Theo Gruner

Theo Gruner joined the Intelligent Autonomous Systems Group as a Ph.D. student in September 2022. Currently, he is focusing on system identification approaches for sim-to-real transfer via likelihood-free inference.

Theo holds a master's degree in Computational Engineering and a bachelor's degree in Applied Mechanics, both from TU Darmstadt. His thesis on "Wasserstein-Optimal Bayesian System Identification for Domain Randomization" was supervised by Fabio Muratore, Boris Belousov, and Jan Peters and won the Freunde-Preis for "best master's thesis at the department of Computer Science."

Publications

Adaptive Domain Randomization

  •     Bib
    Gruner, T.; Belousov, B.; Muratore, F.; Palenicek, D.; Peters, J. (2023). Pseudo-Likelihood Inference, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
  •     Bib
    Muratore, F.; Gruner, T.; Wiese, F.; Belousov, B.; Gienger, M.; Peters, J. (2021). Neural Posterior Domain Randomization, Conference on Robot Learning (CoRL).
  •     Bib
    Gruner, T. (2021). Wasserstein-Optimal Bayesian System Identification for Domain Randomization, Master Thesis.

Robot Foundation Models

  •     Bib
    Toelle, M.; Gruner, T.; Palenicek, D.; Schneider, T. Guenster, J.; Watson, J.; Tateo, D.; Liu, P.; Peters, J. (2025). Towards Safe Robot Foundation Models using Inductive Biases, SafeVLM Workshop @ IEEE International Conference on Robotics and Automation (ICRA), Spotlight.
  •     Bib
    Scherer, C. F.; Tölle, M.; Gruner, T.; Palenicek, D.; Schneider, T.; Schramowski, P.; Belousov, B.; Peters, J. (2025). AllmAN: A German Vision-Language-Action Model, German Robotics Conference (GRC).

Others

  •     Bib
    Watson, J.; Song, C.; Weeger, O.; Gruner, T.; Le, A.T.; Hansel, K.; Headway, A.; Arenz, O.; Trojak, W.; Cranmer, M.; D’Eramo, C.; Bülow, F.; Goyal, T.; Peters, J.; Hoffman, M.W.; (2025). Machine Learning with Physics Knowledge for Prediction: A Survey, Transactions on Machine Learning Research (TMLR).
  •     Bib
    Lenz, J.; Gruner, T.; Palenicek, D.; Schneider, T.; Pfenning, I.; Peters J. (2024). Analysing the Interplay of Vision and Touch for Dexterous Insertion Tasks, CoRL 2024 Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Control.
  •     Bib
    Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, IEEE ICRA 2024 Workshop on Robot Embodiment through Visuo-Tactile Perception.
  •     Bib
    Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, 40th Anniversary of the IEEE International Conference on Robotics and Automation (ICRA@40).

Supervised Projects

Thesis/ProjectStudent(s)TopicTogether with
M.Sc. ThesisLenz J.Integration of Vision and Tactile Sensing for Robotic Insertion Tasks using Deep Reinforcement LearningTim Schneider & Daniel Palenicek
M.Sc. ThesisJacobs T.Developing a Simulation Platform for the Benchmarking of Generalist Robot PoliciesTim Schneider & Maximilian Tölle & Daniel Palenicek
B.Sc. ThesisScherer C.Coherent Soft Imitation Learning for Vision-Language-Action modelsDaniel Palenicek & Joe Watson
RL:IP.SS24Scherer C.Training Large Scale Robot Transformer ModelsTim Schneider & Daniel Palenicek & Maximilian Tölle
RL:IP.WS23/24Dennert D., Scherer C., Ahmad F.XXX: eXploring X-Embodiment with RT-XTim Schneider & Daniel Palenicek & Maximilian Tölle
RL:IP.WS23/24Jacobs T.XXX: eXploring X-Embodiment with RT-XTim Schneider & Daniel Palenicek & Maximilian Tölle
RL:IP.WS23/24Böhm A., Pfenning I., Lenz J.Unveiling the Unseen: Tactile Perception and Reinforcement Learning in the Real WorldTim Schneider & Theo Gruner
RL:IP.WS23/24Wang, Y., Li, S.Benchmarking Sequence Models for Discontinuous Dynamical SystemsPuze Liu
RL:IP.SS22Klyushina, A., Rath, M.Black-Box System Identification of the Airhockey TablePuze Liu
RL:IP.SS22Krämer, E.Latent Tactile Representations for Model-based RLTim Schneider & Daniel Palenicek