, MA: MIT Press., MIT Press.
  •     Bib
    Calandra, R.; Raiko, T.; Deisenroth, M.P.; Montesino Pouzols, F. (2012). Learning Deep Belief Networks from Non-Stationary Streams, International Conference on Artificial Neural Networks (ICANN).
  •       Bib
    Daniel, C.; Neumann, G.; Peters, J. (2012). Hierarchical Relative Entropy Policy Search, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS 2012).
  •       Bib
    Daniel, C.; Neumann, G.; Peters, J. (2012). Learning Concurrent Motor Skills in Versatile Solution Spaces, Proceedings of the International Conference on Robot Systems (IROS).
  •       Bib
    Deisenroth M. P.; Szepesvari C.; Peters J. (2012)., in: Deisenroth M. P.; Szepesvari C., Peters J. (eds.), Proceedings of the 10th European Workshop on Reinforcement Learning, 24.
  •       Bib
    Deisenroth, M.P.; Calandra, R.; Seyfarth, A.; Peters, J. (2012). Toward Fast Policy Search for Learning Legged Locomotion, Proceedings of the International Conference on Robot Systems (IROS).
  •     Bib
    Deisenroth, M.P.; Mohamed, S. (2012). Expectation Propagation in Gaussian Process Dynamical Systems, Advances in Neural Information Processing Systems 26 (NIPS/NeurIPS), Cambridge, MA: MIT Press., The MIT Press.
  •     Bib
    Deisenroth, M.P.; Peters, J. (2012). Solving Nonlinear Continuous State-Action-Observation POMDPs for Mechanical Systems with Gaussian Noise, Proceedings of the European Workshop on Reinforcement Learning (EWRL).
  •     Bib
    Deisenroth, M.P.; Turner, R.; Huber, M.; Hanebeck, U.D.; Rasmussen, C.E (2012). Robust Filtering and Smoothing with Gaussian Processes, IEEE Transactions on Automatic Control.
  •       Bib
    Kober, J.; Wilhelm, A.; Oztop, E.; Peters, J. (2012). Reinforcement Learning to Adjust Parametrized Motor Primitives to New Situations, Autonomous Robots (AURO), 33, 4, pp.361-379, Springer US.
  •       Bib
    Kober, J; Muelling, K.; Peters, J. (2012). Learning Throwing and Catching Skills, Proceedings of the International Conference on Robot Systems (IROS), Video Track.
  •       Bib
    Kroemer, O.; Ben Amor, H.; Ewerton, M.; Peters, J. (2012). Point Cloud Completion Using Extrusions, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •       Bib
    Kroemer, O.; Ugur, E.; Oztop, E. ; Peters, J. (2012). A Kernel-based Approach to Direct Action Perception, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    Lampert, C.H.; Peters, J. (2012). Real-Time Detection of Colored Objects In Multiple Camera Streams With Off-the-Shelf Hardware Components, Journal of Real-Time Image Processing, 7, 1, pp.31-41.
  •   Bib
    Meyer, T.; Peters, J.; Broetz, D.; Zander, T.; Schoelkopf, B.; Soekadar, S.; Grosse-Wentrup, M. (2012). Investigating the Neural Basis for Stroke Rehabilitation by Brain-Computer Interfaces, International Conference on Neurorehabilitation.
  •       Bib
    Meyer, T.; Peters, J.;Broetz, D.; Zander, T.; Schoelkopf, B.; Soekadar, S.; Grosse-Wentrup, M. (2012). A Brain-Robot Interface for Studying Motor Learning after Stroke, Proceedings of the International Conference on Robot Systems (IROS).
  •       Bib
    Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. (2012). Learning to Select and Generalize Striking Movements in Robot Table Tennis, Proceedings of the AAAI 2012 Fall Symposium on Robots that Learn Interactively from Human Teachers.
  •       Bib
    Nguyen-Tuong, D.; Peters, J. (2012). Online Kernel-based Learning for Task-Space Tracking Robot Control, IEEE Transactions on Neural Networks and Learning Systems, 23, 9, pp.1417-1425 .
  •       Bib
    Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O. (2012). Robot Skill Learning, Proceedings of the European Conference on Artificial Intelligence (ECAI).
  •     Bib
    Sigaud, O.; Peters, J. (2012). Robot Learning, Encyclopedia of the Sciences of Learning, Springer Verlag, Springer Verlag.
  •       Bib
    van Hoof, H.; Kroemer, O.;Ben Amor, H.; Peters, J. (2012). Maximally Informative Interaction Learning for Scene Exploration, Proceedings of the International Conference on Robot Systems (IROS).
  •       Bib
    Vitzthum, A.; Ben Amor, H.; Heumer, G.; Jung, B. (2012). XSAMPL3D - An Action Description Language for the Animation of Virtual Characters, Journal of Virtual Reality and Broadcasting, 9, 1.
  •       Bib
    Wang, Z.;Deisenroth, M; Ben Amor, H.; Vogt, D.; Schoelkopf, B.; Peters, J. (2012). Probabilistic Modeling of Human Movements for Intention Inference, Proceedings of Robotics: Science and Systems (R:SS).

2011

  •       Bib
    Bocsi, B.; Nguyen-Tuong, D; Csato, L; Schoelkopf, B.; Peters, J. (2011). Learning Inverse Kinematics with Structured Prediction, IEEE/RSJ International Conference on Intelligent Robot Systems (IROS).
  •     Bib
    Boularias, A.; Kober, J.; Peters, J. (2011). Relative Entropy Inverse Reinforcement Learning, Proceedings of Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011).
  •       Bib
    Boularias, A.; Kroemer, O.; Peters, J. (2011). Learning Robot Grasping from 3D Images with Markov Random Fields, IEEE/RSJ International Conference on Intelligent Robot Systems (IROS).
  •     Bib
    Detry, R.; Kraft, D.; Kroemer, O.; Peters, J.; Krueger, N.; Piater, J.; (2011). Learning Grasp Affordance Densities, Paladyn Journal of Behavioral Robotics, 2, 1, pp.1-17.
  •       Bib
    Gomez Rodriguez, M.; Grosse-Wentrup, M.; Hill, J.; Schoelkopf, B.; Gharabaghi, A.; Peters, J. (2011). Towards Brain-Robot Interfaces for Stroke Rehabilitation, Proceedings of the International Conference on Rehabilitation Robotics (ICORR).
  •     Bib
    Gomez Rodriguez, M.; Peters, J.; Hill, J.; Schoelkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M. (2011). Closing the Sensorimotor Loop: Haptic Feedback Helps Decoding of Motor Imagery, Journal of Neuroengineering, 8, 3.
  •       Bib
    Hachiya, H.; Peters, J.; Sugiyama, M. (2011). Reward Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning, Neural Computation, 23, 11.
  •     Bib
    Kober, J.; Oztop, E.; Peters, J. (2011). Reinforcement Learning to adjust Robot Movements to New Situations, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Best Paper Track.
  •       Bib
    Kober, J.; Peters, J. (2011). Policy Search for Motor Primitives in Robotics, Machine Learning (MLJ), 84, 1-2, pp.171-203.
  •       Bib
    Kober, J.; Peters, J. (2011). Learning Elementary Movements Jointly with a Higher Level Task, IEEE/RSJ International Conference on Intelligent Robot Systems (IROS).
  •     Bib
    Kroemer, O.; Lampert, C.H.; Peters, J. (2011). Learning Dynamic Tactile Sensing with Robust Vision-based Training, IEEE Transactions on Robotics (T-Ro), 27, 3, pp.545-557.
  •     Bib
    Kroemer, O.; Peters, J. (2011). A Flexible Hybrid Framework for Modeling Complex Manipulation Tasks, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Kroemer, O.; Peters, J. (2011). Active Exploration for Robot Parameter Selection in Episodic Reinforcement Learning, Proceedings of the 2011 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL).
  •       Bib
    Kroemer, O.; Peters, J. (2011). A Non-Parametric Approach to Dynamic Programming, Advances in Neural Information Processing Systems 25 (NIPS/NeurIPS), MIT Press.
  •     Bib
    Lampariello, R.; Nguyen Tuong, D.; Castellini, C.; Hirzinger, G.; Peters, J. (2011). Energy-optimal robot catching in real-time, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •       Bib
    Muelling, K.; Kober, J.; Peters, J. (2011). A Biomimetic Approach to Robot Table Tennis, Adaptive Behavior Journal, 19, 5.
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2011). Incremental Sparsification for Real-time Online Model Learning, Neurocomputing, 74, 11, pp.1859-1867.
  •       Bib
    Nguyen Tuong, D.; Peters, J. (2011). Learning Task-Space Tracking Control with Kernels, IEEE/RSJ International Conference on Intelligent Robot Systems (IROS).
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2011). Model Learning in Robotics: a Survey, Cognitive Processing, 12, 4.
  •     Bib
    Piater, J.; Jodogne, S.; Detry, R.; Kraft, D.; Krueger, N.; Kroemer, O.; Peters, J. (2011). Learning Visual Representations for Perception-Action Systems, International Journal of Robotics Research (IJRR), 30, 3, pp.294-307.
  •       Bib
    van Hoof, H.; van der Zant, T. ; Wiering, M.A. (2011). Adaptive Visual Face Tracking for an Autonomous Robot, Proceedings of the Belgian-Dutch Artificial Intelligence Conference (BNAIC 11).
  •     Bib
    Wang, Z.; Boularias, A.; Muelling, K.; Peters, J. (2011). Balancing Safety and Exploitability in Opponent Modeling, Proceedings of the Twenty-Fifth National Conference on Artificial Intelligence (AAAI).
  •       Bib
    Wang, Z.; Lampert, C; Muelling, K; Schoelkopf, B.; Peters, J. (2011). Learning Anticipation Policies for Robot Table Tennis, IEEE/RSJ International Conference on Intelligent Robot Systems (IROS).

2010

  •     Bib
    Alvaro, M.; Peters, J.; Schoelfkopf, B.; Lawrence, N. (2010). Switched Latent Force Models for Movement Segmentation, Advances in Neural Information Processing Systems 24 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Chiappa, S.; Peters, J. (2010). Movement extraction by detecting dynamics switches and repetitions, Advances in Neural Information Processing Systems 24 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Detry, R.; Baseski, E.; Popovic, M.; Touati, Y.; Krueger, N.; Kroemer, O.; Peters, J.; Piater, J. (2010). Learning Continuous Grasp Affordances by Sensorimotor Exploration, From Motor Learning to Interaction Learning in Robots, Springer Verlag, 264.
  •       Bib
    Erkan, A.: Kroemer, O.; Detry, R.; Altun, Y.; Piater, J.; Peters, J. (2010). Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Gomez Rodriguez, M.; Grosse Wentrup, M.; Peters, J.; Naros, G.; Hill, J.; Gharabaghi, A.; Schoelkopf, B. (2010). Epidural ECoG Online Decoding of Arm Movement Intention in Hemiparesis, 1st ICPR Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging.
  •     Bib
    Gomez Rodriguez, M.; Peters, J.; Hill, J.; Gharabaghi, A.; Schoelkopf, B.; Grosse-Wentrup, M. (2010). BCI and robotics framework for stroke rehabilitation, Proceedings of the 4th International BCI Meeting, May 31 - June 4, 2010. Asilomar, CA, USA.
  •     Bib
    Gomez Rodriguez, M.; Peters, J.; Hill, J.; Schoelkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M. (2010). Closing the Sensorimotor Loop: Haptic Feedback Facilitates Decoding of Arm Movement Imagery, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Workshop on Brain-Machine Interfaces).
  •     Bib
    Kober, J.; Mohler, B.; Peters, J. (2010). Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling, From Motor Learning to Interaction Learning in Robots, Springer Verlag.
  •     Bib
    Kober, J.; Muelling, K.; Kroemer, O.; Lampert, C.H.; Schoelkopf, B.; Peters, J. (2010). Movement Templates for Learning of Hitting and Batting, IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Kober, J.; Oztop, E.; Peters, J. (2010). Reinforcement Learning to adjust Robot Movements to New Situations, Proceedings of Robotics: Science and Systems (R:SS).
  •       Bib
    Kober, J.; Peters, J. (2010). Imitation and Reinforcement Learning - Practical Algorithms for Motor Primitive Learning in Robotics, IEEE Robotics and Automation Magazine, 17, 2, pp.55-62.
  •       Bib
    Kroemer, O.; Detry, R.; Piater, J.; Peters, J. (2010). Adapting Preshaped Grasping Movements using Vision Descriptors, From Animals to Animats 11, International Conference on the Simulation of Adaptive Behavior (SAB).
  •       Bib
    Kroemer, O.; Detry, R.; Piater, J.; Peters, J. (2010). Grasping with Vision Descriptors and Motor Primitives, Proceedings of the International Conference on Informatics in Control, Automation and Robotics (ICINCO).
  •       Bib
    Kroemer, O.; Detry, R.; Piater, J.; Peters, J. (2010). Combining Active Learning and Reactive Control for Robot Grasping, Robotics and Autonomous Systems, 58, 9, pp.1105-1116.
  •     Bib
    Lampert, C. H.; Kroemer, O. (2010). Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality Reduction and Transfer Learning, Proceedings of the 11th European Conference on Computer Vision (ECCV 2010).
  •     Bib
    Morimura, T.; Uchibe, E.; Yoshimoto, J.; Peters, J.; Doya, K. (2010). Derivatives of Logarithmic Stationary Distributions for Policy Gradient Reinforcement Learning, Neural Computation, 22, 2.
  •       Bib
    Muelling, K.; Kober, J.; Peters, J. (2010). Simulating Human Table Tennis with a Biomimetic Robot Setup, From Animals to Animats 11, International Conference on the Simulation of Adaptive Behavior (SAB).
  •       Bib
    Muelling, K.; Kober, J.; Peters, J. (2010). A Biomimetic Approach to Robot Table Tennis, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •       Bib
    Muelling, K.; Kober, J.; Peters, J. (2010). Learning Table Tennis with a Mixture of Motor Primitives, 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010).
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2010). Incremental Sparsification for Real-time Online Model Learning, Proceedings of Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010).
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2010). Using Model Knowledge for Learning Inverse Dynamics, IEEE International Conference on Robotics and Automation.
  •     Bib
    Nguyen Tuong, D.; Peters, J.;Seeger, M. (2010). Real-Time Local GP Model Learning, From Motor Learning to Interaction Learning in Robots, Springer Verlag, 264.
  •     Bib
    Peters, J.; Bagnell, J.A. (2010). Policy gradient methods, Encyclopedia of Machine Learning (invited article).
  •     Bib
    Peters, J.; Muelling, K.; Altun, Y. (2010). Relative Entropy Policy Search, Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence (AAAI), Physically Grounded AI Track.
  •   Bib
    Peters, J.; Muelling, K.; Kober, J. (2010). Experiments with Motor Primitives to learn Table Tennis, 12th International Symposium on Experimental Robotics (ISER 2010).
  •     Bib
    Peters, J.; Tedrake, R.; Roy, N.; Morimoto, J. (2010). Robot Learning, Encyclopedia of Machine Learning.
  •     Bib
    Peters, J.;Kober, J.;Schaal, S. (2010). Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfaehigkigkeiten), Automatisierungstechnik, 58, 12, pp.688-694.
  •     Bib
    Sehnke, F.; Osendorfer, C.; Rueckstiess, T.; Graves, A.; Peters, J.; Schmidhuber, J. (2010). Parameter-exploring Policy Gradients, Neural Networks, 23.
  •     Bib
    Sigaud, O.; Peters, J. (2010). From Motor Learning to Interaction Learning in Robots, Studies in Computational Intelligence, Springer Verlag, 264.
  •     Bib
    Wierstra, D.; Foerster, A.; Peters, J.; Schmidhuber, J. (2010). Recurrent Policy Gradients, Logic Journal of the IGPL, 18, pp.620-634.

2009

  •     Bib
    Chiappa, S.; Kober, J.; Peters, J. (2009). Using Bayesian Dynamical Systems for Motion Template Libraries, Advances in Neural Information Processing Systems 22 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Deisenroth, M.P.; Rasmussen, C.E.; Peters, J. (2009). Gaussian Process Dynamic Programming, Neurocomputing, 72, pp.1508-1524.
  •     Bib
    Detry, R; Baseski, E.; Popovic, M.; Touati, Y.; Krueger, N; Kroemer, O.; Peters, J.; Piater, J; (2009). Learning Object-specific Grasp Affordance Densities, Proceedings of the International Conference on Development & Learning (ICDL 2009).
  •       Bib
    Gomez Rodriguez, M.; Kober, J.; Schoelkopf, B. (2009). Denoising photographs using dark frames optimized by quadratic programming, Proceedings of the First IEEE International Conference on Computational Photography (ICCP 2009).
  •     Bib
    Hachiya, H.; Akiyama, T.; Sugiyama, M.; Peters, J. (2009). Adaptive Importance Sampling for Value Function Approximation in Off-policy Reinforcement Learning, Neural Networks, 22, 10, pp.1399-1410.
  •     Bib
    Hachiya, H.; Akiyama, T.; Sugiyama, M.; Peters, J. (2009). Efficient Data Reuse in Value Function Approximation, Proceedings of the 2009 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
  •     Bib
    Hachiya, H.; Peters, J.; Sugiyama, M. (2009). Efficient Sample Reuse in EM-based Policy Search, Proceedings of the 16th European Conference on Machine Learning (ECML 2009).
  •     Bib
    Hoffman, M.; de Freitas, N. ; Doucet, A.; Peters, J. (2009). An Expectation Maximization Algorithm for Continuous Markov Decision Processes with Arbitrary Reward, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AIStats).
  •     Bib
    Kober, J.; Peters, J. (2009). Learning new basic Movements for Robotics, Proceedings of Autonome Mobile Systeme (AMS 2009).
  •     Bib
    Kober, J.; Peters, J. (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems 22 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Kober, J.; Peters, J. (2009). Learning Motor Primitives for Robotics, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Kober, J.; Peters, J. (2009). Reinforcement Learning fuer Motor-Primitive, Kuenstliche Intelligenz.
  •     Bib
    Kroemer, O.; Detry, R.; Piater, J.; Peters, J. (2009). Active Learning Using Mean Shift Optimization for Robot Grasping, Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009).
  •     Bib
    Lampert, C.H.; Peters, J. (2009). Active Structured Learning for High-Speed Object Detection, Proceedings of the DAGM (Pattern Recognition).
  •     Bib
    Muelling, K.; Peters, J. (2009). A computational model of human table tennis for robot application, Proceedings of Autonome Mobile Systeme (AMS 2009).
  •     Bib
    Neumann, G.; Maass, W; Peters, J. (2009). Learning Complex Motions by Sequencing Simpler Motion Templates, Proceedings of the International Conference on Machine Learning (ICML2009).
  •     Bib
    Neumann, G.; Peters, J. (2009). Fitted Q-iteration by Advantage Weighted Regression, Advances in Neural Information Processing Systems 22 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Nguyen Tuong, D.; Seeger, M.; Peters, J. (2009). Local Gaussian Process Regression for Real Time Online Model Learning and Control, Advances in Neural Information Processing Systems 22 (NIPS/NeurIPS), Cambridge, MA: MIT Press.
  •     Bib
    Nguyen Tuong, D.; Seeger, M.; Peters, J. (2009). Sparse Online Model Learning for Robot Control with Support Vector Regression, Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009).
  •     Bib
    Nguyen Tuong, D.; Seeger, M.; Peters, J. (2009). Model Learning with Local Gaussian Process Regression, Advanced Robotics, 23, 15, pp.2015-2034.
  •     Bib
    Peters, J.; Kober, J. (2009). Using Reward-Weighted Imitation for Robot Reinforcement Learning, Proceedings of the 2009 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
  •     Bib
    Peters, J.; Kober, J.; Muelling, K.; Nguyen-Tuong, D.; Kroemer, O. (2009). Towards Motor Skill Learning for Robotics, Proceedings of the International Symposium on Robotics Research (ISRR), Invited Paper.
  •     Bib
    Peters, J.; Morimoto, J.; Tedrake, R.; Roy, N. (2009). Robot Learning, IEEE Robotics & Automation Magazine, 16, 3, pp.19-20.
  •     Bib
    Peters, J.; Ng, A. (2009). Guest Editorial: Special Issue on Robot Learning, Part B, Autonomous Robots (AURO), 27, 2.
  •     Bib
    Peters, J.; Ng, A. (2009). Guest Editorial: Special Issue on Robot Learning, Part A, Autonomous Robots (AURO), 27, 1.
  •     Bib
    Piater, J.; Jodogne, S.; Detry, R.; Kraft, D.; Krueger, N.; Kroemer, O.; Peters, J. (2009). Learning Visual Representations for Interactive Systems, Proceedings of the International Symposium on Robotics Research (ISRR), Invited Paper.
  •     Bib
    Sigaud, O.; Peters, J. (2009). From Motor Learning to Interaction Learning in Robots, Proceedings of Journees Nationales de la Recherche en Robotique.

2008

  •     Bib
    Deisenroth, M.P.; Peters, J.; Rasmussen, C.E. (2008). Approximate Dynamic Programming with Gaussian Processes, American Control Conference.
  •     Bib
    Deisenroth, M.P.; Rasmussen, C.E.; Peters, J. (2008). Model-Based Reinforcement Learning with Continuous States and Actions, Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2008), pp.19-24.
  •     Bib
    Hachiya, H.; Akiyama, T.; Sugiyama, M.; Peters, J. (2008). Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation, Proceedings of the Twenty-Third National Conference on Artificial Intelligence (AAAI 2008).
  •       Bib
    Kober, J. (2008). Reinforcement Learning for Motor Primitives, Dipl-Ing Thesis, University of Stuttgart.
  •     Bib
    Kober, J.; Mohler, B.; Peters, J. (2008). Learning Perceptual Coupling for Motor Primitives, International Conference on Intelligent Robot Systems (IROS).
  •   Bib
    Kober, J.; Peters, J. (2008). Reinforcement Learning of Perceptual Coupling for Motor Primitives, Proceedings of the European Workshop on Reinforcement Learning (EWRL).
  •   Bib
    Lesperance, Y.; Lakemeyer, G.; Peters, J.; Pirri, F. (2008). Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), July 21-22, 2008, Patras, Greece, ISBN 978-960-6843-09-9.
  •     Bib
    Nakanishi, J.;Cory, R.;Mistry, M.;Peters, J.;Schaal, S. (2008). Operational space control: A theoretical and empirical comparison, International Journal of Robotics Research (IJRR), 27, 6, pp.737-757.
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2008). Learning Inverse Dynamics: a Comparison, Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2008).
  •     Bib
    Nguyen Tuong, D.; Peters, J. (2008). Local Gaussian Processes Regression for Real-time Model-based Robot Control, International Conference on Intelligent Robot Systems (IROS).
  •     Bib
    Nguyen Tuong, D.; Peters, J.; Seeger, M.; Schoelkopf, B. (2008). Learning Robot Dynamics for Computed Torque Control using Local Gaussian Processes Regression, Proceedings of the ECSIS Symposium on Learning and Adaptive Behavior in Robotic Systems, LAB-RS 2008.
  •     Bib
    Peters, J. (2008). Machine Learning for Robotics, VDM-Verlag, ISBN 978-3-639-02110-3.
  •     Bib
    Peters, J. (2008). Machine Learning for Motor Skills in Robotics, Kuenstliche Intelligenz, 3.
  •     Bib
    Peters, J.; Kober, J.; Nguyen-Tuong, D. (2008). Policy Learning - a unified perspective with applications in robotics, Proceedings of the European Workshop on Reinforcement Learning (EWRL).
  •     Bib
    Peters, J.; Nguyen-Tuong, D. (2008). Real-Time Learning of Resolved Velocity Control on a Mitsubishi PA-10, International Conference on Robotics and Automation (ICRA).
  •     Bib
    Peters, J.; Schaal, S. (2008). Natural actor critic, Neurocomputing, 71, 7-9, pp.1180-1190.
  •     Bib
    Peters, J.; Schaal, S. (2008). Learning to control in operational space, International Journal of Robotics Research (IJRR), 27, pp.197-212.
  •     Bib
    Peters, J.; Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients, Neural Networks, 21, 4, pp.682-97.
  •     Bib
    Peters, J.; Seeger, M. (2008). Computed Torque Control with Nonparametric Regressions Techniques, American Control Conference.
  •     Bib
    Peters, J.;Mistry, M.;Udwadia, F. E.;Nakanishi, J.;Schaal, S. (2008). A unifying framework for robot control with redundant DOFs, Autonomous Robots (AURO), 24, 1, pp.1-12.
  •     Bib
    Sehnke, F.; Osendorfer, C; Rueckstiess, T; Graves, A.; Peters, J.; Schmidhuber, J. (2008). Policy Gradients with Parameter-based Exploration for Control, Proceedings of the International Conference on Artificial Neural Networks (ICANN).
  •     Bib
    Steinke, F.; Hein, M.; Peters, J.; Schoelkopf, B (2008). Manifold-valued Thin-Plate Splines with Applications in Computer Graphics, Computer Graphics Forum (Special Issue on Eurographics 2008), 27, 2.
  •     Bib
    Wierstra, D.; Schaul, T.; Peters, J.; Schmidthuber, J. (2008). Fitness Expectation Maximization, 10th International Conference on Parallel Problem Solving from Nature (PPSN 2008).
  •     Bib
    Wierstra, D.; Schaul, T.; Peters, J.; Schmidhuber, J. (2008). Natural Evolution Strategies, 2008 IEEE Congress on Evolutionary Computation.
  •     Bib
    Wierstra, D.; Schaul,T.; Peters, J.; Schmidhuber, J. (2008). Episodic Reinforcement Learning by Logistic Reward-Weighted Regression, Proceedings of the International Conference on Artificial Neural Networks (ICANN).

2007

  •     Bib
    Nakanishi, J.; Mistry, M.; Peters, J.; Schaal, S. (2007). Experimental evaluation of task space position/orientation control towards compliant control for humanoid robots, IEEE International Conference on Intelligent Robotics Systems (IROS 2007).
  •   Bib
    Peters, J. (2007). Computational Intelligence: By Amit Konar, The Computer Journal, 50, 6, pp.758.
  •   Bib
    Peters, J. (2007). Machine Learning of Motor Skills for Robotics, Ph.D. Thesis, Department of Computer Science, University of Southern California.
  •     Bib
    Peters, J. (2007). Relative Entropy Policy Search, CLMC Technical Report: TR-CLMC-2007-2, University of Southern California.
  •     Bib
    Peters, J.; Schaal, S. (2007). Policy Learning for Motor Skills, Proceedings of 14th International Conference on Neural Information Processing (ICONIP).
  •     Bib
    Peters, J.; Schaal, S. (2007). Reinforcement learning for operational space control, International Conference on Robotics and Automation (ICRA2007).
  •     Bib
    Peters, J.; Schaal, S. (2007). Applying the episodic natural actor-critic architecture to motor primitive learning, Proceedings of the 2007 European Symposium on Artificial Neural Networks (ESANN).
  •     Bib
    Peters, J.; Schaal, S.; Schoelkopf, B. (2007). Towards Machine Learning of Motor Skills, Proceedings of Autonome Mobile Systeme (AMS).
  •     Bib
    Peters, J.;Schaal, S. (2007). Using reward-weighted regression for reinforcement learning of task space control, Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
  •     Bib
    Peters, J.;Schaal, S. (2007). Reinforcement learning by reward-weighted regression for operational space control, Proceedings of the International Conference on Machine Learning (ICML2007).
  •   Bib
    Peters, J.;Theodorou, E.;Schaal, S. (2007). Policy gradient methods for machine learning, INFORMS Conference of the Applied Probability Society.
  •     Bib
    Riedmiller, M.;Peters, J.;Schaal, S. (2007). Evaluation of policy gradient methods and variants on the cart-pole benchmark, Proceedings of the 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
  •   Bib
    Theodorou, E; Peters, J.; Schaal, S. (2007). Reinforcement Learning for Optimal Control of Arm Movements, Abstracts of the 37st Meeting of the Society of Neuroscience.
  •     Bib
    Wierstra, D.; Foerster, A.; Peters, J.; Schmidhuber, J. (2007). Solving Deep Memory POMDPs with Recurrent Policy Gradients, Proceedings of the International Conference on Artificial Neural Networks (ICANN).

2006

  •     Bib
    Peters, J.;Schaal, S. (2006). Learning operational space control, Robotics: Science and Systems (RSS 2006), Cambridge, MA: MIT Press.
  •     Bib
    Peters, J.;Schaal, S. (2006). Reinforcement Learning for Parameterized Motor Primitives, Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN).
  •     Bib
    Peters, J.;Schaal, S. (2006). Policy gradient methods for robotics, Proceedings of the IEEE International Conference on Intelligent Robotics Systems (IROS 2006).
  •     Bib
    Ting, J.;Mistry, M.;Nakanishi, J.;Peters, J.;Schaal, S. (2006). A Bayesian approach to nonlinear parameter identification for rigid body dynamics, Robotics: Science and Systems (RSS 2006), Cambridge, MA: MIT Press.

2005

  •     Bib
    Nakanishi, J.;Cory, R.;Mistry, M.;Peters, J.;Schaal, S. (2005). Comparative experiments on task space control with redundancy resolution, IEEE International Conference on Intelligent Robots and Systems (IROS 2005).
  •     Bib
    Peters, J.;Mistry, M.;Udwadia, F. E.;Cory, R.;Nakanishi, J.;Schaal, S. (2005). A unifying framework for the control of robotics systems, IEEE International Conference on Intelligent Robots and Systems (IROS 2005).
  •     Bib
    Peters, J.;Mistry, M.;Udwadia, F. E.;Schaal, S. (2005). A new methodology for robot control design, The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005).
  •     Bib
    Peters, J.;Vijayakumar, S.;Schaal, S. (2005). Natural Actor-Critic, Proceedings of the 16th European Conference on Machine Learning (ECML 2005).

2004

  •   Bib
    Peters, J.; Schaal, S. (2004). Learning Motor Primitives with Reinforcement Learning, Proceedings of the 11th Joint Symposium on Neural Computation.
  •     Bib
    Schaal, S.;Peters, J.;Nakanishi, J.;Ijspeert, A. (2004). Learning Movement Primitives, International Symposium on Robotics Research (ISRR2003).

2003

  •     Bib
    Mohajerian, P.;Peters, J.;Ijspeert, A.;Schaal, S. (2003). A unifying computational framework for optimization and dynamic systems approaches to motor control, Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003).
  •     Bib
    Peters, J.;Vijayakumar, S.;Schaal, S. (2003). Reinforcement learning for humanoid robotics, IEEE-RAS International Conference on Humanoid Robots (Humanoids2003).
  •     Bib
    Peters, J.;Vijayakumar, S.;Schaal, S. (2003). Scaling reinforcement learning paradigms for motor learning, Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003).
  •     Bib
    Schaal, S.;Peters, J.;Nakanishi, J.;Ijspeert, A. (2003). Control, planning, learning, and imitation with dynamic movement primitives, Workshop on Bilateral Paradigms on Humans and Humanoids, IEEE International Conference on Intelligent Robots and Systems (IROS 2003).

2002

  •     Bib
    Peters, J. (2002). Policy Gradient Methods for Control Applications, CLMC Technical Report: TR-CLMC-2007-1, University of Southern California.
  •   Bib
    Vijayakumar, S.; D’Souza, A.; Peters, J.; Conradt, J.; Rutkowski,T.; Ijspeert, A.; Nakanishi, J.; Inoue, M.; Shibata, T.; Wiryo, A.; Itti, L.; Amari, S.; Schaal, S (2002). Real-Time Statistical Learning for Oculomotor Control and Visuomotor Coordination, Advances in Neural Information Processing Systems (NIPS/NeurIPS), Demonstration Track.

2001

  •       Bib
    Burdet, E.; Tee, K.P.; Chew, C.M.; Peters, J.; Bt, V.L. (2001). Hybrid IDM/Impedance Learning in Human Movements, First International Symposium on Measurement, Analysis and Modeling of Human Functions Proceedings.

2000

  •       Bib
    Peters, J.; Riener, R (2000). A real-time model of the human knee for application in virtual orthopaedic trainer, Proceedings of the 10th International Conference on Biomedical Engineering Conference (ICBME).

1998

  •   Bib
    Peters, J. (1998). Fuzzy Logic for Practical Applications, Kuenstliche Intelligenz (KI), 4, pp.60.