Journal Papers | |||
---|---|---|---|
Tanneberg, D.; Ploeger, K.; Rueckert, E.; Peters, J. (2021). SKID RAW: Skill Discovery from Raw Trajectories, IEEE Robotics and Automation Letters (RA-L).
Download Article BibTeX Reference Tanneberg, D.; Rueckert, E.; Peters, J. (2020). Evolutionary Training and Abstraction Yields Algorithmic Generalization of Neural Computers, Nature Machine Intelligence, 2, 12, pp.753-763. Download Article BibTeX Reference Tanneberg, D.; Peters, J.; Rueckert, E. (2019). Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks, Neural Networks, 109, pp.67-80. Download Article BibTeX Reference Paraschos, A.; Rueckert, E.; Peters, J.; Neumann, G. (2018). Probabilistic Movement Primitives under Unknown System Dynamics, Advanced Robotics (ARJ), 32, 6, pp.297-310. Download Article BibTeX Reference Sosic, A.; Rueckert, E.; Peters, J.; Zoubir, A.M.; Koeppl, H (2018). Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling, Journal of Machine Learning Research (JMLR), 19, 69, pp.1--45. BibTeX Reference Rueckert, E.; Kappel, D.; Tanneberg, D.; Pecevski, D; Peters, J. (2016). Recurrent Spiking Networks Solve Planning Tasks, Nature PG: Scientific Reports, 6, 21142, Nature Publishing Group. Download Article BibTeX Reference Rueckert, E.; Camernik, J.; Peters, J.; Babic, J. (2016). Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control, Nature PG: Scientific Reports, 6, 28455. Download Article BibTeX Reference Rueckert, E.A.; Neumann, G.; Toussaint, M.; Maass, W. (2013). Learned graphical models for probabilistic planning provide a new class of movement primitives, Frontiers in Computational Neuroscience, 6, 97. Download Article BibTeX Reference Rueckert, E.A.; d'Avella, A. (2013). Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems, Frontiers in Computational Neuroscience, 7, 138. Download Article BibTeX Reference Rueckert, E.A.; Neumann, G. (2012). Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation, Artificial Life. Download Article BibTeX Reference | |||
Conference and Workshop Papers | |||
Stark, S.; Peters, J.; Rueckert, E. (2019). Experience Reuse with Probabilistic Movement Primitives, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Download Article BibTeX Reference Gondaliya, K.D.; Peters, J.; Rueckert, E. (2018). Learning to Categorize Bug Reports with LSTM Networks, Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle. Download Article BibTeX Reference Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL). Download Article BibTeX Reference Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. (2017). Learning Inverse Dynamics Models in O(n) time with LSTM networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with Stochastic Recurrent Neural Networks, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Stark, S.; Peters, J.; Rueckert, E. (2017). A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Thiem, S.; Stark, S.; Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Simulation of the underactuated Sake Robotics Gripper in V-REP, Workshop at the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Kohlschuetter, J.; Peters, J.; Rueckert, E. (2016). Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities, Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON). Download Article BibTeX Reference Modugno, V.; Neumann, G.; Rueckert, E.; Oriolo, G.; Peters, J.; Ivaldi, S. (2016). Learning soft task priorities for control of redundant robots, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Sharma, D.; Tanneberg, D.; Grosse-Wentrup, M.; Peters, J.; Rueckert, E. (2016). Adaptive Training Strategies for BCIs, Cybathlon Symposium. Download Article BibTeX Reference Weber, P.; Rueckert, E.; Calandra, R.; Peters, J.; Beckerle, P. (2016). A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction, Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). Download Article BibTeX Reference Tanneberg, D.; Paraschos, A.; Peters, J.; Rueckert, E. (2016). Deep Spiking Networks for Model-based Planning in Humanoids, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Azad, M.; Ortenzi, V.; Lin, H., C.; Rueckert, E.; Mistry, M. (2016). Model Estimation and Control of Complaint Contact Normal Force, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Calandra, R.; Ivaldi, S.; Deisenroth, M.;Rueckert, E.; Peters, J. (2015). Learning Inverse Dynamics Models with Contacts, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Rueckert, E.; Mundo, J.; Paraschos, A.; Peters, J.; Neumann, G. (2015). Extracting Low-Dimensional Control Variables for Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Paraschos, A.; Rueckert, E.; Peters, J; Neumann, G. (2015). Model-Free Probabilistic Movement Primitives for Physical Interaction, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference Rueckert, E.; Lioutikov, R.; Calandra, R.; Schmidt, M.; Beckerle, P.; Peters, J. (2015). Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations, ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots. Download Article BibTeX Reference Rueckert, E.; Mindt, M.; Peters, J.; Neumann, G. (2014). Robust Policy Updates for Stochastic Optimal Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Rueckert, E.A.; d'Avella, A. (2013). Learned Muscle Synergies as Prior in Dynamical Systems for Controlling Bio-mechanical and Robotic Systems, Abstracts of Neural Control of Movement Conference (NCM), Conference Talk, pp.27--28. Download Article BibTeX Reference Rueckert, E.A.; Neumann, G. (2011). A study of Morphological Computation by using Probabilistic Inference for Motor Planning, Proceedings of the 2nd International Conference on Morphological Computation (ICMC), pp.51--53. Download Article BibTeX Reference |