Journal Papers

  •     Bib
    Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. (2018). Using Probabilistic Movement Primitives in Robotics, Autonomous Robots (AURO), 42, 3, pp.529-551.
  •     Bib
    Paraschos, A.; Rueckert, E.; Peters, J.; Neumann, G. (2018). Probabilistic Movement Primitives under Unknown System Dynamics, Advanced Robotics (ARJ), 32, 6, pp.297-310.
  •     Bib
    Paraschos, A.; Lioutikov, R.; Peters, J.; Neumann, G. (2017). Probabilistic Prioritization of Movement Primitives, Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L).
  •     Bib
    Dermy, O.; Paraschos, A.; Ewerton, M.; Charpillet, F.; Peters, J.; Ivaldi, S (2017). Prediction of intention during interaction with iCub with Probabilistic Movement Primitives, Frontiers in Robotics and AI, 4, pp.45.
  •     Bib
    Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, Journal of Aerospace Information Systems, 11, 9, pp.579-595.
  •     Bib
    Neumann, G.; Daniel, C.; Paraschos, A.; Kupcsik, A.; Peters, J. (2014). Learning Modular Policies for Robotics, Frontiers in Computational Neuroscience.
  •       Bib
    Englert, P.; Paraschos, A.; Peters, J.;Deisenroth, M.P. (2013). Probabilistic Model-based Imitation Learning, Adaptive Behavior Journal, 21, pp.388-403.

Conference Papers

  •     Bib
    Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Rueckert, E.; Mundo, J.; Paraschos, A.; Peters, J.; Neumann, G. (2015). Extracting Low-Dimensional Control Variables for Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •     Bib
    Paraschos, A.; Rueckert, E.; Peters, J; Neumann, G. (2015). Model-Free Probabilistic Movement Primitives for Physical Interaction, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Parisi, S.; Abdulsamad, H.; Paraschos, A.; Daniel, C.; Peters, J. (2015). Reinforcement Learning vs Human Programming in Tetherball Robot Games, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).
  •     Bib
    Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Sample-Based Information-Theoretic Stochastic Optimal Control, Proceedings of the International Conference on Robotics and Automation (ICRA).
  •       Bib
    Englert, P.; Paraschos, A.; Peters, J.; Deisenroth, M. P. (2013). Model-based Imitation Learning by Probabilistic Trajectory Matching, Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA).
  •     Bib
    Paraschos, A.; Neumann, G; Peters, J. (2013). A Probabilistic Approach to Robot Trajectory Generation, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
  •     Bib
    Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G (2013). Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS / NeurIPS), MIT Press.
  •     Bib
    Paraschos, A.; Spanoudakis, N.; Lagoudakis M.G. (2012). Model-Driven Behavior Specification for Robotic Teams, 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012).
  •   Bib
    Dahl, T.; Paraschos, A.; (2012). A Force-Distance Model of Humanoid Arm Withdrawal Reflexes, Towards Autonomous Robotic Systems (TAROS).

Theses

  •       Bib
    Paraschos, A. (2017). Robot Skill Representation, Learning and Control with Probabilistic Movement Primitives, PhD Thesis.
  •     Bib
    Paraschos, A. (2010). A flexible software architecture for robotic agents, Diploma Thesis, TU Crete.