Journal Papers | |||
---|---|---|---|
Gebhardt, G.H.W.; Daun, K.; Schnaubelt, M.; Neumann, G. (submitted). Learning Policies for Object Manipulation with Robot Swarms, Submitted to Advanced Robotics (ARJ).
Download Article BibTeX Reference Gebhardt, G.H.W.; Hüttenrauch, M.; Neumann, G. (submitted). Using M-Embeddings to Learn Control Strategies for Robot Swarms, Submitted to Swarm Intelligence. Download Article BibTeX Reference Pajarinen, J.; Arenz, O.; Peters, J.; Neumann, N. (in press). Probabilistic approach to physical object disentangling, IEEE Robotics and Automation Letters (RA-L). BibTeX Reference Arenz, O.; Zhong, M.; Neumann G. (2020). Trust-Region Variational Inference with Gaussian Mixture Models, Journal of Machine Learning Research (JMLR). Download Article BibTeX Reference Gomez-Gonzalez, S.; Neumann, G.; Schölkopf, B.; Peters, J. (2020). Adaptation and Robust Learning of Probabilistic Movement Primitives, IEEE Transactions on Robotics (T-Ro), 36, 2, pp.366-379. Download Article BibTeX Reference Brandherm, F.; Peters, J.; Neumann, G.; Akrour, R. (2019). Learning Replanning Policies with Direct Policy Search, IEEE Robotics and Automation Letters (RA-L). Download Article BibTeX Reference Gebhardt, G.H.W.; Kupcsik, A.; Neumann, G. (2019). The Kernel Kalman Rule, Machine Learning Journal (MLJ), 108, 12, pp.2113–2157, Springer US. Download Article BibTeX Reference Abi Farraj, F.; Pacchierotti, C.; Arenz, O.; Neumann, G.; Giordano, P. (2019). A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping, IEEE Transactions on Haptics. Download Article BibTeX Reference Pajarinen, J.; Thai, H.L.; Akrour, R.; Peters, J.; Neumann, G. (2019). Compatible natural gradient policy search, Machine Learning (MLJ), 108, 8, pp.1443--1466, Springer. Download Article BibTeX Reference Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. (2018). Using Probabilistic Movement Primitives in Robotics, Autonomous Robots (AURO), 42, 3, pp.529-551. Download Article BibTeX Reference Paraschos, A.; Rueckert, E.; Peters, J.; Neumann, G. (2018). Probabilistic Movement Primitives under Unknown System Dynamics, Advanced Robotics (ARJ), 32, 6, pp.297-310. Download Article BibTeX Reference Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J.A.; Abbeel, P.; Peters, J. (2018). An Algorithmic Perspective on Imitation Learning, Foundations and Trends in Robotics. Download Article BibTeX Reference Akrour, R.; Abdolmaleki, A.; Abdulsamad, H.; Peters, J.; Neumann, G. (2018). Model-Free Trajectory-based Policy Optimization with Monotonic Improvement, Journal of Machine Learning Research (JMLR). Download Article BibTeX Reference Osa, T.; Peters, J.; Neumann, G. (2018). Hierarchical Reinforcement Learning of Multiple Grasping Strategies with Human Instructions, Advanced Robotics, 32, 18, pp.955-968. Download Article BibTeX Reference Kupcsik, A.G.; Deisenroth, M.P.; Peters, J.; Ai Poh, L.; Vadakkepat, V.; Neumann, G. (2017). Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills, Artificial Intelligence, 247, pp.415-439. Download Article BibTeX Reference Maeda, G.; Neumann, G.; Ewerton, M.; Lioutikov, R.; Kroemer, O.; Peters, J. (2017). Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks, Autonomous Robots (AURO), 41, 3, pp.593-612. Download Article BibTeX Reference Maeda, G.; Ewerton, M.; Neumann, G.; Lioutikov, R.; Peters, J. (2017). Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration, International Journal of Robotics Research (IJRR), 36, 13-14, pp.1579-1594. Download Article BibTeX Reference Osa, T.; Ghalamzan, E. A. M.; Stolkin, R.; Lioutikov, R.; Peters, J.; Neumann, G. (2017). Guiding Trajectory Optimization by Demonstrated Distributions, IEEE Robotics and Automation Letters (RA-L), 2, 2, pp.819-826, IEEE. Download Article BibTeX Reference Lioutikov, R.; Neumann, G.; Maeda, G.; Peters, J. (2017). Learning Movement Primitive Libraries through Probabilistic Segmentation, International Journal of Robotics Research (IJRR), 36, 8, pp.879-894. Download Article BibTeX Reference Wirth, C.; Akrour, R.; Fürnkranz, J.; Neumann G. (2017). A Survey of Preference-Based Reinforcement Learning Methods, Journal of Machine Learning Research (JMLR). Download Article BibTeX Reference Paraschos, A.; Lioutikov, R.; Peters, J.; Neumann, G. (2017). Probabilistic Prioritization of Movement Primitives, Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L). Download Article BibTeX Reference van Hoof, H.; Neumann, G.; Peters, J. (2017). Non-parametric Policy Search with Limited Information Loss, Journal of Machine Learning Research (JMLR), 18, 73, pp.1-46. Download Article BibTeX Reference Daniel, C.; Neumann, G.; Kroemer, O.; Peters, J. (2016). Hierarchical Relative Entropy Policy Search, Journal of Machine Learning Research (JMLR), 17, pp.1-50. Download Article BibTeX Reference Abdolmaleki, A.; Lau, N.; Reis, L.; Peters, J.; Neumann, G. (2016). Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller, Journal of Intelligent & Robotic Systems. Download Article BibTeX Reference Daniel, C.; van Hoof, H.; Peters, J.; Neumann, G. (2016). Probabilistic Inference for Determining Options in Reinforcement Learning, Machine Learning (MLJ), 104, 2-3, pp.337-357. Download Article BibTeX Reference Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Generalizing Movements with Information Theoretic Stochastic Optimal Control, Journal of Aerospace Information Systems, 11, 9, pp.579-595. Download Article BibTeX Reference Neumann, G.; Daniel, C.; Paraschos, A.; Kupcsik, A.; Peters, J. (2014). Learning Modular Policies for Robotics, Frontiers in Computational Neuroscience. Download Article BibTeX Reference Dann, C.; Neumann, G.; Peters, J. (2014). Policy Evaluation with Temporal Differences: A Survey and Comparison, Journal of Machine Learning Research (JMLR), 15, March, pp.809-883. Download Article BibTeX Reference Rueckert, E.A.; Neumann, G.; Toussaint, M.; Maass, W. (2013). Learned graphical models for probabilistic planning provide a new class of movement primitives, Frontiers in Computational Neuroscience, 6, 97. Download Article BibTeX Reference Deisenroth, M. P.; Neumann, G.; Peters, J. (2013). A Survey on Policy Search for Robotics, Foundations and Trends in Robotics, 21, pp.388-403. Download Article BibTeX Reference Rueckert, E.A.; Neumann, G. (2012). Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation, Artificial Life. Download Article BibTeX Reference Hauser, H.; Neumann, G.; Ijspeert A.; Maass W. (2011). Biologically Inspired Kinematic Synergies enable Linear Balance Control of a Humanoid Robot, Biological Cybernetics. Download Article BibTeX Reference | |||
Conference and Workshop Papers | |||
Becker, P.; Arenz, O.; Neumann, G. (2020). Expected Information Maximization: Using the I-Projection for Mixture Density Estimation, International Conference on Learning Representations (ICLR).
Download Article BibTeX Reference Akrour, R.; Pajarinen, J.; Neumann, G.; Peters, J. (2019). Projections for Approximate Policy Iteration Algorithms, Proceedings of the International Conference on Machine Learning (ICML). Download Article BibTeX Reference Gebhardt, G.H.W.; Daun, K.; Schnaubelt, M.; Neumann, G. (2018). Learning Robust Policies for Object Manipulation with Robot Swarms, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Pinsler, R.; Akrour, R.; Osa, T.; Peters, J.; Neumann, G. (2018). Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Koert, D.; Maeda, G.; Neumann, G.; Peters, J. (2018). Learning Coupled Forward-Inverse Models with Combined Prediction Errors, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Arenz, O.; Zhong, M.; Neumann, G. (2018). Efficient Gradient-Free Variational Inference using Policy Search, in: Dy, Jennifer and Krause, Andreas (eds.), Proceedings of the International Conference on Machine Learning (ICML), 80, pp.234--243, PMLR. Download Article BibTeX Reference Akrour, R.; Veiga, F.; Peters, J.; Neumann, G. (2018). Regularizing Reinforcement Learning with State Abstraction, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference Akrour, R.; Peters, J.; Neumann, G. (2018). Constraint-Space Projection Direct Policy Search, European Workshops on Reinforcement Learning (EWRL). Download Article BibTeX Reference Tangkaratt, V.; van Hoof, H.; Parisi, S.; Neumann, G.; Peters, J.; Sugiyama, M. (2017). Policy Search with High-Dimensional Context Variables, Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). Download Article BibTeX Reference Gebhardt, G.H.W.; Kupcsik, A.G.; Neumann, G. (2017). The Kernel Kalman Rule - Efficient Nonparametric Inference with Recursive Least Squares, Proceedings of the National Conference on Artificial Intelligence (AAAI). Download Article BibTeX Reference Farraj, F. B.; Osa, T.; Pedemonte, N.; Peters, J.; Neumann, G.; Giordano, P.R. (2017). A Learning-based Shared Control Architecture for Interactive Task Execution, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference End, F.; Akrour, R.; Peters, J.; Neumann, G. (2017). Layered Direct Policy Search for Learning Hierarchical Skills, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Gabriel, A.; Akrour, R.; Peters, J.; Neumann, G. (2017). Empowered Skills, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Abdulsamad, H.; Arenz, O.; Peters, J.; Neumann, G. (2017). State-Regularized Policy Search for Linearized Dynamical Systems, Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS). Download Article BibTeX Reference Abdolmaleki, A.; Price, B.; Neumann, G. (2017). Deriving and Improving CMA-ES with Information Geometric Trust Regions, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). Download Article BibTeX Reference Abdolmaleki, A.; Price, B.; Lau, N.; Reis, P.; Neumann, G. (2017). Contextual CMA-ES, International Joint Conference on Artificial Intelligence (IJCAI). Download Article BibTeX Reference Akrour, R.; Sorokin, D.; Peters, J.; Neumann, G. (2017). Local Bayesian Optimization of Motor Skills, Proceedings of the International Conference on Machine Learning (ICML). Download Article BibTeX Reference Gebhardt, G.H.W.; Daun, K.; Schnaubelt, M.; Hendrich, A.; Kauth, D.; Neumann, G. (2017). Learning to Assemble Objects with a Robot Swarm, Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.1547--1549, International Foundation for Autonomous Agents and Multiagent Systems. Download Article BibTeX Reference Belousov, B.; Neumann, G.; Rothkopf, C.A.; Peters, J. (2017). Catching Heuristics Are Optimal Control Policies, Proceedings of the Karniel Thirteenth Computational Motor Control Workshop. Download Article BibTeX Reference Pajarinen, J.; Kyrki, V.; Koval, M.; Srinivasa, S; Peters, J.; Neumann, G. (2017). Hybrid Control Trajectory Optimization under Uncertainty, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference Osa, T.; Peters, J.; Neumann, G. (2016). Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies, Proceedings of the International Symposium on Experimental Robotics (ISER). Download Article BibTeX Reference Arenz, O.; Abdulsamad, H.; Neumann, G. (2016). Optimal Control and Inverse Optimal Control by Distribution Matching, Proceedings of the International Conference on Intelligent Robots and Systems (IROS), IEEE. Download Article BibTeX Reference Modugno, V.; Neumann, G.; Rueckert, E.; Oriolo, G.; Peters, J.; Ivaldi, S. (2016). Learning soft task priorities for control of redundant robots, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Ewerton, M.; Maeda, G.; Neumann, G.; Kisner, V.; Kollegger, G.; Wiemeyer, J.; Peters, J. (2016). Movement Primitives with Multiple Phase Parameters, Proceedings of the International Conference on Robotics and Automation (ICRA), pp.201--206. Download Article BibTeX Reference Akrour, R.; Abdolmaleki, A.; Abdulsamad, H.; Neumann, G. (2016). Model-Free Trajectory Optimization for Reinforcement Learning, Proceedings of the International Conference on Machine Learning (ICML). Download Article BibTeX Reference Belousov, B.; Neumann, G.; Rothkopf, C.; Peters, J. (2016). Catching Heuristics Are Optimal Control Policies, Advances in Neural Information Processing Systems (NIPS / NeurIPS). Download Article BibTeX Reference Koert, D.; Maeda, G.J.; Lioutikov, R.; Neumann, G.; Peters, J. (2016). Demonstration Based Trajectory Optimization for Generalizable Robot Motions, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Gomez-Gonzalez, S.; Neumann, G.; Schoelkopf, B.; Peters, J. (2016). Using Probabilistic Movement Primitives for Striking Movements, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). BibTeX Reference Abdolmaleki, A; Lau, N.; Reis, L.; Neumann, G.; (2016). Non-Parametric Contextual Stochastic Search, Proceedings of the International Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference van Hoof, H.; Peters, J.; Neumann, G. (2015). Learning of Non-Parametric Control Policies with High-Dimensional State Features, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS). Download Article BibTeX Reference Kroemer, O.; Daniel, C.; Neumann, G; van Hoof, H.; Peters, J. (2015). Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Rueckert, E.; Mundo, J.; Paraschos, A.; Peters, J.; Neumann, G. (2015). Extracting Low-Dimensional Control Variables for Movement Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben Amor, H.; Peters, J.; Maeda, G. (2015). Learning Multiple Collaborative Tasks with a Mixture of Interaction Primitives, Proceedings of the International Conference on Robotics and Automation (ICRA), pp.1535--1542. Download Article BibTeX Reference Lioutikov, R.; Neumann, G.; Maeda, G.J.; Peters, J. (2015). Probabilistic Segmentation Applied to an Assembly Task, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Paraschos, A.; Rueckert, E.; Peters, J; Neumann, G. (2015). Model-Free Probabilistic Movement Primitives for Physical Interaction, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference Ewerton, M.; Maeda, G.J.; Peters, J.; Neumann, G. (2015). Learning Motor Skills from Partially Observed Movements Executed at Different Speeds, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pp.456--463. Download Article BibTeX Reference Maeda, G.; Neumann, G.; Ewerton, M.; Lioutikov, R.; Peters, J. (2015). A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation, Proceedings of the International Symposium of Robotics Research (ISRR). Download Article BibTeX Reference Koc, O.; Maeda, G.; Neumann, G.; Peters, J. (2015). Optimizing Robot Striking Movement Primitives with Iterative Learning Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). BibTeX Reference van Hoof, H.; Hermans, T.; Neumann, G.; Peters, J. (2015). Learning Robot In-Hand Manipulation with Tactile Features, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Abdolmaleki, A. and Lau, N. and Reis, L. and Neumann, G. (2015). Regularized Covariance Estimation for Weighted Maximum Likelihood Policy Search Methods, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Abdolmaleki, A.; Lioutikov, R.; Peters, J; Lau, N.; Reis, L.; Neumann, G. (2015). Model-Based Relative Entropy Stochastic Search, Advances in Neural Information Processing Systems (NIPS / NeurIPS), MIT Press. Download Article BibTeX Reference Dann, C.; Neumann, G.; Peters, J. (2015). Policy Evaluation with Temporal Differences: A Survey and Comparison, Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling (ICAPS), pp.359-360. BibTeX Reference Wirth, C.; Fürnkranz, J.; Neumann G. (2015). Model-Free Preference-Based Reinforcement Learning, Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15). Download Article BibTeX Reference Gebhardt, G.H.W.; Kupcsik, A.; Neumann, G. (2015). Learning Subspace Conditional Embedding Operators, Large-Scale Kernel Learning Workshop at ICML 2015. Download Article BibTeX Reference Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Ben Amor, H.; Neumann, G.; Kamthe, S.; Kroemer, O.; Peters, J. (2014). Interaction Primitives for Human-Robot Cooperation Tasks , Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Luck, K.S.; Neumann, G.; Berger, E.; Peters, J.; Ben Amor, H. (2014). Latent Space Policy Search for Robotics, Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). Download Article BibTeX Reference Gomez, V.; Kappen, B; Peters, J.; Neumann, G (2014). Policy Search for Path Integral Control, Proceedings of the European Conference on Machine Learning (ECML). Download Article BibTeX Reference Maeda, G.J.; Ewerton, M.; Lioutikov, R.; Amor, H.B.; Peters, J.; Neumann, G. (2014). Learning Interaction for Collaborative Tasks with Probabilistic Movement Primitives, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), pp.527--534. Download Article BibTeX Reference Colome, A.; Neumann, G.; Peters, J.; Torras, C. (2014). Dimensionality Reduction for Probabilistic Movement Primitives, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Rueckert, E.; Mindt, M.; Peters, J.; Neumann, G. (2014). Robust Policy Updates for Stochastic Optimal Control, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Lioutikov, R.; Paraschos, A.; Peters, J.; Neumann, G. (2014). Sample-Based Information-Theoretic Stochastic Optimal Control, Proceedings of the International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Daniel, C.; Neumann, G.; Kroemer, O.; Peters, J. (2013). Learning Sequential Motor Tasks, Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA). Download Article BibTeX Reference Peters, J.; Kober, J.; Muelling, K.; Kroemer, O.; Neumann, G. (2013). Towards Robot Skill Learning: From Simple Skills to Table Tennis, Proceedings of the European Conference on Machine Learning (ECML), Nectar Track. Download Article BibTeX Reference Kupcsik, A.G.; Deisenroth, M.P.; Peters, J.; Neumann, G. (2013). Data-Efficient Generalization of Robot Skills with Contextual Policy Search, Proceedings of the National Conference on Artificial Intelligence (AAAI) . Download Article BibTeX Reference Daniel, C.; Neumann, G.; Peters, J. (2013). Autonomous Reinforcement Learning with Hierarchical REPS, Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN) . BibTeX Reference Neumann, G.; Kupcsik, A.G.; Deisenroth, M.P.; Peters, J. (2013). Information-Theoretic Motor Skill Learning, Proceedings of the AAAI 2013 Workshop on Intelligent Robotic Systems. BibTeX Reference Paraschos, A.; Neumann, G; Peters, J. (2013). A Probabilistic Approach to Robot Trajectory Generation, Proceedings of the International Conference on Humanoid Robots (HUMANOIDS). Download Article BibTeX Reference Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G (2013). Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS / NeurIPS), MIT Press. Download Article BibTeX Reference Daniel, C.; Neumann, G.; Peters, J. (2012). Hierarchical Relative Entropy Policy Search, Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS 2012). Download Article BibTeX Reference Daniel, C.; Neumann, G.; Peters, J. (2012). Learning Concurrent Motor Skills in Versatile Solution Spaces, Proceedings of the International Conference on Robot Systems (IROS). Download Article BibTeX Reference Ben Amor, H.; Kroemer, O.; Hillenbrand, U.; Neumann, G.; Peters, J. (2012). Generalization of Human Grasping for Multi-Fingered Robot Hands, Proceedings of the International Conference on Robot Systems (IROS). Download Article BibTeX Reference Neumann, G. (2011). Variational Inference for Policy Search in Changing Situations, Proceedings of the International Conference on Machine Learning (ICML 2011) . Download Article BibTeX Reference Rueckert, E.A.; Neumann, G. (2011). A study of Morphological Computation by using Probabilistic Inference for Motor Planning, Proceedings of the 2nd International Conference on Morphological Computation (ICMC), pp.51--53. Download Article BibTeX Reference Neumann, G.; Peters, J. (2009). Fitted Q-iteration by Advantage Weighted Regression, Advances in Neural Information Processing Systems 22 (NIPS/NeurIPS), Cambridge, MA: MIT Press. Download Article BibTeX Reference Neumann, G.; Maass, W; Peters, J. (2009). Learning Complex Motions by Sequencing Simpler Motion Templates, Proceedings of the International Conference on Machine Learning (ICML2009). Download Article BibTeX Reference Hauser, H.; Neumann, G.; Ijspeert, A.; Maass, W.; (2007). Biologically Inspired Kinematic Synergies Provide a New Paradigm for Balance Control of Humanoid Robots, Proceedings of the 7th IEEE RAS/RSJ Conference on Humanoids Robots (HUMANOIDS07). Download Article BibTeX Reference Neumann, G.; Pfeiffer, M.; Maass, W. (2007). Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs, European Conference on Machine Learning (ECML) 2007. Download Article BibTeX Reference |