Keller, L.; Tanneberg, D.; Stark, S.; Peters, J. (2020). Model-Based Quality-Diversity Search for Efficient Robot Learning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Delfosse, Q.; Stark, S.; Tanneberg, D.; Santucci, V. G.; Peters, J. (2019). Open-Ended Learning of Grasp Strategies using Intrinsically Motivated Self-Supervision, Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL).
Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with Stochastic Recurrent Neural Networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
Thiem, S.; Stark, S.; Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Simulation of the underactuated Sake Robotics Gripper in V-REP, Workshop at the International Conference on Humanoid Robots (HUMANOIDS).
Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).