Journal Papers

  • Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (submitted). A Differentiable Newton-Euler Algorithm for Real-World Robotics, Submitted to the IEEE Transaction of Robotics (T-RO).
      Bib
  • Lutter, M.; Peters, J. (2023). Combining Physics and Deep Learning to learn Continuous-Time Dynamics Models, International Journal of Robotics Research (IJRR), 42, 3.
        Bib
  • Lutter, M.; Belousov, B.; Mannor, S.; Fox, D.; Garg, A.; Peters, J. (2023). Continuous-Time Fitted Value Iteration for Robust Policies, IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI).
          Bib
  • Koert, D.; Trick, S.; Ewerton, M.; Lutter, M.; Peters, J. (2020). Incremental Learning of an Open-Ended Collaborative Skill Library, International Journal of Humanoid Robotics (IJHR), 17, 1.
      Bib

Conference and Workshop Papers

  • Palenicek, D.; Lutter, M.; Carvalho, J.; Peters, J. (2023). Diminishing Return of Value Expansion Methods in Model-Based Reinforcement Learning, International Conference on Learning Representations (ICLR).
        Bib
  • Palenicek, D.; Lutter, M., Peters, J. (2022). Revisiting Model-based Value Expansion, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
        Bib
  • Lutter, M.; Silberbauer, J.; Watson, J.; Peters, J. (2021). Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
        Bib
  • Lutter, M.; Mannor, S.; Peters, J.; Fox, D.; Garg, A. (2021). Value Iteration in Continuous Actions, States and Time, International Conference on Machine Learning (ICML).
        Bib
  • Lutter, M.; Mannor, S.; Peters, J.; Fox, D.; Garg, A. (2021). Robust Value Iteration for Continuous Control Tasks, Robotics: Science and Systems (RSS).
        Bib
  • Lutter, M.; Clever, D.; Kirsten, R.; Listmann, K.; Peters, J. (2021). Building Skill Learning Systems for Robotics, Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE).
      Bib
  • Ploeger, K.; Lutter, M.; Peters, J. (2020). High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards, Conference on Robot Learning (CoRL).
        Bib
  • Lutter, M.; Clever, D.; Belousov, B.; Listmann, K.; Peters, J. (2020). Evaluating the Robustness of HJB Optimal Feedback Control, International Symposium on Robotics.
      Bib
  • Lutter, M.; Ritter, C.; Peters, J. (2019). Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning, International Conference on Learning Representations (ICLR).
        Bib
  • Lutter, M.; Peters, J. (2019). Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems, International Conference on Intelligent Robots and Systems (IROS).
        Bib
  • Lutter, M.; Peters, J. (2019). Deep Optimal Control: Using the Euler-Lagrange Equation to learn an Optimal Feedback Control Law, Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).
        Bib
  • Lutter, M.; Belousov, B.; Listmann, K.; Clever, D.; Peters, J. (2019). HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints, Conference on Robot Learning (CoRL).
        Bib
  • Koert, D.; Trick, S.; Ewerton, M.; Lutter, M.; Peters, J. (2018). Online Learning of an Open-Ended Skill Library for Collaborative Tasks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS).
        Bib

Books, Book Chapters & Theses