Theo Gruner
Research Interests
Approximate Bayesian inference, model-based rl, model learning, system identification
Affiliations
1. TU Darmstadt, Intelligent Autonomous Systems, Computer Science Department
2. Hessian Centre for Artificial Intelligence
Contact
theo_sunao.gruner@tu-darmstadt.de
Room D202, Building S2|02, TU Darmstadt, FB-Informatik, FG-IAS, Hochschulstr. 10, 64289 Darmstadt
+49-6151-16-25385
Theo Gruner joined the Intelligent Autonomous Systems Group as a Ph.D. student in September 2022. Currently, he is focusing on system identification approaches for sim-to-real transfer via likelihood-free inference.
Theo holds a master's degree in Computational Engineering and a bachelor's degree in Applied Mechanics, both from TU Darmstadt. His thesis on "Wasserstein-Optimal Bayesian System Identification for Domain Randomization" was supervised by Fabio Muratore, Boris Belousov, and Jan Peters and won the Freunde-Preis for "best master's thesis at the department of Computer Science."
Publications
-
- Gruner, T.; Belousov, B.; Muratore, F.; Palenicek, D.; Peters, J. (2023). Pseudo-Likelihood Inference, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
-
- Muratore, F.; Gruner, T.; Wiese, F.; Belousov, B.; Gienger, M.; Peters, J. (2021). Neural Posterior Domain Randomization, Conference on Robot Learning (CoRL).
-
- Lenz, J.; Gruner, T.; Palenicek, D.; Schneider, T.; Pfenning, I.; Peters J. (2024). Analysing the Interplay of Vision and Touch for Dexterous Insertion Tasks, CoRL 2024 Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Control.
-
- Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, IEEE ICRA 2024 Workshop on Robot Embodiment through Visuo-Tactile Perception.
- Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, 40th Anniversary of the IEEE International Conference on Robotics and Automation (ICRA@40).
-
- Gruner, T. (2021). Wasserstein-Optimal Bayesian System Identification for Domain Randomization, Master Thesis.
Supervised Projects
Thesis/Project | Student(s) | Topic | Together with |
RL:IP.WS23/24 | Dennert D., Scherer C., Ahmad F. | XXX: eXploring X-Embodiment with RT-X | Tim Schneider & Daniel Palenicek & Maximilian Tölle |
RL:IP.WS23/24 | Jacobs T. | XXX: eXploring X-Embodiment with RT-X | Tim Schneider & Daniel Palenicek & Maximilian Tölle |
RL:IP.WS23/24 | Böhm A., Pfenning I., Lenz J. | Unveiling the Unseen: Tactile Perception and Reinforcement Learning in the Real World | Tim Schneider & Theo Gruner |
RL:IP.WS23/24 | Wang, Y., Li, S. | Benchmarking Sequence Models for Discontinuous Dynamical Systems | Puze Liu |
RL:IP.SS22 | Klyushina, A., Rath, M. | Black-Box System Identification of the Airhockey Table | Puze Liu |
RL:IP.SS22 | Krämer, E. | Latent Tactile Representations for Model-based RL | Tim Schneider & Daniel Palenicek |