Daniel Palenicek
Research Interests
- Reinforcement Learning
- Model-based Reinforcement Learning
- Machine Learning
Affiliations
- TU Darmstadt, Intelligent Autonomous Systems, Computer Science Department
- Hessian Centre for Artificial Intelligence
Contact Information
daniel.palenicek@tu-darmstadt.de
Room E304, Building S2|02, TU Darmstadt, FB-Informatik, FG-IAS, Hochschulstr. 10, 64289 Darmstadt
+49-6151-16-25387
Reviewing
NeurIPS, ICLR, CoRL, RLC, IROS, and various ML & Robotics workshops.
Teaching Assistant
Lecture | Years |
Computational Engineering and Robotics | SS 2022, WS 2022/23 |
Statistical Machine Learning | SS 2023, WS 2023/24 |
Daniel joined the Intelligent Autonomous System lab on October 1st, 2021 as a Ph.D. student. He is part of the 3AI project with Hessian.AI. In his research, Daniel focuses on increasing sample efficiency of model-based reinforcement learning algorithms by studying the impact which model-errors have on the learning.
Before starting his Ph.D., Daniel completed his Bachelor's degree and Master's degree in Wirtschaftsinformatik at the Technische Universität Darmstadt. He wrote his Master's thesis entitled "Dyna-Style Model-Based Reinforcement Learning with Value Expansion" in the Computer Science Department under the supervision of Michael Lutter and Jan Peters. During his studies, Daniel further did two research internships, at the Bosch Center for AI and at Huawei Noah’s Ark Lab London.
Publications
-
- Bhatt, A.; Palenicek, D.; Belousov, B.; Argus, M.; Amiranashvili, A.; Brox, T.; Peters, J. (2024). CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity, International Conference on Learning Representations (ICLR), Spotlight.
- Bhatt, A.; Palenicek, D.; Belousov, B.; Argus, M.; Amiranashvili, A.; Brox, T.; Peters, J. (2024). CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity, European Workshop on Reinforcement Learning (EWRL).
-
- Lenz, J.; Gruner, T.; Palenicek, D.; Schneider, T.; Pfenning, I.; Peters J. (2024). Analysing the Interplay of Vision and Touch for Dexterous Insertion Tasks, CoRL 2024 Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Control.
-
- Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, IEEE ICRA 2024 Workshop on Robot Embodiment through Visuo-Tactile Perception.
- Palenicek, D.; Gruner, T.; Schneider, T.; Böhm, A.; Lenz, J.; Pfenning, I. and Krämer, E.; Peters, J. (2024). Learning Tactile Insertion in the Real World, 40th Anniversary of the IEEE International Conference on Robotics and Automation (ICRA@40).
-
- Palenicek, D.; Lutter, M.; Carvalho, J.; Peters, J. (2023). Diminishing Return of Value Expansion Methods in Model-Based Reinforcement Learning, International Conference on Learning Representations (ICLR).
-
- Gruner, T.; Belousov, B.; Muratore, F.; Palenicek, D.; Peters, J. (2023). Pseudo-Likelihood Inference, Advances in Neural Information Processing Systems (NIPS / NeurIPS).
-
- Palenicek, D.; Lutter, M., Peters, J. (2022). Revisiting Model-based Value Expansion, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
-
- Cowen-Rivers, A.I.; Palenicek, D.; Moens, V.; Abdullah, M.A.; Sootla, A.; Wang, J.; Bou-Ammar, H. (2022). SAMBA: safe model-based & active reinforcement learning, Machine Learning.
-
- Palenicek, D. (2021). A Survey on Constraining Policy Updates Using the KL Divergence, Reinforcement Learning Algorithms: Analysis and Applications, pp.49-57.
-
- Belousov, B.; Abdulsamad H.; Klink, P.; Parisi, S.; Peters, J. (2021). Reinforcement Learning Algorithms: Analysis and Applications, Studies in Computational Intelligence, Springer International Publishing.
- Zhou, M.; Luo, J.; Villella, J.; Yang, Y.; Rusu, D.; Miao, J.; Zhang, W.; Alban, M.; Fadakar, I.; Chen, Z.; Chongxi-Huang, A.; Wen, Y.; Hassanzadeh, K.; Graves, D.; Chen, D.; Zhu, Z.; Nguyen, N.; Elsayed, M.; Shao, K.; Ahilan, S.; Zhang, B.; Wu, J.; Fu, Z.; Rezaee, K.; Yadmellat, P.; Rohani, M.; Perez-Nieves, N.; Ni, Y.; Banijamali, S.; Cowen-Rivers, A.; Tian, Z.; Palenicek, D.; Bou-Ammar, H.; Zhang, H.; Liu, W.; Hao, J.; Wang, J. (2020). SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for Autonomous Driving. Conference on Robot Learning (CoRL). Best System Paper Award. PDF
Talks and Interviews
- Sample Efficiency in Deep RL: Quo Vadis? @ BeNeRL Seminar Series (2024)
- CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity @ Machine Learning and AI Academy (2024)
- AI and its faces, Daniel Palenicek & Theo Gruner, PhD students @hessian.AI (2023)
- Slurm-tastic Adventures on the IAS Cluster: A Roboticist Guide to Using the IAS Cluster with Slurm and Docker @ IWIALS (2023)
Supervised Theses and Projects
Thesis/Project | Topic | Student(s) | Together with |
M.Sc. Thesis | Investigating bottlenecks of CrossQ's sample efficiency | Vogt F. | |
M.Sc. Thesis | On-robot Deep Reinforcement Learning for Quadruped Locomotion | Kinzel J. | Nico Bohlinger |
B.Sc. Thesis | Diminishing Return of Value Expansion Methods in Offline Model-Based Reinforcement Learning | Dennert D. | |
B.Sc. Thesis | Diminishing Return of Value Expansion Methods in Discrete Model-Based Reinforcement Learning | Ahmad F. | |
RL:IP.SS24 | Training Large Scale Robot Transformer Models | Scherer C. | Tim Schneider & Theo Gruner & Maximilian Tölle |
RL:IP.SS24 | XXX: eXploring X-Embodiment with RT-X | Jacobs T. | Tim Schneider & Theo Gruner & Maximilian Tölle |
RL:IP.SS24 | Unveiling the Unseen: Tactile Perception and Reinforcement Learning in the Real World | Böhm A., Krämer E. | Tim Schneider & Theo Gruner |
RL:IP.WS23/24 | XXX: eXploring X-Embodiment with RT-X | Dennert D., Scherer C., Ahmad F. | Tim Schneider & Theo Gruner & Maximilian Tölle |
RL:IP.WS23/24 | XXX: eXploring X-Embodiment with RT-X | Jacobs T. | Tim Schneider & Theo Gruner & Maximilian Tölle |
RL:IP.WS23/24 | Unveiling the Unseen: Tactile Perception and Reinforcement Learning in the Real World | Böhm A., Pfenning I., Lenz J. | Tim Schneider & Theo Gruner |
RL:IP.SS23 | Latent Tactile Representations for Model-based RL | Krämer E. | Tim Schneider & Theo Gruner |